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POSITIVE SOLUTIONS OF BOUNDARY VALUE
PROBLEMS FOR p-LAPLACIAN WITH
SIGN-CHANGING NONLINEAR TERMS

Xiangfeng Li and Wanyin Xu

Abstract. By using the fixed point index theory, we investigate the
existence of at least two positive solutions for p-Laplace equation with
sign-changing nonlinear terms (ϕp(u′))′+a(t)f(t, u(t), u′(t)) = 0, subject
to some boundary conditions. As an application, we also give an example
to illustrate our results.

1. Introduction

The existence of positive solutions on boundary value problems for ordinary
differential equations has been extensively studied by many authors, one may
see [2, 3, 4, 5, 6], [8, 9, 11, 12, 14] and references therein. So far as we know,
most results have been obtained mainly by using the monotone iterative and
upper-lower solutions technique [2, 11, 14], the fixed point index theory [8],
the nonlinear alternative of Leray-Schauder [5], and some fixed point theorems
[3, 4, 6, 9], and some new existence principles [12], and so on. In order to apply
the concavity of solutions in the proofs, almost all existing works were done
under the assumption that the nonlinear term is nonnegative. In this paper,
we eliminate the nonnegative condition imposed on the nonlinearity f , which
is a crucial condition in the proof of these literatures. Clearly, comparing to
the equations with nonnegative conditions imposed on f , the equations with
sign-changing nonlinearities that we shall consider, to a certain extent, reflect
even more exactly the physical reality. Very recently, when p 6= 2, in [10], Lü
et al. studied the existence of positive solution for singular p-Laplace equation
with sign changing nonlinearities

−(ϕp(u′))′ = q(t)f(u) + r(t)g(u), 0 < t < 1
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subject to the boundary condition

u(0) = u(1) = 0.

The main tool is the upper and lower solutions method. When p = 2, in
[5] Li and Sun considered the existence of nontrivial solution for three-point
boundary value problem

u′′ + f(t, u) = 0, 0 < t < 1

au(0)− bu′(0) = 0, u(1)− αu(η) = 0,

where η ∈ (0, 1), α, a, b ∈ R, f ∈ C([0, 1] × R,R), R = (−∞, +∞). In [7], Li
investigated the existence of positive solution for second-order boundary value
problem

u′′ + f(t, u) = 0, 0 < t < 1

u(0) = u(1) = 0,

where f ∈ C([0, 1]× R+,R), the main tool is the fixed point index theorem.
Motivated by [10, 5, 7], in this paper, we consider the existence of two

positive solutions for p-Laplace equation with sign-changing nonlinear terms

(1.1) (ϕp(u′))′ + a(t)f(t, u(t), u′(t)) = 0, 0 < t < 1

subject to one of the following boundary conditions

(1.2) u(0)−B1(u′(η)) = 0, u′(1) = 0

or

(1.3) u′(0) = 0, u(1) + B2(u′(η)) = 0,

where ϕp(x) = |x|p−2x, p > 1, 0 < η < 1, ϕp is an odd, increasing homeomor-
phism on R. ϕq(x) = |x|q−2x is the inverse function to ϕp,

1
p + 1

q = 1, and the
following conditions are satisfied throughout this paper.

(H1) f ∈ C([0, 1]× [0,∞)× R,R);
(H2) a(t) ∈ C([0, 1], [0,∞)), f(t, 0, ·) ≥ 0 and a(t)f(t, ·, ·) is not identical

zero on any compact subinterval of (0, 1). Furthermore, a(t) satisfies

0 <

∫ 1−η

η

a(t) dt < +∞, η ∈ (0, 1/2).

(H3) B1, B2 are both increasing continuous odd functions defined on R, and
there exist nonnegative numbers l, L such that

lx ≤ Bi(x) ≤ Lx, x ∈ R+, i = 0, 1

holds.
Equations of the above form occur in the study of radial solutions for the

n-dimensional p-Laplace equations, non-Newtonian fluid mechanics and the
turbulent flow of gas in porous medium [1] and so on. But to our knowledge,
when the nonlinear term f is involved in first-order derivative explicitly, in



POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS 413

particular, involved in changing sign nonlinear terms, few results have been
seen in literature for Eq.(1.1) subject to some boundary conditions.

The purpose of this paper is to establish some simple criteria for the existence
of at least two positive solutions for Eq.(1.1), (1.2) and (1.1), (1.3). The key
tool is the fixed point index theory. Moreover, our works essentially improve
and generalize the results in the present literatures.

2. Preliminaries and lemmas

In order to prove our main results, we provide some definitions and lemmas
as follows.

Definition 2.1. Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed,
convex set P ⊂ E is called a cone if it satisfies the following two conditions:

(i) u ∈ P, λ ≥ 0, implies λu ∈ P ;
(ii) u ∈ P,−u ∈ P, implies u = 0.

Every cone P ⊂ E induces an ordering in E given by u ≤ v if and only if
v − u ∈ P .

Definition 2.2. The map α is said to be a nonnegative continuous concave
functional on cone P of a real Banach space E if

α : P → [0,∞)

is continuous and

α(τu + (1− τ)v) ≥ τα(u) + (1− τ)α(v)

for all u, v ∈ P and τ ∈ [0, 1]. Similarly, we say the map β is a nonnegative
continuous convex functional on a cone P of a real Banach space E if

β : P → [0,∞)

is continuous and

β(τu + (1− τ)v) ≤ τβ(u) + (1− τ)β(v)

for all u, v ∈ P and τ ∈ [0, 1].

Let the Banach space E = C[0, 1] be endowed with the maximum norm
‖u‖ = max{|u(t)|, t ∈ [0, 1]}. Let P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}, P ′ =
{u ∈ E : u(t) is a nonnegative continuous concave function on [0, 1]}, it is
easy to see that P, P ′ are cones in E. Let Pr = {u ∈ P : ‖u‖ < r}. Then
∂Pr = {u ∈ P : ‖u‖ = r}, Pr = {u ∈ P : ‖u‖ ≤ r}.

For notational convenience, we write

u+(t) = max
0≤t≤1

{u(t), 0}, ∀u(t) ∈ E = C[0, 1].

Thus, we have:
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Lemma 2.1. Assume that A : E → E is a completely continuous oper-
ator. Defined operator A+ : A(E) → P given by (A+u)(t) = u+(t) for
u(t) ∈ A(E), t ∈ [0, 1]. Then A+ ◦ A : E → P is also a completely contin-
uous operator.

Proof. By the completely continuity of A, we can know that there are ui ∈ E,
i = 1, 2, . . . ,m, for any bounded set S ⊂ E and any ε > 0, such that

A(S) ⊂
m⋃

i=1

B(ui, ε),

where B(ui, ε) = {u ∈ E : ‖u− ui‖ < ε}. Therefore, for any u ∈ (A+ ◦ A)(S),
there is u ∈ A(S) such that u = max0≤t≤1{u(t), 0} = u+(t). Thus, there exists
ui, i = 1, 2, . . . , m, such that max0≤t≤1 |u(t)− ui(t)| < ε. And we have

max
0≤t≤1

|u(t)− ui(t)| ≤ max
0≤t≤1

|u(t)− ui(t)| < ε,

namely, u ∈ B(ui, ε). Hence, (A+ ◦A)(S) is relatively compact.
On the other hand, for arbitrary ε > 0, there exists δ > 0 such that

‖Au−Av‖ < ε, when ‖u− v‖ < δ, ∀u, v ∈ E,

hence,

‖(A+ ◦A)(u)− (A+ ◦A)(v)‖ = max
0≤t≤1

|(Au)(t)− (Av)(t)|
≤ max

0≤t≤1
|(Au)(t)− (Av)(t)|

= ‖Au−Av‖ < ε.

Therefore, A+ ◦A is continuous on E, that is, A+ ◦A is completely continuous.
¤

Lemma 2.2 ([8, Lemma 2.2]). Let u ∈ P ′, ω ∈ (0, 1
2 ). Then

u(t) ≥ ω‖u‖, t ∈ [ω, 1− ω].

Lemma 2.3 ([13, Theorem 2.1]). Let E be a Banach space, P be a cone in E.
Assume that T : Pr → P is completely continuous, and such that Tx 6= x for
x ∈ ∂Pr.

(i) If ‖x‖ ≤ ‖Tx‖ for x ∈ ∂Pr, then i(T, Pr, P ) = 0;
(ii) If ‖x‖ ≥ ‖Tx‖ for x ∈ ∂Pr, then i(T, Pr, P ) = 1.

3. Existence of two positive solutions of Problem(1.1)-(1.2)

In order to state and prove the our main result, we need the following lemma
and operators.

Lemma 3.1. Let x(t) ∈ C1[0, 1], x(t) ≥ 0. Then p-Laplace boundary value
problem

(3.1) (ϕp(u′(t)))′ + f(t, x(t), x′(t)) = 0, 0 < t < 1,
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(3.2) u(0)−B1(u′(η)) = 0, u′(1) = 0,

has a unique solution
(3.3)

u(t) = B1

(
ϕq

(∫ 1

η

f(r, x(r), x′(r)) dr

))
+

∫ t

0

ϕq

(∫ 1

s

f(r, x(r), x′(r)) dr

)
ds.

Proof. First, we prove that the existence of solution is satisfied. Integrating
(3.1) from t to 1, and by (3.2), we have

ϕp(u′(t)) =
∫ 1

t

f(r, x(r), x′(r)) dr,

i.e.,

(3.4) u′(t) = ϕq

(∫ 1

t

f(r, x(r), x′(r)) dr

)
.

Integrating (3.4) from 0 to t, we get

u(t)− u(0) =
∫ t

0

ϕq

(∫ 1

s

f(r, x(r), x′(r)) dr

)
ds.

By (3.4), we have

u′(η) = ϕq

(∫ 1

η

f(r, x(r), x′(r)) dr

)
.

Hence, by (3.2), we get

u(0) = B1(u′(η)) = B1

(
ϕq

(∫ 1

η

f(r, x(r), x′(r)) dr

))
.

Therefore,

u(t) = B1

(
ϕq

(∫ 1

η

f(r, x(r), x′(r)) dr

))
+

∫ t

0

ϕq

(∫ 1

s

f(r, x(r), x′(r)) dr

)
ds.

Next, we claim that the uniqueness of solution is also held. Let (3.1)-(3.2) have
another solution v. Then

(3.5) (ϕp(v′(t)))′ + f(t, x(t), x′(t)) = 0, 0 < t < 1,

(3.6) v(0)−B1(v′(η)) = 0, v′(1) = 0.

Similarly, we can obtain

v(t) = B1

(
ϕq

(∫ 1

η

f(r, x(r), x′(r)) dr

))
+

∫ t

0

ϕq

(∫ 1

s

f(r, x(r), x′(r)) dr

)
ds.

Thus, u(t) = v(t) for t ∈ [0, 1].
The proof of Lemma 3.1 is complete. ¤
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Now, we define operators A,B, F as follows:
A : P → E given by

(Au)(t) = B1

(
ϕq

(∫ 1

η

a(r)f(r, u(r), u′(r)) dr

))

+
∫ t

0

ϕq

(∫ 1

s

a(r)f(r, u(r), u′(r)) dr

)
ds, t ∈ [0, 1].

Thanks to Lemma 3.1 and the condition (H2), each fixed point of A in P is a
positive solution of BV P (1.1), (1.2).

B : P → P given by

(Bu)(t) =
[
B1

(
ϕq

(∫ 1

η

a(r)f(r, u(r), u′(r)) dr

))

+
∫ t

0

ϕq

(∫ 1

s

a(r)f(r, u(r), u′(r)) dr

)
ds

]+

, t ∈ [0, 1].

Obviously, B = A+ ◦A.
F : P ′ → P given by

(Fu)(t) = B1

(
ϕq

(∫ 1

η

a(r)f+(r, u(r), u′(r)) dr

))

+
∫ t

0

ϕq

(∫ 1

s

a(r)f+(r, u(r), u′(r)) dr

)
ds, t ∈ [0, 1].

It is easy to prove that F (P ′) ⊂ P ′, and ‖Fu‖ = (Fu)(1).
For notational convenience, we introduce the following constants:

M = Lϕq

(∫ 1

η

a(r) dr

)
+

∫ 1

0

ϕq

(∫ 1

s

a(r) dr

)
ds,

N = lϕq

(∫ 1−η

η

a(r) dr

)
+

∫ 1−η

η

ϕq

(∫ 1−η

s

a(r) dr

)
ds.

The first main result of this paper is as follows:

Theorem 3.1. Assume that (H1), (H2), (H3) hold, and suppose that there exist
positive constants a, b, d such that 0 < 1

η d < a < b. Also assume that f satisfies
the following conditions:

(H4) f(t, u, u′) ≥ 0 for (t, u, u′) ∈ [η, 1− η]× [d, b]× R;
(H5) f(t, u, u′) < ϕp(a/M) for (t, u, u′) ∈ [0, 1]× [0, a]× R;
(H6) f(t, u, u′) > ϕp(b/N) for (t, u, u′) ∈ [η, 1− η]× [ηb, b]× R.

Then BV P (1.1), (1.2) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < a < ‖u2‖ < b.
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Proof. Firstly, in view of the definitions of the operators A,F and the continuity
of f , applying the Lebesgue’s dominated convergence theorem and the Arzela-
Ascoli theorem, it is easy to prove that A : P → E and F : P ′ → P ′ are
completely continuous. Thus, it follows from Lemma 2.1 that A+◦A : P → P is
also completely continuous operator, i.e., B : P → P is a completely continuous
operator.

Secondly, we show that B has a fixed point u1 ∈ P with 0 < ‖u1‖ < a. We
choose u ∈ ∂Pa, then ‖u‖ = a and 0 ≤ u(t) ≤ a for t ∈ [0, 1]. By (H3) and
(H5), we get

‖(Bu)‖ = max
0≤t≤1

[
B1

(
ϕq

(∫ 1

η

a(r)f(r, u(r), u′(r)) dr

))

+
∫ t

0

ϕq

(∫ 1

s

a(r)f(r, u(r), u′(r)) dr

)
ds

]+

≤ max
0≤t≤1

(
Lϕq

(∫ 1

η

a(r)f(r, u(r), u′(r)) dr

)

+
∫ t

0

ϕq

(∫ 1

s

a(r)f(r, u(r), u′(r)) dr

)
ds

)

<
a

M

(
Lϕq

(∫ 1

η

a(r) dr

)
+

∫ 1

0

ϕq

(∫ 1

s

a(r) dr

)
ds

)

= a = ‖u‖.
It follows from Lemma 2.3 that

i(B, Pa, P ) = 1.

Consequently, B has a fixed point u1 in Pa such that 0 < ‖u1‖ < a.
We show that u1 is also a fixed point of A in Pa below.
Suppose that u1 is not a fixed point of A in Pa. Then there exists t0 ∈ [0, 1]

such that

(Au1)(t0) 6= u1(t0) = (Bu1)(t0) = max{(Au1)(t0), 0}.
Therefore, (Au1)(t0) < 0 = u1(t0). In view of the continuity of A, we know
that there exists the neighborhood of t0 denoted by N(t0, δ) ⊂ [0, 1], such that

(Au1)(t) < 0 = u1(t) = (Bu1)(t), ∀t ∈ N(t0, δ).

It follows from the definition of B that

(Bu1)(t) =
[
B1

(
ϕq

(∫ 1

η

a(r)f(r, u1(r), u′1(r)) dr

))

+
∫ t

0

ϕq

(∫ 1

s

a(r)f(r, u1(r), u′1(r)) dr

)
ds

]+

= u1(t) = 0, t ∈ N(t0, δ).

This contradicts the condition (H2). Hence, u1 is a fixed point of A in Pa.
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Finally, we show the existence of another fixed point of A such that a <
‖u2‖ < b. For this, let u ∈ ∂P ′a, similar to the proof above, it follows from
condition (H3) and (H5) that

‖Fu‖ = B1

(
ϕq

(∫ 1

η

a(r)f+(r, u(r), u′(r)) dr

))

+
∫ 1

0

ϕq

(∫ 1

s

a(r)f+(r, u(r), u′(r)) dr

)
ds

≤ Lϕq

(∫ 1

η

a(r)f+(r, u(r), u′(r)) dr

)

+
∫ 1

0

ϕq

(∫ 1

s

a(r)f+(r, u(r), u′(r)) dr

)
ds

<
a

M

(
Lϕq

(∫ 1

η

a(r) dr

)
+

∫ 1

0

ϕq

(∫ 1

s

a(r) dr

)
ds

)

= a = ‖u‖.
In addition, let u ∈ ∂P ′b, then ‖u‖ = b. Thanks to Lemma 2.2, there exists
η > 0 such that ηb ≤ u(t) ≤ b for t ∈ [η, 1− η]. It follows from condition (H3)
and (H6) that

‖Fu‖ = B1

(
ϕq

(∫ 1

η

a(r)f+(r, u(r), u′(r)) dr

))

+
∫ 1

0

ϕq

(∫ 1

s

a(r)f+(r, u(r), u′(r)) dr

)
ds

≥ lϕq

(∫ 1

η

a(r)f+(r, u(r), u′(r)) dr

)

+
∫ 1

0

ϕq

(∫ 1

s

a(r)f+(r, u(r), u′(r)) dr

)
ds

>
b

N

(
lϕq

(∫ 1−η

η

a(r) dr

)
+

∫ 1−η

η

ϕq

(∫ 1−η

s

a(r) dr

)
ds

)

= b = ‖u‖.
By Lemma 2.3, we have

i(F, P ′a, P ′) = 1, i(F, P ′b, P
′) = 0.

Thus i(F, P ′b \ P ′a, P ′) = −1, that is, F has a fixed point u2 in P ′b \ P ′a, and
a < ‖u2‖ < b.

In the following we prove that u2 is also a fixed point of A in P ′b \ P ′a. In
fact, for u2 ∈ (P ′b \ P ′a)

⋂{u : Fu = u}, we have u2(1) = ‖u2‖ > a. Thus it
follows from Lemma 2.2 that

min
η≤t≤1−η

u2(t) ≥ ηu2(1) > ηa > d.



POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS 419

Therefore, we have d ≤ u2(t) ≤ b for t ∈ [η, 1− η], from condition (H4), we get
f+(t, u2(t)) = f(t, u2(t)). It implies Au2 = Fu2 = u2. Consequently, u2 is a
fixed point of A in cone P ′. Namely, u2 is another positive solution BV P (1.1),
(1.2).

The proof of Theorem 3.1 is complete. ¤

4. Existence of two positive solutions of Problem(1.1)-(1.3)

In this section, we give another main result of this paper and a lemma that
is used in the proof of main result.

Lemma 4.1. Let x(t) ∈ C1([0, 1], x(t) ≥ 0. Then p-Laplacian boundary value
problem

(4.1) (ϕp(u′(t)))′ + f(t, x(t), x′(t)) = 0, 0 < t < 1,

(4.2) u′(0) = 0, u(1) + B2(u′(η)) = 0,

has a unique solution
(4.3)

u(t) = B2

(
ϕq

(∫ η

0

f(r, x(r), x′(r)) dr

))
+

∫ 1

t

ϕq

(∫ s

0

f(r, x(r), x′(r)) dr

)
ds.

Proof. The proof of Lemma 4.1 is similar to that of Lemma 3.1, we omit it
here. ¤

Now, we define operators Â, B̂, F̂ as follows:
Â : P → E given by

(Âu)(t) = B2

(
ϕq

(∫ η

0

a(r)f(r, u(r), u′(r)) dr

))

+
∫ 1

t

ϕq

(∫ s

0

a(r)f(r, u(r), u′(r)) dr

)
ds, t ∈ [0, 1].

According to Lemma 4.1 and the condition (H2), each fixed point of Â in P is
a positive solution of BV P (1.1), (1.3).

B̂ : P → P given by

(B̂u)(t) =
[
B2

(
ϕq

(∫ η

0

a(r)f(r, u(r), u′(r)) dr

))

+
∫ 1

t

ϕq

(∫ s

0

a(r)f(r, u(r), u′(r)) dr

)
ds

]+

, t ∈ [0, 1].

Obviously, B̂ = Â+ ◦ Â.
F̂ : P ′ → P given by

(F̂ u)(t) = B2

(
ϕq

(∫ η

0

a(r)f+(r, u(r), u′(r)) dr

))
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+
∫ 1

t

ϕq

(∫ s

0

a(r)f+(r, u(r), u′(r)) dr

)
ds, t ∈ [0, 1].

It is easy to see that F̂ (P ′) ⊂ P ′, and ‖F̂ u‖ = (F̂ u)(0).
For notational convenience, we introduce the following constants:

M̂ = Lϕq

(∫ η

0

a(r) dr

)
+

∫ 1

0

ϕq

(∫ s

0

a(r) dr

)
ds,

N̂ = lϕq

(∫ 1−η

η

a(r) dr

)
+

∫ 1−η

η

ϕq

(∫ s

η

a(r) dr

)
ds.

Theorem 4.1. Assume that (H1), (H2), (H3) hold, and suppose that there exist
positive constants a, b, d such that 0 < 1

η d < a < b. Also assume that f satisfies
the following conditions:

(H7) f(t, u, u′) ≥ 0 for (t, u, u′) ∈ [η, 1− η]× [d, b]× R;
(H8) f(t, u, u′) < ϕp(a/M̂) for (t, u, u′) ∈ [0, 1]× [0, a]× R;
(H9) f(t, u, u′) > ϕp(b/N̂) for (t, u, u′) ∈ [η, 1− η]× [ηb, b]× R.

Then BV P (1.1), (1.3) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < a < ‖u2‖ < b.

Proof. The proof of Theorem 4.1 is similar to that of Theorem 3.1, we omit it
here. ¤

5. Application

In order to illustrate our results, we present an example as follows.

Example. Consider the boundary value problem involving p-Laplacian with
sign-changing nonlinear terms

(5.1)
{

(ϕp(u′(t)))′ + a(t)f(t, u(t), u′(t)) = 0, 0 < t < 1,
u(0)−B1(u′(η)) = 0, u′(1) = 0,

where

p =
3
2
, η =

1
3
, a(t) = 2t, l = 0, L = 1, B1(x) = arctan x,

and

f(t, u, u′) =

{
1
4 t2 + 1

10 (u− 1)2 + sin u′
100 , (t, u, u′) ∈ [0, 1]× [0, 6)× R,

1
4 t2 − 3

2 (u− 16)2 + 305
2 + sin u′

100 , (t, u, u′) ∈ [0, 1]× [6, +∞)× R.

Then (5.1) has at least two positive solutions.

Proof. In this example, it follows from a direct calculation that

M = ϕq

(∫ s

1
3

a(r) dr

)
+

∫ 1

0

ϕq

(∫ 1

s

a(r) dr

)
ds =

536
405

,
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N =
∫ 2

3

1
3

ϕq

(∫ 2
3

s

a(r) dr

)
ds =

53
3645

,

Clearly, conditions (H1), (H2), (H3) are satisfied.
Let a = 4, b = 24, d = 1, thus, we have

f(t, u, u′) ≥ 0 for (t, u, u′) ∈ [ 13 , 2
3 ]× [1, 24]× R,

f(t, u, u′) ≤ max f(t, u, u′) =
1
4

+
9
10

+
1

100
< ϕp

( a

M

)

= ϕp

(
405× 4

536

)
for (t, u, u′) ∈ [0, 1]× [0, 4]× R,

and

f(t, u, u′) ≥ min f(t, u, u′) =
1
36

+
113
2

> ϕp(
b

N
) = ϕp

(
3645
53

× 24
)

for (t, u, u′) ∈ [ 13 , 2
3 ]× [8, 24]× R.

Consequently, conditions (H4), (H5), (H6) of Theorem 3.1 are satisfied. Then
by Theorem 3.1, the boundary value problem involving p-Laplacian with sign-
changing nonlinear terms (5.1) has two positive solutions, and such that

0 < ‖u1‖ < a < ‖u2‖ < b. ¤

Acknowledgement. The authors are very grateful to the referee for her/his
important comments and suggestions.
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