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APPROXIMATION OF SOLUTIONS OF A GENERALIZED
VARIATIONAL INEQUALITY PROBLEM BASED ON

ITERATIVE METHODS

Sun Young Cho

Abstract. In this paper, a generalized variational inequality problem is
considered. An iterative method is studied for approximating a solution
of the generalized variational inequality problem. Strong convergence
theorem are established in a real Hilbert space.

1. Introduction and preliminaries

Variational inequality problems have been found with an explosive growth in
theoretical advances, algorithmic development and applications across all the
discipline of pure and applied sciences, see [2-14] and the references therein.
They combine novel theoretical and algorithmic advances with new domain
of applications. Analysis of these problems requires a blend of technics from
convex analysis, functional analysis and numerical analysis. As a result of in-
teraction between different branches of mathematical and engineering sciences,
we now have a variety of techniques to analysis various algorithms for solv-
ing variational inequalities and related optimization. It is well known that
the variational inequality problems are equivalent to the fixed point problems.
This alternative equivalent formulation is very important from the numerical
analysis point of view. In particular, solutions of the variational inequality
problems can be computed using the iterative projection methods. It is well
known that the convergence of the projection method requires the operator T
to be strongly monotone and Lipschitz continuous. In this paper, we shall the
equivalence to study a generalized variational inequality.

Throughout this paper, we always assume that H is a real Hilbert space,
whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖. Let C be a
nonempty closed and convex subset of H and A : C → H a nonlinear mapping.
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Recall that A is said to be monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

T is said to be α-strongly monotone if there exists a positive real number α
such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

T is said to be α-inverse-strongly monotone if there exists a positive real number
α such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

Recall that the following variational inequality problem is to find u ∈ C such
that

(1.1) 〈Au, v − u〉 ≥ 0, ∀v ∈ C,

which is known as the classical variational inequality introduced and studied
by Stampacchia [10]. In this paper, we use V I(C, A) to denote the solution set
of the problem (1.1).

For given z ∈ H and u ∈ C, we see that the following inequality holds

〈u− z, v − u〉 ≥ 0, ∀v ∈ C

if and only if u = PCz. It is known that projection operator PC is nonexpansive.
One can see that the variational inequality problem (1.1) is equivalent to

a fixed point problem. An element u ∈ C is a solution of the variational
inequality problem (1.1) if and only if u ∈ C is a fixed point of the mapping
PC(I − λA), where I is the identity mapping and λ > 0 is a constant.

In this paper, we consider the following generalized variational inequality
problem. Find u ∈ C such that

(1.2) 〈u−Au + λBu, v − u〉 ≥ 0, ∀v ∈ C.

We see that (1.2) is reduced to the classical variational inequality (1.1) if A = I,
the identity mapping. In this paper, we use V I(C,B,A) to denote the solution
set of the problem (1.2).

Let T : C → C be a mapping. We denote by F (T ) the fixed point set of T .
Recall that T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Recently, many authors studied the problem of finding a solution of the
classical variational inequality problem (1.1) by iterative methods. Iiduka,
Takahashi and Toyoda [6] obtained the following result.

Theorem ITT. Let C be a nonempty closed convex subset of a real Hilbert
space H and let A be an α-inverse strongly monotone operator of H into H
with V I(C,A) 6= ∅. Let {xn} be a sequence defined as follows: x1 = x ∈ C and

xn+1 = PC(αnxn + (1− αn)PC(xn − λnAxn))
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for every n = 1, 2, . . . , where PC is the metric projection from H onto C, {αn}
is a sequence in [−1, 1], and {λn} is a sequence in [0, 2α]. If {αn} and {λn} are
chosen so that {αn} ∈ [a, b] for some a, b with −1 < a < b < 1 and {λn} ∈ [c, d]
for some c, d with 0 < c < d < 2(1 + a)α, then {xn} converges weakly to some
element of V I(C, A).

In 2005, Iiduka and Takahashi [5] further studied the problem of of finding
a solution of the classical variational inequality problem (1.1) by considering
Halpern-type iterative methods. To be more precise, they proved the following
theorem.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let A
be an α-inverse-strongly monotone mapping of C into H such that V I(C,A) 6=
∅. Suppose x1 = x ∈ C and {xn} is given by

xn+1 = αnx + (1− αn)PC(xn − λnAxn)

for every n = 1, 2, . . . , where {αn} is a sequence in [0, 1) and {λn} is a sequence
in [a, b]. If {αn} and {λn} are chosen so that {λn} ∈ [a, b] for some a, b with
0 < a < b < 2α,

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,

∞∑
n=1

|αn+1 − αn| < ∞ and

∞∑
n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PV I(C,A)x.

In this paper, motivated by the above results, we consider the general-
ized variational inequality problem (1.2) by a Halpern-type iterative method.
Strong convergence theorems are established in a real Hilbert space.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 ([11]). Let {xn} and {yn} be bounded sequences in a Banach space
E and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn

< 1. Suppose xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 1.2 ([1]). Let C be a nonempty closed and convex subset of a real
Hilbert space H and T : C → C a nonexpansive mapping. Then I − T is
demi-closed at zero.

Lemma 1.3 ([15]). Assume that {αn} is a sequence of nonnegative real num-
bers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn = ∞;

(2) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.
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Then limn→∞ αn = 0.

Lemma 1.4. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let A, B : C → H be two nonlinear mappings. u is a solution
of the variational inequality if and only if u is a fixed point of the mapping
PC(A− λB), where PC denotes the metric projection from H onto C and λ is
a positive constant.

Proof. Note that

u = PC(A− λB)u ⇐⇒ 〈u−Au + λBu, v − u〉 ≥ 0, ∀v ∈ C.

This completes the proof. ¤

2. Main results

Theorem 2.1. Let H be a real Hilbert space, C a nonempty closed and con-
vex subset of H. Let A : C → H be an α-strongly monotone and L-Lipschitz
continuous mapping and B : C → H a β-strongly monotone and K-Lipschitz
continuous mapping such that V I(C,B, A) 6= ∅. Let {xn} be a sequence gener-
ated by the following algorithm:

(Υ) x0 ∈ C, xn+1 = αnu + βnxn + γnPC(Axn − λBxn), n ≥ 0,

where u is fixed element in C, λ is a positive constant and {αn}, {βn} and
{γn} are sequences in (0, 1). Assume that above control sequences satisfy the
following restrictions:

(C1) αn + βn + γn = 1, ∀n ≥ 0;
(C2) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C4)

√
1− 2a + L2 +

√
1− 2λβ + λ2K2 ≤ 1.

Then the sequence {xn} converges strongly to x̄ ∈ V I(C, B, A), where x̄ =
PV I(C,B,A)u.

Proof. Put W = PC(A−λB). Next, we show that W is nonexpansive. Indeed,
for any x, y ∈ C, we have

(2.1)
‖Wx−Wy‖ ≤ ‖(Ax−Ay)− λ(Wx−Wy)‖

≤ ‖(x− y)− (Wx−Wy)‖+ ‖(x− y)− λ(Bx−By)‖.
Note that
(2.2)

‖(x− y)− (Ax−Ay)‖2 = ‖x− y‖2 − 2〈x− y, Ax−Ay〉+ ‖Ax−Ay‖2
≤ ‖x− y‖2 − 2α‖x− y‖2 + L2‖x− y‖2
= (1− 2a + L2)‖x− y‖2
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and
(2.3)
‖(x− y)− λ(Bx−By)‖2 = ‖x− y‖2 − 2λ〈x− y, Ax−Ay〉+ λ2‖Bx−By‖2

≤ ‖x− y‖2 − 2λβ‖x− y‖2 + λ2K2‖x− y‖2
= (1− 2λβ + λ2K2)‖x− y‖2.

Substituting (2.2) and (2.3) into (2.1), we from the condition (C4) obtain that

‖Wx−Wy‖ ≤ ‖x− y‖,
which shows that the mapping W is nonexpansive.

Next, we show that the sequence {xn} is bounded. Letting p ∈ V I(C, B, A),
it follows from Lemma 1.4 that p = Wp. Note that

‖xn+1 − p‖ ≤ αn‖u− p‖+ βn‖xn − p‖+ γn‖Wxn − p‖
≤ αn‖u− p‖+ βn‖xn − p‖+ γn‖xn − p‖
= αn‖u− p‖+ (1− αn)‖xn − p‖.

By simple inductions, we have

‖xn − p‖ ≤ max{‖x0 − p‖, ‖u− p‖},
which gives that the sequence {xn} is bounded. Put

ln =
xn+1 − βnxn

1− βn
, ∀n ≥ 0.

That is, xn+1 = (1− βn)ln + βnxn. Now, we compute ‖ln+1 − ln‖. From

ln+1 − ln =
αn+1u + (1− αn+1 − βn+1)Wxn+1

1− βn+1
− αnu + (1− αn − βn)Wxn

1− βn

=
αn+1

1− βn+1
(u−Wxn+1)− αn

1− βn
(u−Wxn) + Wxn+1 −Wxn,

we obtain that
‖ln+1 − ln‖

≤ αn+1

1− βn+1
‖u−Wxn+1‖+

αn

1− βn
‖u−Wxn‖+ ‖Wxn+1 −Wxn‖

≤ αn+1

1− βn+1
‖u−Wxn+1‖+

αn

1− βn
‖u−Wxn‖+ ‖xn+1 − xn‖

which implies that

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤ αn+1

1− βn+1
‖u−Wxn+1‖+

αn

1− βn
‖u−Wxn‖.

In view of the conditions (C2) and (C3), we obtain that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

From Lemma 1.1, we see that limn→∞ ‖ln − xn‖ = 0. It follows that

(2.4) lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖ln − xn‖ = 0.
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Next, we show that

lim sup
n→∞

〈u− x̄, xn − x̄〉 ≤ 0.

To show it, we choose a subsequence {xni
} of {xn} such that

(2.5) lim sup
n→∞

〈u− x̄, xn − x̄〉 = lim
i→∞

〈u− x̄, xni
− x̄〉.

As {xni
} is bounded, we have that there is a subsequence {xnij

} of {xni
}

converges weakly to q. We may assume, without loss of generality, that xni
⇀ q.

On the other hand, we have

‖xn −Wxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −Wxn‖
≤ ‖xn − xn+1‖+ αn‖u−Wxn‖+ βn‖xn −Wxn‖,

from which it follows that

(1− βn)‖xn −Wxn‖ ≤ ‖xn − xn+1‖+ αn‖u−Wxn‖.
From (2.4) and the conditions (C2) and (C3), we obtain that

lim
n→∞

‖xn −Wxn‖ = 0.

From Lemma 1.2, we see that q ∈ F (W ) = V I(C, B, A). Thanks to (2.5), we
arrive at

(2.6) lim sup
n→∞

〈u− x̄, xn − x̄〉 = 〈u− x̄, q − x̄〉 ≤ 0.

Finally, we show that xn → x̄ as n →∞. Note that

‖xn+1 − x̄‖2
= 〈αnu + βnxn + γnWxn − x̄, xn+1 − x̄〉
= αn〈u− x̄, xn+1 − x̄〉+ βn〈xn − x̄, xn+1 − x̄〉+ γn〈Wxn − x̄, xn+1 − x̄〉
≤ αn〈u− x̄, xn+1 − x̄〉+ βn‖xn − x̄‖‖xn+1 − x̄‖+ γn‖xn − x̄‖‖xn+1 − x̄‖
≤ αn〈u− x̄, xn+1 − x̄〉+ (1− αn)‖xn − x̄‖‖xn+1 − x̄‖

≤ (1− αn)
2

‖xn − x̄‖2 +
1
2
‖xn+1 − x̄‖2 + αn〈u− x̄, xn+1 − x̄〉,

which implies that

(2.7) ‖xn+1 − x̄‖2 ≤ (1− αn)‖xn − x̄‖2 + αn〈u− x̄, xn+1 − x̄〉.
From the condition (C2), (2.6) and applying Lemma 1.3 to (2.7), we obtain
that

lim
n→∞

‖xn − x̄‖ = 0.

This completes the proof. ¤

As applications of Theorem 2.1, we have the following results on the classical
variational inequality (1.1).
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Corollary 2.2. Let H be a real Hilbert space, C a nonempty closed and convex
subset of H. Let B : C → H be a β-strongly monotone and K-Lipschitz
continuous mapping such that V I(C, B) 6= ∅. Let {xn} be a sequence generated
by the following algorithm:

x0 ∈ C, xn+1 = αnu + βnxn + γnPC(xn − λBxn), n ≥ 0,

where u is fixed element in C, λ is a positive constant and {αn}, {βn} and
{γn} are sequences in (0, 1). Assume that above control sequences satisfy the
following restrictions:

(C1) αn + βn + γn = 1, ∀n ≥ 0;
(C2) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C4) λK2 ≤ 2β.

Then the sequence {xn} converges strongly to x̄∈V I(C,B), where x̄=PV I(C,B)u.

Proof. Putting A = I, the identity mapping, we can conclude the desired
conclusion easily. ¤
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