• Title/Summary/Keyword: fixed point problem

Search Result 351, Processing Time 0.023 seconds

ANALYTIC SOLUTION OF HIGH ORDER FRACTIONAL BOUNDARY VALUE PROBLEMS

  • Muner M. Abou Hasan;Soliman A. Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.601-612
    • /
    • 2023
  • The existence of solution of the fractional order differential equations is very important mathematical field. Thus, in this work, we discuss, under some hypothesis, the existence of a positive solution for the nonlinear fourth order fractional boundary value problem which includes the p-Laplacian transform. The proposed method in the article is based on the fixed point theorem. More precisely, Krasnosilsky's theorem on a fixed point and some properties of the Green's function were used to study the existence of a solution for fourth order fractional boundary value problem. The main theoretical result of the paper is explained by example.

THE RIEMANN PROBLEM FOR A SYSTEM OF CONSERVATION LAWS OF MIXED TYPE (II)

  • Lee, Choon-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.37-59
    • /
    • 1998
  • We prove that solutions $u^\epsilon$ for the mixed hyperbolic-elliptic system of conservation laws with the viscosity term are total variation bounded uniformly in $\epsilon$ and that the solution $u^\epsilon$ converges to the solution for the mixed hyperbolic-elliptic Riemann problem as $\epsilon \to 0$.

  • PDF

APPROXIMATION OF SOLUTIONS OF A GENERALIZED VARIATIONAL INEQUALITY PROBLEM BASED ON ITERATIVE METHODS

  • Cho, Sun-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.207-214
    • /
    • 2010
  • In this paper, a generalized variational inequality problem is considered. An iterative method is studied for approximating a solution of the generalized variational inequality problem. Strong convergence theorem are established in a real Hilbert space.

EXITSENCE OF MILD SOLUTIONS FOR SEMILINEAR MIXED VOLTERRA-FREDHOLM FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCALS

  • LEE, HYUN MORK
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.365-375
    • /
    • 2015
  • Of concern is the existence, uniqueness, and continuous dependence of a mild solution of a nonlocal Cauchy problem for a semilinear mixed Volterra-Fredholm functional integrodifferential equation. Our analysis is based on the theory of a strongly continuous semigroup of operators and the Banach fixed point theorem.

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR p-LAPLACIAN WITH SIGN-CHANGING NONLINEAR TERMS

  • Li, Xiangfeng;Xu, Wanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.411-422
    • /
    • 2010
  • By using the fixed point index theory, we investigate the existence of at least two positive solutions for p-Laplace equation with sign-changing nonlinear terms $(\varphi_p(u'))'+a(t)f(t,u(t),u'(t))=0$, subject to some boundary conditions. As an application, we also give an example to illustrate our results.

A SYSTEM OF FIRST-ORDER IMPULSIVE FUZZY DIFFERENTIAL EQUATIONS

  • Lan, Heng-You
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.111-123
    • /
    • 2008
  • In this paper, we introduce a new system of first-order impulsive fuzzy differential equations. By using Banach fixed point theorem, we obtain some new existence and uniqueness theorems of solutions for this system of first-order impulsive fuzzy differential equations in the metric space of normal fuzzy convex sets with distance given by maximum of the Hausdorff distance between level sets.

  • PDF

Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations

  • Liu, Yuji;Shi, Haiping;Liu, Xingyuan
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.257-271
    • /
    • 2013
  • In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.