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A SYSTEM OF FIRST-ORDER IMPULSIVE FUZZY
DIFFERENTIAL EQUATIONS

HENG-YOU LAN

ABSTRACT. In this paper, we introduce a new system of first-order impul-
sive fuzzy differential equations. By using Banach fixed point theorem, we
obtain some new existence and uniqueness theorems of solutions for this
system of first-order impulsive fuzzy differential equations in the metric
space of normal fuzzy convex sets with distance given by maximum of the
Hausdorff distance between level sets.

1. Introduction

The differential equations with applications in Banach spaces and fuzzy dif-
ferential equations under various initial and boundary conditions have been
studied by many authors. In 1972, Chang and Zadeh [5] first introduced the
concept of fuzzy derivative. Afterwards, the framework for the study of fuzzy
differential equations has also been developed and the basic properties of solu-
tions of fuzzy differential equations is available (see, for example, [1]-[4], [10],
[12], [17] [18]-][20], [22], [29], [31], [33], [35], [36] and the references therein).

Recently, Nieto [29] proved a version of the classical Peano existence theorem
for initial value problems for a fuzzy differential equation in the metric space
of normal fuzzy convex sets with the distance given by the maximum of the
Hausdorff distance between level sets. The results of Nieto [29] complements
the existence and uniqueness result of Kaleva [18]. Further, Georgiou and
Kougias [10] studied the following second-order problem:

{m”(t) = [t x(t),2'(t), Vi€ [to, T,
.’E(to) = kl, x/(to) = kg,

with f : [tg, T] x E™ x E™ — E™ continuous and k1, ks real constants. Georgiou
et al. [11] considered nth-order fuzzy differential equations with initial value
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conditions and proved the existence and uniqueness of solution for nonlinearities
satisfying a Lipschitz condition. Huang and Lan [15] proved some new existence
theorems of solution for a new class of first-order implicit ordinary differential
equations in Banach spaces by using the directional Lipschitzian condition and
Krasnoselskii’s fixed point theorem.

Very recently, by using Banach fixed point theorem, Lan and Huang [24]
obtained some new existence and uniqueness theorems of solutions for a class
of initial value problems of nonlinear first order implicit fuzzy differential equa-
tions in the metric space of normal fuzzy convex sets E™ with distance given
by maximum of the Hausdorff distance between level sets:

{x’(t) = f(t,z(t), A’ (t)),
z(to) = wo.

On the other hand, the theory of impulsive differential equations or implicit
impulsive integro-differential equations has been emerging as an important area
of investigation in recent years and has been developed very rapidly due to the
fact that such equations find a wide range of applications modeling adequately
many real processes observed in physics, chemistry, biology and engineering
(see, for example, [14], [15], [25], [34] and the references therein). Correspond-
ingly, applications of the theory of impulsive differential equations to different
areas were considered by many authors and some basic results on impulsive dif-
ferential equations have been obtained (see, for example, [6], [9], [16], [26]-[28],
[32], [37]-[41] and the references therein). Furthermore, some basic results on
impulsive fuzzy differential equations have also been studied by several authors,
see [7], [13], [21], [23], [30], but the theory still remains to be developed.

Inspired and motivated by the above works, in this paper, by using Ba-
nach contraction mapping principle theorem, we obtain some new existence
and uniqueness theorems of solutions for the following systems of first-order
impulsive fuzzy differential equations in the metric space of normal fuzzy con-
vex sets with distance given by maximum of the Hausdorff distance between
level sets: Find (z,y) : J x J — E™ x E™ such that

a'(t) = f(t,z(t),y' (1)), t#tk,

y'(t) = g(t, Ay(t), t#tx,

(1.1) Axlimy, = Ii(z(t)), (k=1,2,---,m),
Aglimr, = I(y(tr)),  (k=1,2,---,m),
x(to) = w0, y(to) =

where J = [to,to +a] C R = (—ood—oo) is a compact interval, f : J x E™ X
E" — E™and g : J x E™ — E™ are continuous, E" is the family of all fuzzy
sets u : R" — [0,1], @o,y0 € E™, I I, € ClE™ E™(k = 1,2,--- ,m), and
A > 0 is a constant.
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If A = 0, then the problem (1.1) becomes to finding (z,y) : JxJ — E"x E"
such that

a'(t) = f(t,z(t),y' (1), t#tk,
y'(t)=g(t), t#t,

(1.2) Axli—y, = Ig(z(ty)), (k=1,2,---,m),
Agli=i, = I(y(tr)),  (k=1,2,---,m),
z(to) = wo, y(to) = Yo,

2. Preliminaries

Let Py (R"™) denote the family of non-empty compact, convex subsets of R™.
If a,8 € R and A, B € Pr(R"™)

a(A+ B) =aA+ aB,
a(BA) = (aB)A, 1-A=A

and, if o, 8 > 0, then (o + 3)A = aA+ SA. For A, B € Pr(R"), the Hausdorff
metric is defined as

d(A, B) = ma {su inf ||z — sup inf ||z — .
(4,) = max { sup inf |z — i, sup in, 1z — ]}

A fuzzy set in R™ is a function with domain R™ and values in [0,1], i.e., an
element of [0, 1]%" (see [42]). Let u,v € [0,1)%". Then we have (see [42])

(a) w is contained in v denoted by u < v if and only if u(x) < v(x) for all
x € R™;

(b) uAv € [0,1]%" by (uAv)(z) = min{u(z),v(z)} for all z € R™ (inter-
section);

(c) uVwel0,1]% by (uVv)(r) = max{u(z),v(z)} for all z € R" (union);

(d) u® € [0,1]%" by u®(z) =1 — u(z) for all z € R".

Denote by E™ = {u: R™ — [0, 1] such that u satisfies (i) to (iv) mentioned
below }:

(1) w is normal, that is, there exists an 2y € R such that u(xzg) = 1;

(2) w is fuzzy convex, that is, for z,y € R" and 0 <wv < 1,

w(ve + (1 - v)y) > min{u(z), u(y)};
(3) w is upper semicontinuous;
(4) [u)° ={x € R*: u(z) > 0} is compact.
Thus, if u € E™, then it follows from (1)-(4) that, for each « € (0, 1], the a-level
set

[u]*={z e R": u(z) > a}
is a nonempty compact convex subset of R™, that is, [u]* € P(R") for all
0 < a < 1. Further, define D : E™ x E™ — [0, +00) as

D(u,v) = sup{d([u], [v]") : o € [0,1]}.
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It is well known that D is a metric in E™ and (E™, D) is a complete metric
space. Moreover, if u,v,w € E™ and A > 0, then the addition and (positive)
scalar multiplication in E™ are defined in terms of the a-level sets by

[u+v]* =[u]*+[0]%, [A-u]” = A, Vael0,1]
and D has a linear structure in the sense that
D(u+ w,v+w) = D(u,v), D(Au,\v)=AD(u,v).

Note that (E™, D) is not a vector space but it can be embedded isomorphi-
cally as a cone in a Banach space (see [20]).

Let J = [to,to + a] with @ > 0 and z,y € E". A mapping F : J — E™ is
differentiable at ¢ € J if there exists a F'(t) € E™ such that the limits

F(t+h) — F(t)

T
hgng h
and
F(t) — _
L F() - F(t—h)
h—0+ h

exist and are equal to F'(t). Here the limits are taken in the metric space
(E™, D). At the endpoints of J, we consider the one-sided derivatives.

Let F: J — E™. Then the integral of F over J denoted by [, F(t)dt, is
defined levelwise by the equation

[ /J F(t)dt} ’
:Lm@m

= { / F(t)dt| F : J — R™ is a measurable selection for Fa}.
J

We say that a mapping F' : J — E" is strongly measurable if, for all a €
[0,1], the set-valued mapping Fy, : J — Pi(R"™) is defined by F,(t) = [F(t)]*.
Moreover, the following results (see [17]) will be useful in what follows.
Lemma 2.1. If F : J — E" is continuous, then it is integrable and the
function

t
G(t) = / F(s)ds, YtelJ
to

is differentiable and G'(t) = F(t). Furthermore,

mnFmg/Uwg@.

to
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3. Main Results

In this section, we are in a position to prove our main results concerning
with the solutions of the first-order fuzzy differential equation systems (1.1)
and (1.2).

Throughout this paper, let J = [to,to + a] (where a > 0), tp < t; < -+ <
tm < tO +a < +OO, JO = [t07t1]7‘]1 = (tlatQ]a"' 7‘]/9 = (tk)tk+l]7”' 7Jm =
(tm, to + a] and

PC*(J,E™) = {z : xis a map from J into E" such that x(¢) is continuously
differential on (tx,tx+1), left continuous at ¢,

and x(t)), 2/ (t; ), o' () exists, k=1, 2, -+, m},
where z(t]) represents the right limits of z(t) at t = t;, and 2/(¢;,) and 2/(¢])

represent the left and right derivatives of x(t) at t = tj, respectively. For all
x € PC(J, E™), by virtue of the mean value theorem,

x(tg) — x(ty — h) € heo{a'(t) : ty —h <t <ty} (h>0),
it is easy to see that the left derivative x’_(t;) exists and

ol (te) = Tim A7 [(ty) — @ty — )] = 2/ (1),

In the sequel, 2'(tx) is understood as =’ (tj). Further, we define H(z,y) by
(3.1) H{z,y) = sup{D(x(t), y()) + D(2'(t),y'(t))}
€

for all z,y € PC(J, E"), where I' > 0 is a constant. Then, by using the same
method as in [17], it is clear that (PCY(J, E™), H) is a complete metric space.

By using Lemma 2.1 and Lemma 2.1 of [25], it is easy to prove the following
lemma.

Lemma 3.1. Assume that f,g : J X E™ x E™ — E™ is continuous. Then
a mapping (x,y) : J x J — E™ x E™ is a solution of the problem (1.1) in
PCY(J, E™) if and only if x satisfies the following impulsive integral equation

w(t) = wge MEt0) 4 [1 e=ME=9)[f(s, 2(5),1/(s)) + Ma(s)|ds
+ Y e MU (a(ty),
to<tn<t
y(t) = yoe M=t 4 [T =M= [g(s Ay(s)) + My(s)]ds
+ 2 e MEW(y(t),

to<tp <t

where M > 0 is a constant.

Theorem 3.1. Suppose that f: J x E" x E™ — E™ and g: J x E™ — E"
is continuous. If, for all x;,y;,z; : J — E™ (i = 1,2), there exist nonnegative
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constants p, 0, and b; (i = 1,2) such that

(3.3) {D(Ik(M(t))Jk(iBz(t))) < biD(za(t), 22(1)),
' D(Ii(y1 (1)), In(y2(t))) < baD(yr(£),92(t)), VEk=1,2,--- ,m.
Then problem (1.1) has a unique solution on J.

Proof. Let (m1,Z(t),§(t)) € J x E™ x E™ be arbitrary and § > 0 be a constant,
o =max{mby + h(p+ M)+ M(1—mby —h(p+ M)) + p,mbe + h(Aw + M) +

M5 _y

M(1 —mbs — h(Xo+ M)) + Ao, ho+ o(1 — hM)} < 1, where h = S~
A > 0 is a constant. We will first show that the initial value problem

z'(t) = f(t,z(t), y' (1)),

Y'(t) =g(t, Ay(t)), Vte i, t#ty,
(3.4) Axli=y, = Ii(z(tk)),

Aylime, = I(y(tr)),  (k=1,2,--- ,m),
z(n) =2z, y(n)=y,

and

has a unique solution on J; = [r1,71 + 8]. For any z,y € PC'(J, E"), define
(Az, Gy) on Jy x Ji by the equation
_ mpy—M((t—T1 t _—M(t—s /
A(z(t)) = ze MO 4 [1 e MUEmI[f(s,2(5),y/(s)) + Ma(s)]ds
+ 3 e MEEI L (a(ty)),
T1<tp <t
Gly(t) = ye M) + [, e=MO=g(s, Ay(s)) + My(s)]ds
+ e M=) [t (y(tr).
T1<tp <t
Now, define || - ||; on PCY(J, E") x PCY(J, E™) by
1@ )l = llzll + llyll, ¥(z,y) € PC'(J,E") x PC*(J,E").

It is easy to see that (PCY(J, E™) x PCY(J,E"),| - |l1) is a Banach space
(see [8]). In the sequel, we prove that F : PCY(J,E") x PC!(J,E") —
PCY(J,E™) x PCY(J,E") is a contraction mapping. In deed, for any given
(v,y) € PCY(J,E") x PCY(J,E") and t # ty, k = 1,2--- ,m, it follows from

(3.5)

(3.5) that
(3.6) (Az)'(t) = —MA(x(t)) + Ma(t) + f(t, (1), (1)),
(3.7) (Gy)'(t) = —MG(x(t)) + My(t) + g(t, y(t)),
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and so F(z,y) = (Az,Gy) € PC*(J,E™) x PC(J,E"), i.e., F is a mapping
from PCY(J, E™) x PC'(J, E") into PC(.J, E") x PC'(.J, E™). By virtue of
(3.2) to (3.4) and (3.6), for any (z1,41), (v2,92) € PCY(J, E™) x PC(J, E™),

D(A(z1(1)), A(z2(1)))

T146
< / M= [D(f(s,21(t), 4,(5)), £(5, 22(5), 5(5)))

1

+ MD(x:1(s), x2(s)lds + e MW DI (w1 (), T (wa(tr)))

T1<tp <t

71490
(3.8) =€_Mt/ M [D(f(s,21(t), y1(5)), (5, 22(5), 93(5)))

1

+ MD(x1(s), w2(s))]ds + e MWD (I (t)), T(wa(te)

T <tp <t
7149
< e_]\/ft/ eMS[(p + M)D(Z'l(s),.’bg(s)) + QD(yi(8)7yl2(8))]ds
T1
+ B(t),
where
Z b1e t tk (xl(tk)va(tk))
T <t <t
< by D((t),ma(t) Y e M),
to<tp<t
ie.,
B(t) < by D(z1(t), z2(t)) Z o~ M(t—tx)
to<trp <t
= le LL’l Z e—M(t tk)
to<tp<t
and so
(3.9) supe " B(t) < b1 D(x1(t), 72(t)) max {Cy},
teJ 1<k<m

where, for all 1 < k < m,

k—1
Cp = sup Z =M=t — qup [Z e~ Mlt=t) | o= M(t=tu)]
LTk 4o <t <t tek 21

< D+ E

and
k-1
Dy, = sup E e~ Mt-t) g o— sup e
teJy j=1 teJg

—M(t—tg)
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For all 1 < j < k — 1, setting v;(t) = e"™¢=%) and 6, = min{ty41 — tx]1 <
k <m}, we have

vi(t) <e MoVt e Jp = (th, thia),

D, < e Mo < e~ Mo. — (m— l)efM‘s* <m-—1, VI<k<m.

Now we consider Ej: take vg(t) = e Mt—t%) t € J.. Since t — t;, > 0 and
—M(t — tx) < 0, we know that vg(t) < 1, i.e., Ex < 1. Hence, Ex < 1 and
Cr <mfor all 1 <k <m. It follows from (3.9) that

(3.10) ilEIIJ)B(t) < mby D(z1(t), z2(t)).

It follows from (3.8) and (3.10) that
D(A(z1(t)), A(w2(t)))
T14+6
<M [y 4 M)D(1 (5, a(5)) + 1Dl (5), 5 (5)ds

+ mby D(x1(t), z2(t))

(3.11) v
S — (€M = D)[(p+ M)D(x1(t), z2(t)) + 0D (y1 (1), y5(t))]ds
+ mby D(x1(t), v2(t))

< [mby + h(p+ M)|D(x1(t), z2(t)) + heD(yy (t), y5(t)),

where h = eM;I_l. Further, by (3.6) and the above proof, now we know

((Awl)’( ); (Az2)' (1))
D(—MA(z1(t)) + My (t) + f(t,21(2), 91 (t)),
— MA(za(t)) + Maa(t) + f(t,22(t), y5(t)))
= —MD(A(z1(1)), A(z2(t)))
(3.12) + MD(x1(t),z2(t)) + D(f (¢, z1(8), 44 (1)), f(t, @
< —M{[mby + h(p + M)]D(z1(t), z2(t
+ MD(x1(t),22(t)) + pD(21 (1), w2(t
= [M(1 —mby — h(p + M)) + plD (w1 (t), z2(t)
+ o(1 = hM)D(y;(t), y5(t))-
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Similarly, by (3.2), (3.3), (3.5) and (3.7), we know
D(G(y1(1), G(y2(1)))

T146
< / M= [D(g(s, M (5)), 95, Aya(s)))

+ MD(yi(s) Nds+ > e MO DIy (t), Te (y2(te)))

T1<tp <t

(3.13)

IN

T1+90
e~ Mt / eMS(/\w + M)D(y1(s),y2(s))ds + mbaD(y1(t), y2(t))

e—M(t—Tl)
i (M — 1) (M@ + M)D(y1 (), y2(t)) + mbaD(y1 (t), y2(t))

<
§ [me + h()\w + M)]D(yl (t)v yZ(t))

and
D((Gy1)' (1), (Gy2)'(1))
= D(-=MG(y:(t))
— MG(y2(1))
= —MD(G(y:(1)),
+ MD(yi(t), y2(t))
< —M[mbs + h(Aw + M)|D(y1(t), y2(1))
+ MD(z1(t), z2(t)) + AeD(y1(t), y2(1))
= [M(1 = mbz — h(Ao+ M)) + o] D(y1(t), y2(t)).
It follows from (3.11)-(3.14) that
H(F(21,91), F(y2,92))
= tsélg{D(F(xl(t%yl(t))»F(m(t), y2(t))) + D((F(z1,51)) (), (F(22,92))'(t))}
= sup{D((A(z1(t)), G(51(1))), (A(z2(1)), G(y2(1))))

teJy

D(((Az1)'(t), (Gy1) (), ((Az2)' (1), (Gy2)' (1))}
< D(A( 1(1)), A(z2(1))) + D(G(y1 (1)), G(y2(1)))
+ D((Az1)'(t), (Az2)' (1)) + D((Gy1)' (), (Gyo)' (1))

< [mby + h(p + M)ID (21 (1), 22(1)) + hoD (1 (), y5(t))

+ [mbz + h(Aw + M)|D(y1(t), y2(t))

+ [M(1 = mby — h(p+ M)) + p]D(x1(t), 22(t)) + o(1 — hM)D(yy (), y5(t))

+ [M (1 —mbs — h(Ao + M)) + Ao D(y1(t), y2(t))
< oH((z1,91), (T2, 92)),

where 0 = max{mb; +h(p+ M)+ M(1 —mby —h(p+ M)) + p,mby + h(Aw +
M) + M1 = mbs — h(ho+ M)) + Ao, ho + o(1 — hM)}.

(3.14)
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Therefore, by Banach fixed point theorem, F' has a unique fixed point, which
by Lemma 3.1 is the desired solution to the problem (1.1).

Express J as a union of a finite family of intervals J, with the length of
each interval less than . The preceding paragraph guarantees the existence of
a unique solution to problem (1.1) on each interval Ji. Piecing these solutions
together gives us the unique solution on the whole interval J. This completes
the proof. O

Remark 3.1. If p =0 in (3.2), then we can obtain the corresponding results
from the problem (1.1).

Theorem 3.2. Let f : JX E" X E"™ — E" and g : J x E™ — E™ be
continuous mappings. Assume that for all x;,y;,z; : J — E™ (i = 1,2), there
exist nonnegative constants p,o,w and b; (i = 1,2) such that, for allt € J,
a€l0,1] and k=1,2,--- ,m,

d([f (8 21 (), yr (D), [f (22 (1), y2(8))])
< pd([z1 (D] [22(D)]%) + 0d([y ()] [y2(D)]?),
d([g(t, z1.(8)]% [9(t, 22(4))]%) < wd([z1(8)]%, [22(£)]?),

{d([fk(%’l(t))]o‘, [T (2(8))]%) < bad([z2(8))%, [22(£)]%),
d([Te (s ()], [Tk (y2())]) < b2d([yr (8)]*, [y (£)]*),
Then the problem (1.1) has a unique solution on J.

Proof. In fact, we have

D(f(t, w1 (t), y1(8), f(E,22(t), y2(1)))
= sup{d([f(t, 21 (), y2 ()], [f (£, 22(1), y2(1))]7) = a € [0, 1]}
< psup{d([z1(1)]*, [z2(#)]") : a € [0,1]}

+ osup{d([y1(t)]*, [y2(t)]*) : a € [0,1]}

= pD(z1(t), z2(t)) + oD (y1(t), y2(t)),
D(g(t,z1(1)), g(t, 22(t))) = )

)
D(Iy(1(1)), T (22(2))) = sup{d ([T (21 (£)]7, [Tk (22())]7) = @ € [0, 1]}
< bysup{d([z1(1)]%, [22(1)]*) : a € [0,1]}
= b1 D(21(t), 22(1)),
D(Ik(y1()), I(y2(t))) = sup{d([Tu(yr (], Ur(y2())]*) = a € [0,1]}

< by sup{d([y1 (1)]”, [y2(¢)]*) : « €[0,1]}
= baD(y1(t), ya(t))-
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Thus, by Theorem 3.1 we know that problem (1.1) has a unique solution on J.
This completes the proof. ([

Remark 3.2. Using the same method as Theorems 3.1 and 3.2, we can consider
initial value problems (1.2) and get the corresponding conclusions.
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