Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.1.043

Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area  

Cheong, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul)
Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul)
Kim, Min-Sung (Department of Infornation and Communications Engineering, School of Information Engineering)
Publication Information
Korean Journal of Materials Research / v.13, no.1, 2003 , pp. 43-47 More about this Journal
Abstract
As and BF$_2$dopants are implanted for the formation of source/drain with dose of 1${\times}$10$^{15}$ ions/$\textrm{cm}^2$∼5${\times}$10$^{15}$ ions/$\textrm{cm}^2$ then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 $\mu\textrm{m}$ CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{V}$ , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{+}$ . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in $CoSi_2$$n^{+}$ , while little variation was observed in $CoSi_2$$p^{+}$ . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of $CoSi_2$$n^{+}$ / and $CoSi_2$/$p^{+}$, which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13$\mu\textrm{m}$ process.
Keywords
cobalt disilicide; Ti interlayer; sheet resistance; dopants distribution; dose; spike; ion implantation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000)   DOI   ScienceOn
2 J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S. Redkar, Appl. Phys. Lett., 78, 3091 (2001)   DOI   ScienceOn
3 C. Detavemier, R. L. Van Meirhaeghe and F. Cardon, J. Appl. Phys., 88, 133 (2000)   DOI   ScienceOn
4 S. L. Hsia, T. Y. Tan, P. Smith and G. E. McGuire, J. Appl. Phys., 70, 1308 (1991)   DOI
5 H. S. Kim, D. H. Ko, D. L. Bae, K. Fujihara and H. K. Kang, IEEE Electron Device Lett., 20, 86 (1999)   DOI   ScienceOn
6 R. T. Tung, Applied Surface Science, 117/118, 268 (1997)   DOI   ScienceOn
7 J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin and D. Vanhoenacker, J. Electrochem. Soc., 144, 2437 (1997)   DOI
8 H. Zhang, J. Poole, R. Eller and M. Keefe, J. Vac. Sci. Technol. A, 17, 1904 (1999)   DOI
9 J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38, 262 (1991)   DOI   ScienceOn
10 O. S. Song and Y. S. Ahn, J. Kor. Inst. Surf. Eng., 32, 389 (1999)
11 P. Gas, O. Thomas and F. M. d'Heurle, Properties of Metal Silicides, p. 298, 14, ed. K. Maex and M.V.Rossum, INSPEC, London UK, (1995)
12 H. C. Cheng, W. K. Lai and H. W. Liu, J. Electrochem. Soc., 145, 3590 (1998)   DOI   ScienceOn
13 M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58, 1308 (1991)   DOI
14 T. Sukegawa, H. Tomita, A. Fushida, K. Goto, S. Komiya and T. Nakamura, Jpn. J. Appl. Phys., 36, 6244 (1997)   DOI
15 D. Mangelinck, J. Cardenas, F. M. d'Heurle, B. G. Svensson and P. Gas, J. Appl. Phys., 86, 4908 (1999)   DOI
16 A. Lauwers, Q. F. Wang, B. Deweerdt and K. Maex, Applied Surface Science, 91, 12 (1995)   DOI   ScienceOn