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NONLOCAL CAUCHY PROBLEM
FOR SOBOLEV TYPE FUNCTIONAL
INTEGRODIFFERENTIAL EQUATION

K. BALACHANDRAN AND JONG YEOUL PARK

ABSTRACT. In this paper we prove the existence and uniqueness
of a mild solution of a functional differential equation of Sobolev
type with nonlocal condition using the semigroup theory and the
Banach fixed point principle.

1. Introduction

Byszewski [9] studied the problem of existence of solutions of semi-
linear evolution equations with nonlocal conditions in Banach spaces.
Subsequently several authors have investigated the same type of prob-
lem to different classes of abstract differential equations in Banach spaces
[1, 2, 4, 6, 7, 10, 13, 16, 17]. Brill [8] and Showalter [18] established
the existence of solutions of semilinear evolution equations of Sobolev
type in Banach spaces. Lightbourne and Rankin [15] discussed the so-
lution of partial functional differential equation of Sobolev type. This
type of equations arise in various applications such as in the flow of
fluid through fissured rocks, thermodynamics and shear in second order
fluids. Recently Byszewski and Acka [11] established the existence and
uniqueness and continuous dependence of a mild solution of a semilinear
functional differential equation with nonlocal condition of the form

u'(t) + Au(t) = f(t, ), t €[0,q]
u(s) + [g(ug, , -y ug,)](s) = ¢(s), s€[-r,0],
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where Cy semigroup of operators on a general Banach space, f, g and
¢ are given functions and wu(s) = u(t + s) for t € [0,a], s € [-7,0].
Balachandran and Park [5] studied the existence and uniqueness of a
mild solution for a functional integrodifferential equation with nonlocal
conditions

In this paper we shall prove the existence and uniqueness of a mild
solution for a functional integrodifferential equation of Sobolev type with
nonlocal conditions of the form

t
(1) (Bu(t)) + Au(t) = f(t,ut,/o k(t,T,u;)dr), t€ [0,a]

(2) u(s) + [g(uty, - ug,)I(s) = ¢(s), s € [-7,0],

where B and A are linear operators with domains contained in a Banach
space W and ranges contained in a Banach space E and ¢ € C([-7,0] :
E) and the nonlinear operators f, k, g are given functions satisfying some
assumptions.

2. Preliminaries

In order to prove our main theorem we assume certain conditions
on the operators A and B. Let W and E be Banach spaces with norm
|.| and ||.|| respectively. The operators A : D(A) C W — E and B :
D(B) C W — E satisty the following hypothesis:

(H,) A and B are closed linear operators,
(Hy) D(B) C D(A) and B is bijective,
(H3) B~!: E — D(B) is continuous.

From the above fact and the closed graph theorem imply the bound-
edness of the linear operator AB™!: E — E. Further — AB~! generates
a uniformly continuous semigroup T'(t),t > 0 and so maxcy | T(t)|| is
finite. In this sequel the operator norm ||.|gg) will be denoted by
Il To simplify the notation let us take Iy = [-r,0], I = [0,a] and
X = C([-r0] : E), Y = C([-ra] : E), Z = C([0,a] : E). For
a continuous function w : [~-r,a] — E, we denote w; a function be-
longing to X and defined by wy = w(t + s) for t € I, s € Ip. Let
f:IxXxX —-E, k:IxIxX — X and ¢ € X. We denote
M = maxcs |[B~'T(t)B||, and R = |B~'T(t)|. We make the following

assumptions:

(A;) Foreveryu,we X andtel, f(.,u,w) € Z
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(Az) There exists a constant L > 0 such that

If (& 22, we) = (v wdll < Lllle = vlle-rgp) + lw = wlleorg:z)]

for z,y,w,ueY, tel.
(A3) There exists a constant K > 0 such that

|k(t, s, z5) — k(t,s,ys)|| < K|z — Ylle(-rs:p) for z,y €Y, sel.
(A4) Let g: XP — X and there exists a constant G > 0 such that
g (we,, -y we, )1(8) — [g(uty s -y g, )](3)]]
< Gllw—u|x for w,u €Y, sel.
(As) MG+ RLa+ RLKa? < 1.
A function u € Y satisfying the conditions:

(1) () B™'T(t)B¢(0) ~ BT (t) Blg(uy,, - us,)](0)

t T
(3) + -/0 B7IT(t — 7)f(r, uT,/O k(1,0,ug)db)dr, tel,

I

(i) u(s) + [g(us, - u))(s) = ¢(s), s €l
is said to be a mild solution of the nonlocal Cauchy problem (1)-(2).

3. Existence of a mild solution

THEOREM 3.1. Assume that the hypotheses (H;) — (Hy) hold and
the functions f and g satisfy conditions (A1) — (As). Then the nonlocal
Cauchy problem (1) — (2) has a unique mild solution.

Proof. Define an operator P on the Banach space Y by the formula
( () ~ [g(usy, g, )](B),  t €I,

(Pu)(t) = ¢ BT (t)B¢(0) — B T (t)Blg(us,, .., us, )} (0)+

t T
/ B7T(t — 1) f(r, uT,/ k(1,0,ug)df)dr, tel.
\ JO 0
It is easy to see that P maps Y into itself. Now, we will show that P is
a contraction on Y. Consider
(4) (Pw)(t) — (Pu)(t)
= [g(we, .., we,)](t) — [g(uty .., ug, )](2), for w,u €Y, t € [~7,0)
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and
(Pw)(t) — (Pu)(?)
(5) = B_IT(t)B[(g(wtu ) wtp))(o) - (g(utx LR utp))(o)]

t T
+/ B—IT(t—Tj)[f(T,wT,/ k(r,8,ws)dh)
0 0
— f(r, uT,/ k(r,0,uq)db)|dr, w,ueyY, tel.
0

From (4) and (A4),
6) ||(Pw)(t) — (Pu)®)l| < Glw —~ully, forw,ucY, tel.
Moreover by (5), (Az2), (43) and (A4),

[(Pw)(t) — (Pu)@®)]|

< |IB7IT(@) Bl (g(wty , - we,))(0) — (g(uty 5 s e, ))(O) ]
t
-1
+ [ 0BT L -l

(1 + /(;T |k(T,6,ws) — k(7. 0, up)||dOldT,

t
< MGl =uly + RE | v~ oo
T
+ K/O |lw — ullc((—rr:E)dT]ds
t
< MG|w —ully + RLa||w — ul|ly + RLKa/O lw — ullc(=rr:E)ds

< MG+ RLa+ RKaZLHw —u]y, forw,ucY, 0.
From (6) and (7) we get
(8) |Pw — Pully <gqllw—ully, for w,u€y,
where g = MG + RLa + RKa’L.

Since, ¢ < 1 then (8) shows that P is a contraction on Y. Con-
sequently, the operator P satisfies all the assumptions of the Banach
contraction mapping theorem. Therefore, in space Y there is a unique

fixed point for P and this point is the mild solution of the nonlocal
Cauchy problem (1)-(2). O

THEOREM 3.2. Suppose (Hy) — (H3) hold and that the functions f
and g satisfy assumptions (A1) — (A4). Then for each ¢1, ¢2 € X and
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for the corresponding mild solutions u;, ug of the problems
t
(9) (Bu(t)) + Au(t) = £(t,us, / k(t,run)dr),  tel
0

(10) u(s) + [g(ut,, - ue,)(s) = ¢i(s)  selo, (i=1,2),

the following inequality
(11) flur = ually < Me*BEHED) 16, — ol x + Gllur — uz]ly]
is true. Additionally, if G < %e‘aRL(”K %) then,

MeaRL(1+Ka)

(12) “ul - u2“Y < 1 — QM eoRL(1+Ka)

(¢ — 2llx]-

Proof. Let ¢; (i = 1,2) be arbitrary functions belonging to X and let
u; (i =1,2) be the mild solutions of problems (9)-(10). Consequently,

ui(t) — UQ(t)

= B7'T(t)B[$1(0) — ¢2(0)]
— BT Bl(g((un)eys s (1)) (0) — (0((2)tss - (u2)s,)) O)]
N /0 "B — 1) f (s (), /0 " k(r, 8, (u1)5)d0)

13) - £, (u)r, /0 "k(r, 6, (w)e)d0)ldr, t € 1
and
up(t) — ua(t)

= [$1(t) = d2(t)] — [(g((ur)er -, (u2)y,))(2)

14) = (g((w2)e, -, (u2)s,))(B)]; for ¢ € [-r,0).
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From our assumptions,

llu1(8) — w2 (0) |l
M||¢1 — dollx + MGllus — uglly

6 T
+ RL/O [llu1 = walle(-re:E) + K/O lur — vzl c-rr):E)ldss

IA

IA

M||é1 — dollx + MGlus — ually

t
+ RL(1 +GK)/ g — U2||C([—r,s]:E)d3a for 0<7<08<t<La.
0

Therefore,

sup [lu1(8) — u2(6)||
0€(0,¢]

< M1 — d2llx + MGllug — ually

1
(15) + RL(1+aK) / lus — wsllogrspzyds, for t € [0,a).
0

Simultaneously, by (14) and (A4),

lua () — ua(t)||
(16) < M|¢1 — ¢2llx + MG|ur — uzlly, for t € [—r,0).

Since M > 1, (15) and (16) imply that

lu1 () — w2(®llc(-rq:E)
M||p1 — d2|lx + MGllur — uolly

I

t
(17 + RL(1 +aK)/ llug — U2HC({_T’S]:E)d5, for tel.
0

By Gronwall’s inequality,

lu () — w2 (t)lly
(18) < M1 = dallx + MGllur — up|ly] eaBEO+aK),

and, therefore, (11) holds.

Finally, inequality (12) is a consequence of inequality (11). Hence the
proof is complete. O
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4. Application

As an application of the Theorem 3.1, we shall consider the system
(1) with control parameter

(19) (Bu(t)) + Au(t) = Fou(t) + f(¢, ut,/t k(t,r,u;)dr), t €[0,a
0
(20) U(S) + [g(utl PRE) utp)](s) = ¢(3), s € [~Ta 0]7

where F' is a bounded linear operator from V, a Banach space, to E and
v € L?(I : V). Then the mild solution is given by

u(t) = BTT(t)B¢(0) — B'T(t)Blg(ut,, - ut,))(0)

t t
-1 -1 —_
+/0 B T(t—T)FU(T)dT+/O BT(t - 7)

T
x f(r, uT,/ k(r,0,up)db)dr, tel,
Q

U(S) + [g(utl 30y utp)](s) = ¢(3)7 s € IO-

We say that the system (19) is controllable to the origin if for any
given initial function ¢ € X there exists a control v € L2(I : V) such
that the mild solution w(t) of (19) satisfies u(a) = 0.

For the controllability of nonlinear delay systems and Sobolev type
systems one can refer the papers [3, 12, 14]. To establish the result we
need the following additional hypotheses:

(As) The linear operator @ from V into F defined by
Qu = / B™'T(a — s)Fu(s)ds
0

induces an inverse operator Q! defined on L3(I; V)/kerQ, such
that the operator FQ~! is bounded.
(A7) MG + M|FQ | a[MG + RLa+ RLKa* + RL + RLKa < 1.

THeoOREM 5.1. If the hypotheses (Hi) — (H3), (A1) — (A4), (Ag) and
(A7) are satisfied, then the system (19) with (20) is controllable.
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Proof. Using the hypothesis (Ag), for an arbitrary function z(.) define
the control

ot) = QB T(a)B(0) — B T(a)By(us,, ..us, )(0)
’ -1 — 8)f(s, U, ’ S, T 7)ds
+ /OB T(a—9)f(s, /O K(s, 7, ur)dr)ds] ().

Now we shall show that, when using this control, the operator defined
by

( B‘ltT(t)BQS(O) — B7'T(t)Blg(u, , - u1,)](0)
+/ B™T(t — 7)Fu(t)dr
0

(@u)t) =1 /t BTt — 1) f(ruy, /Tk(,,e,u(,)de)df, tel,
0 0

L ¢(S) - [g(utl ) "vutp)](s)v s €l
has a fixed point. This fixed point is then a solution of equation (19).
Substituting v(¢) in the above equation we get

( BTIT(®)BS(0) — BT(0)Blg(ut,, - u, )0

—/ BTt - 7’)FC§_1
x [B~ (G)B¢>( ) — B™'T(a)By(ut,, ., us, ) (0))
(Pu)(t) = { / T(a - 8)f(s, us,/o k(s,B,up)df)ds|(T)dr

+ / BTt 1) f(r,u,. / k(r,0, ug)d6)dr, tel,
0 0

| #(s) = [g(uty, -, uz,)](s), s € Iy

Clearly, (®u)(a) = 0, which means that the control v steers the func-
tional integrodifferential system from the given initial function ¢ to the
origin in time a, provided we can obtain a fixed point of the nonlinear
operator ®. The remaining part of the proof is similar to Theorem 3.1
and hence it is omitted. O
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