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THE RIEMANN PROBLEM FOR A SYSTEM OF
CONSERVATION LAWS OF MIXED TYPE (I)

CHOON-HO LEE

ABSTRACT. We prove the existence of solution: of the Riemann
problem for a system of conservation laws of mixed type using the
method of vanishing viscosity term.

0. Introduction

In this paper we study the existence of solutions of the Riemann
Problem for a 2 x 2 system of conservation laws of the mixed type

Ut — f(v):c = 0,

(0-1) ve = (u)z =0

with the initial data
(0.2) (u,v)(z,0) = {

Here we assume
(I) f € C?(R) is a strictly increasing convex fur.ction.
(II) g € C*(R) and there exist . 8, n with a < 1 < 3 such that

g (u) >0ifu ¢ (a,8) and ¢'(u) < 0 for u € (a, B),
g"(u) <0ifu<mnand ¢"(u) >0ifu: 7.

(III) g(u) — oo as u — +oo.
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If f(v) = v, then the typical model of this equation (0.1) is the one-
dimensional isothermal motion of a compressible elastic fluid or solid in
the Lagrangian coordinates. In this case the existence of solutions to
the Riemann problem (0.1), (0.2) has been studied by Dafermos[1],
Dafermos and DiPerna[2], Fan[3], James[4], Slemrod[6]. These ap-
proach was based on a vanishing ”viscosity” term Hursued by Kalash-
nikov([5], Tupchiev(7](8]. Their idea is to replace (0.1) with the system

0.3) uy — f(v), = etug,,
ve — g(u), = €tvg,

for x € R, t > 0 and construct solutions as the limit of the solutions
of (0.3), (0.2) as ¢ — 0+. Since the system is invariant under the
transformation (z,t) — (az,at) where a > 0, (0.3) and (0.2) admit
solutions of the form (u(£),vc(§)),where { = £. A simple computation
shows that u = u,(§),v = v(£) is a solution of (0.3), (0.2) if it satisfies

—&u' — fiu) = eu”,

0.4
(0.4) —&v' = glu) = ev”

with the boundary condition

(0.5) (u,v)(Foo) = (u+,vy)

where ' = dﬁf and " = dd—;z We shall call the boundary value problem

(0.4) and (0.5) the problem (F,). Similarly the initial value problem
(0.1) and (0.2) are called the Riemann problem (P). This paper consists
of two parts. The first part carried out in Section 1 and 2 establishes
that if the data are in different pliases there is solution of P, which
exhibits one change of phase. In order to proof the results, we use the
arguments of Dafermos[1] and Slemrod[6]. In second part in Section 3
and 4 we prove the existence of sclution to the Riemann problem to
give conditions on which solutions of P, possess limits. Throughout
this paper we always assume Assumptions (I) and (II) unless other
mentions it.
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1. The existence theorem of the problera (P,)

In this section we will study the existence of solutions to the bound-
ary value problem

e = —&u' — pf(v)
(1.1) ev" = ~&v' — pg(u)’
(u,v)(£1) = (us,vy)

where L > 1,and 0 < p < 1.

THEOREM 1.1. Assumeu_ < w, u, > [3 and there exists a constant
My such that every possible solution of (1.1) with u/(£§) > 0 when
a < u(€) < 3 satisfies the a priori estimate

(1.2) lZH(PI(IU(G)I + ()] + (&) + [V (§)]) < M

then P, has a solution with u'(€) > 0 if a < u(€) < 3.

Proof. Let u_ < a, uy > . Set U(€) = u(€) - ug(€) and V(€) =
v(§) ~ vo(§), where (uo(¢),vo(€)) is a unique solution of (1.1) with
p = 0. Then U(~L) = U(L) = V(L) = V(~L) = 0. If u and v are
solutions of (1.1), U, V satisfies

eU" = €U ~ puf(V + ),
V" = —&V' - ug(U — up).

Define
_ [ U) vy [~V +w)
HO_(V@J’H“H*<—mewJ*
Then
(1.3) Y" =&Y~ uF(£Y),

Y(-L)=Y(L) = 0.

Let Z € CY([~L, L); R?). Define 7" to be the solution map that carries
Z into Y where Y solves

Y= €Y'+ F(¢,2),

(14) Y(~L) = Y(L) = 0.
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The integral formula of (1.4) is of the form

v :cfg ow (-5 ) e L[ Ficzonac

~L
¢ ) drd¢

/ /TFTZ exp(

1 L ¢ 2 2
+ —2—/ TF(7,Z(T)) exp (T ¢ ) drd¢
€ : 2¢

Then T : CY[-L,L]);R?) — C*(]-L,L];R?) is continuous and com-
pact. Define 2 by the set of pairs I/, V in C1(|—L, L]; R?) such that

U(—L) + up(—L) < @, U(L)+uo(l) > 8

U'(€) + up(€) > 0if o < U(€) + uo(€) < 8

‘§|11<I>I(IU(£)+Uo(£)I U (€) + uo()] + V(&) + vo(€)] + V' (€) + v (£)])

<M+1

Then €2 is open and 0 € intf}

We note that ¢ € 9Q, ¢ = uT¢, p € (0,1) if and only if there is a
solution (u(€),v(€)) of (1.1) satisfving v/'(§) > 0 if @ < u(§) < 3 and
either

(i) v (&) = 0, a < u(p) < B for some & € (—L, L)
or

(if) sup_ e {I(E)] + (O] + (] + ' (E)[} = Mo + 1
or both (i) and (ii).

The following lemma proved by Dafermos|[1] is often useful.



The Riemann problem for a system of conscrvation law 89

LEMMA 1.2. The initial value problem for (1.3), with fixed € > 0,
@ € [0,1], has a unique solution.

In order to use the Leray-Schauder fixed theorem, we take the Ba-
nach space X = C([-L, L];R?).

Let us consider the case (i): wither a < u(&) < 4, u(&o) = o, or
u(éo) = B.

Case 1. o < u(&) < 8, w(& = a, u(é) = 3. Using Lemma 1.2
and the same method of Slemrod’s proof[6], we can not satisfy (1.1),
u_ < a, uy >3

Case 2. u(&) = a, /(&) = 0. In this case there are the three
possibilities, u”(£o) > 0, u”(&) = 0, or u’(£&) < 0. The first and
second cases are same as Case 1. So we need only consider u” (&) < 0.
In this case u(§o) = « is a local maximum. Hence if u(L) = uy > 3,
the local maximum of u occurs at & > &, i.e. u(éy) < o, W(&) =0,
u’(&1) > 0; u(€) < a, u'(€) <0, & < & < €. The case u”(£1) = 0
is impossible because of ©/(£;) = 0 and the Lemrna 1.2. Thus we only
consider u”(£;) > 0. From (1.1] and the assumption(I) of f we see
that v(§;) < 0 and v(&p) > 0 which implies v has a local maximum
at a point §n < ¢ < &, u(¢) < 0, and again Lemma 1.2 shows that
v”(¢) > 0. Since g'(u) > 0 for u <" « this implies by use of (1.1) that
¢'(¢) > 0 which contradicts the fact that u is decreasing on (€o,&1).

Case 3. u(&) = 3, u/(&) = 0. This case is similar to Case 1.

From Case 1, 2, 3 of (i) ther: is no solution of (1.1), u € (0,1),
(u(€) — uo(€),v(&) — vo(£)) in § for which (i) can hold. Thus all solu-
tions of (1.1),u € (0,1) in Q must satisfy uw'(€) > 0in o < u(€) < 8.
But the hypothesis of our theorem, (ii) cannot hold either. Thus
from Leray-Schauder fixed point theorem, (1.1) possesses a solution
for which (u(€) —uo(€), v(€) —v0i€)) is in . To extend the domain of
u, v as follows: Set

u(§ L) =up,v(€ L) = vy if > L,
u(L)y=u_,v(& L) =v_ if € < —L.

The extended pair (u(-; L), v(-; L)) form a sequence in C°((—o0, oc); R?)
and by virtue of the hypothesis of theorem we know supje < {u'(§; L)|-
[v'(§; L)} < M. Thus the sequence {(u(&; L),v(¢; L))} is precompact
in C%((~o0, 00); R?) and so there is a subsequence L, — oc as n — oc
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since that (u(§;L),v(& L)) — (u(€),v(€)) unifornly as n — oo on
(— 00). Thus (u(§),v(£)) is a solution of P. and by its construction

(§) > 0if a < u(f) < [. But by the same reason used in Cases 2
and 3 u/'(§) > 0 if & < u(§) < 8. This completes the proof of Theorem
1.1. t

REMARK 1.3. The conclusion of Theorem 1.1 remains valid if (1.2)
is replaced by the a priori estimate

sup (Ju(&)] + [v(§)]) <

|§l<L
where My = My(u_,v_,ut,vq,¢, f,g) but is independent of u and L.

REMARK 1.4. Assume v_ > vy and u_,uy < a(v- < vy and
u_,uy > () and there exist a constant My such that every possible
solution of (1.1) satisfies the a priori estimate

sup ([u(§)} + [v(€)]) < Ma
|&j< L

Here My = My(v_,v4,u_,uy, €, f,g) but not incependent of o and
L. Then there exist solutions of (F.) which satisfy the constraints

u(§) < a(u(§) > 9).

2. The a priori estimates

In this section we derive the e priori estimates needed to apply
Theorem 1.1 and Remark 1.3 and 1.4. We give a series of Lemmas
which is useful. Lemma 2.1 is a result of Dafermos[1].

LEMMA 2.1. Let (u(€),v(€)) be asolution of (1.1) on [—L, L], u > 0.
Then on any subinterval (l1,l3) for which ¢'(u(¢)) > 0 one of the
following holds:

(i) u(€) and v(§) are constant on (l1,lz).

(ii) v(€) is a strictly increasing(or decreasing) function with no criti-
cal points in (11,12); u(€) has, at most, one critical point in (l1,ly) that
necessarily must be a maximum(or minimum).

(i) u(&) is a strictly increasing (or decreasing) function with no
critical point in (ly,13); v(€) has, at most, one critical point in (l1,12)
that necessarily must be a maximum(or minimum .
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LEMMA 2.2, (u(€),v(€)) be a solution of (1.1) on [~L,L], u > 0.
Then on any subinterval (I1,l3) for which g'(u(£)) < 0 the graph of

$)
v = v(u) is convex(or concave) at points where u'(€) > 0(or u '(€) < 0).

Proof. Denote by d—:i = (5 Then

d?v Koo\ du, P
63@5 = ?(f “L)(a—l;) “g(uf)-

The result follows from the above identity. O

LEMMA 2.3. (u(£),v(€)) be a solution of (1.1) on (—L,L], p > 0
with v/(§) > 0 if o < u(€) < (). Then u and v can have no local
maxima or minima at § for whick u(£) = a or u(f) = 3.

Proof. Since u'(€) > 0 if @ < %(€) < B, w has 10 local maxima or a
local minima at points where u(¢) = a. On the cther hand if v(§) has
a local maximum or minimum at such a point, then v '(¢) = O there
and hence by (1.1) v"(£) = 0 as well. Differentiating (1.1) with respect
to £, ¢"(a) <0, g”(8) > 0 implies that w”/(€) = (i at such points, so u
could not have taken on a local maximum or minimum. )

Lemma 2.4 is the same result as Slemrod[6]. The proof is similar to
his Lemma 2.4.

LEMMA 2.4. Assume that u_ < a, uy > 3 and let u(€), v(€) be a
solution of (1.1) with p > 0 for which u'(¢) > 0 when a < u(é) < 8.
Then one of the following holds: (0) No extreme points: u(€), v(€)
have no local maxima or minima on [—L,L]. They are non-constant
and monotone, u being monotone increasing.

(i) One extreme point: (a) u(€) has a minimum at some €_, u(€.) <
u—; v(§) is decreasing on [~ L, L]. (b) u(€) has a maximum at some €., ,
w(€y) > uy; v(€) is decreasing on [~L, L]. (c) v(¢) has a maximum at
some 1 (or n..); w(n-) < a (or u(ny) > B) and u(€) is increasing on
(=L, L]. (d) v(€) has a minimum at some 7; & < u(n) < 8 and u(€) is
increasing on [~ L, L].

(i) Two extreme points: (a) v(€) has a local maximum at n.. (or
n+) and a local minimum at 1, u(¢) is increasing >n [—-L,L] and u_ <
u(n-) < a (or uy > u(ny) > ), @ < u(y) < 8. (b) u(€) has a
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minimum at £, u(§_) < u_; v(§) has a local minimum at n, n > €_,
a < u(n) < B. (c) u(§) has a maximum at {1, u(€y) > uy; v(€) has a
local minimum at n, n < &4, a < u(n) < S.

(iii) Three extreme points: (a) v(€) has local maxima at n_, ny
and a local minimum at 7, n.. < n < ny; u(€) is increasing with
u_ <un) <o a<un <pB,8 <uns) < us. (b) u(€) has a
minimum at £, u(§_ ) < u. and maximum at £, u(§:) > us and
v(€) has a local minimum at n, €. < n < &4, a < u(n) < g. (c)
u(€) has a minimum at £, u(é_) < u., v(§) has a local minimum
at n, a < u(n) < B and a local maximum at ny, n < u(ny) < uy,
£ <n<ny. (d) w(€) has a maximum at &4, u(€+) > uy, v(€) has
a local maximum at n_, u_ < u{(n.) < «, and a local minimum at 7,
a < u(n) < g.

THEOREM 2.5. Assume u_ < «, uy > 3 (v > 83, us < a).
Then there exist constant M such that every possible solution of (1.1),
0< <1, withu'(€§) >0 (u'(€) < 0) when o < u(€) < 3 satisfies

sup ([u(&§)] + [v(§)]) < M
gl <L

where M7 depends at most on u_. uy, v, v4, €, . g and is indepen-
dent of u and L.

Proof. We will prove the case u. < «, uy > . The proof for
u_ > 3, uy < « is similar.

The case (0) is nothing to prove.

The case (ia) Since v is decreasing, vy < v(€) < v_. Since u has a
minimum at £_, we need only bound u from below. Assume £_ > 0.
In case £ < 0 will be similarly proved. Integrating (1.1) from £_ to L
and use u'(€..) = 0, we have

L
eu'(L) + ¢ §u'(€) d€ = —pf(vy) + p/(v(E-).

Since u/(L) > 0, we have

L
[ e (€)dE < —pf(vy) + uf(w(E).
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If ¢ > max{1,£_}, then /(&) < &u'(€) on (¢, L) to that
w(l) = u(Q) < —puf(vi) + pf(v(e ).
and hence
(21) W(Q) > wy + g (v,) — uf (v(E)).
Since vy <v(€.) <wv.,0<pu<1, we have
u(C) = uy = flog) -~ foo) 6 > 1

If0 <& <1, integrate (1.1) from £ to & where £ < £ < 1, then

e (€) + /{ T () dC = —pf(w(€) + 1 (w(EL ).

Since u'(§) > 0 on (§.., L), we obtain ¢u'(¢) > 0 «nd
(2.2) ew'(§) < —uf(v(€)) + uf(v(€)), & <€<l

Integrate (2.2) from £.. to 1, We sce that

l
(23)  ew(l) - (€ ) < —p /£ (F(0(€)) + uf (ulE ) de

Since v.. < v(§) < v. and u(1) is bounded from nelow by (2.1), (2.3)
implies that u(£_) is bounded from below when ( < £_ < 1.

The cases (ib) and (ic) are proven similarly.

The case (id): Since u(€) is increasing so u_ < u(€) < u.. Assume
that 7 > 0. In case n < 0 is similar. First integrase (1.1) from 7 to L,
this implies

L
(L) [ e(€)de = —glur) - polutn)
;
Since v'(L) > 0 this implies

%
/ €0 (€) dE < —uglus) + pglu(n)).
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If ¢ > max{1,n}, since v'(§) > 0 on (¢, L) we find v'(§) < &'(€) on
(n,L) and

L L
vy —v(C) = [ V(e < [ (e ds < —pglur) + uolu(n)

Thus we have

(2.4) v(CQ) = vy + pgtus) — pg(u(n)).

Since o < u(n) < B, we see forn > 1

v(n) 2 vy + pg(ug) - pgle)) 2 ve - gla).
Again if 0 <7 < 1, integrate (1.1) from 7 to & where n < € < 1. Then
we have

3
cw'(€) / ' (C)dC = —pug(u(€)) + pglu(m)).

Since ¢(v’(¢) > 0 on (7, &), we find

ev'(§) < —pg(u(€)) + pglu(n)).

and integrate it from 7 to 1 we have

eu(1) — ev(n) < —p / (g(u(€)) — gluln))) de.

n

and

1
(2.5) (1) + / (a(u(€)) ~ glu(n))) d€ < cvl).

7

We know max(v_,v.) > v(§) and so v is bounded from above. Since
u(€) is bounded, (2.4) and (2.5) imply that v(€) is bounded from below
on [—L, L] independently of u and L.

The case (ila) : Assume v has a local maximum at n_, u(n.) < a.
The case u(n;) is similar. Then the local minimum is at n, n. < 7,
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a < u(n) < B. For u we know u_ < u(€) < uy. In case there are
two cases 7 > 0 and n < 0. If 5 > 0, the same method of the proof
of (id) implies the boundedness of v. If n < 0, then n_ < 0. We will
show u(n-) is bounded from below. We consider first n< — 1 and then
—1 <n_ <0. In the first case we use (ic) on —L < £7 to bound v(n_)
from above; in the second case we use (id) on 7_ < € < L to bound
u(§) from below. These bounds is independent o7 y and L.

The case (iib): If > 0, the argument of (id) says that v(n) is
bounded from below. Since v(n) is bounded from ebove by max(u_,u, ),
v(€) is bounded from above and below. Use (ia) on [~L,7|, u is
bounded from below at £_ € (--L,n). If n < 0, then argument of
(id) implies

v(¢) Z v + pg(u-) — pg(u(n)

if ¢ < min{—-1,n}. But a < u(n) < 3 so u(n) is bounded from below
if n < —-1. If -1 < 1 <0, argument (id) can »e used again. First
integrate (1.1) from 7 to & where £ € (—1,n. This implies

3
' (€) + /f Cv'(¢)d¢ = ug(u(n)) — £g(u(€)).

On (fﬂ?), CU/(C) > 0 so

(2.6) ev' (&) > pg(u(n)) — ng(u(€))

Now integrate (2.6) from -1 to 7,

(2.7) emmzem—n+u/”mmm»-gm@mde

L

Now u(£) < u(n) on (—1,7) since o < u(n) < f,
(2.8) 9(u(n)) — g(u()) = g(8) — g(c).
Insert (2.8) into (2.7) we have

ev(n) = ev(=1) + pu(n + 1)(g(8) — g(a))

and hence
ev(n) > ev(—1) + pu(g(B) — g(a)).
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Thus v(n) is bounded if n < 0. Now use (ia) cn (—L,n) u(€_) is
bounded from below.

The case ii(c): This case is proved the same method of ii(b}.

The case iii(a): Since u is monotone increase, u_. < u(€) < uy on
[-L,L]. As to v, either 4 > 0 or not. If n > 0, using the method of
(ic) v(n+) is bounded from above. If ny < 0, then n_ < 0 and again
using the same method of (ic) v(n_.) is bounded from above. thus if
Ny >0, uy <ulny) < M ifnye <0 then uo < wu(n.) < M. This
case is reduced to the case (iia).

The case iii(b) : If > 0, then ii(c) implies that for n > 1

(2.9) v(n) > vy — pglu(n) + pg(uy)

Since a < u(n) < G, (2.9) shows that u(n) is bourded from below. If
0 <n < 1, ii(c) shows

ev(n) > ev(1) + p(g(B) — g(@))

Thus v(n) is bounded from below. [f 5 < 0, ii(a) show (%) is bounded
from below. Thus v(n) is bounded from above and below.

The case iii(c) : If 5 < 0, then the proof is same as the method of
ii(b).If ¢ < min{—1,7n}, then

v(¢) > v. — plglu) — g(u(n))).

Since a < u(n) < B, v(n) is bounded from below if n < —1. If -1 <
7 < 0 we have

o
cvln) = eo(=1) = [ glulm) - a(ule) de

-1

where u(€) < u(n), —1 < &n. In this case

and so
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and u(n) is bounded from above for < 0. If 7 > 0, then ny > 0.
The same argument of i(c) yields v(ny) is bounded from above. If
¢ > max{n4,1}, we find

v(C) < vg + pg(uy) — pg(u(ny)).

Since 8 < u(n+) < uy, v(ny) is bounded from above if n, > 1. If
0 <ny <1, we find

-1

w(ny) < ev(=1) + 4 / g(u(€)) — g(u(ny)) de.

My

But 8 < u(§) < uy for € € [n4,1]. v(ny) is bounded from above. Then
n < 0, v(n) is bounded from above and below; if > 0, then v(ny) is
bounded from above and below.

The case iii(d) : The proof is similar of the proof of iii(c). 0

THEOREM 2.6. Assume vy < v_ and u_,uy < afor v_ < v, and
u_, uy > 3). Then there is a constant My such that every possible
solution of (1.1), 0 < u < 1, satisfies the a priori sstimate

sup ((§)] + [u(€)]) < My
|§1<L

where My depends at most onu_,uy,v_,v, ¢, f, g and is independent
of p and L.

COROLLARY 2.7. Ifu_ < ayuy > B (oru_ > Buy < «), there
are solutions of (P.) which satisfy the constants u'(£) > 0(u'(§) < 0)
when o < u(f) < 8. Ifvy <v_ and u_,u; < a (or v_ < v, and
u_,uy > ) there are solutions of P. which satisfy the constraints

u(€) < afu() > 7).

3. Existence of Solutions of the Riemanrn: problems assum-
ing {(u.,v.)} are uniformly bounded.

In this section we prove the existence of solutions to the Riemann
problem assuming the set {(u.,v.)} are uniformly bounded. Proposi-
tion 3.1 is a result of Dafermos[1].
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PROPOSITION 3.1. For fixed € > 0, let (u.,v) denote a solution of
P.. Suppose that the set {(ue,v) : 0 < € < 1} is of uniformly bounded
variation. Then {(u.,v.)} possesses a subsequence which converges
almost everywhere on (~—o0,00) of bounded variation. The pair u($),
v(%) provided a weak solution of P.

Using Proposition 3.1, we have an existence theorem for the one
phase case.

THEOREM 3.2. Ifv_ > vy and u_,uy < afor u_,u, > ) and
Assumption (III) holds. the sequence {(uc(€),ve(£));0 < € < 1} as
given by Corollary 2.7 possesses a subsequence which converges a.e. on
(—00,00) to function (u(€),v(€)) of bounded variation. The pair u(%),
v(%) provides a solution to the Riemann problem (P) with u(%) < afor

u(7) > B).

LEMMA 3.3. The list for (uc(€),ve(§)) given in Lemma 2.4 is valid
when L = oc.

LEMMA 3.4. In case 0, i(a, b, c) of Lemma 2.4 (uc(§),vc(£)) are
uniformly bounded independent of € on (—oo,00). That is, there is
a constant N dependent on u_,u,,v_,v, f,g and independent of e,
0 < € < 1 such that

(3.1) Sup (lue(€)] + v (&)]) < N.

Proof Case 0: it is obvious. Case i(a): Since v.(£) is monotone

decreasing, v, < v (£) < v_ on (--00,00). Denote %£(€) = J—“:g? We

claim that

(—o0, &5 .

Indeed, if not, set

(v 1/2
slzmax{sa—oo,si- To= (L) }
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Since u, has its minimum at £, %%(ﬁ) = 0 and so & < £ must exist.

A simple computation shows that
d (du ) oo du\?
U (d_&(@) = = f(ve) + ¢'(uc) ;\%)
and so e%(‘j—’;(f)) = 0 at £ = £;. By the definition of £; we have
2

du f(ve 1/2 .
0< %(5) < (g’(ug}) on  (&,&°)

and thus £ 9¢(¢) < 0 on (&,£ ) and £:44(¢1) < 0. On the other
hand, differentiation of (3.2) shows that
du

o (%(@)):~f"(ve)v2<s>+g"(uauz(s)(d;)g at £=6.

From Assumptions 1 and 2 it follows that

d* (du . .
d—?(%(g)) >0 at £=¢.

This contradicts the assumption. Thus we sec L(duie)y < 0 on

déNdu \
(—00,£¢]. Hence for any € € (—o0, €],

O < M) - (f/(”))m-

Now

v (&) d
u (€5) —u_ :/ gy

vV
TN
KQ |~
/‘:/\\
= e
\/\‘_/
Naa—
—

o

S

i
|
TN
[
&=
|
N—” ¢
—
~.
[\~
—
<
|
]
—_
I
]
=
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which is bounded from below.
Case i(b) : The proof is similar to i(a).
Case i(c) : Let n° be a point such that v(£) has its maximum

value and u.(n°) < a. Since uc(¢) is increasing, u_ < u(§) < uy
on (—o00,00). Denote by g—%(@ = %,-—% We claim that 0 < %(5) <

n (—oo,nt]. For if not, set

)\ M2
& = max{ﬁe(oon] )>(?"((fu§_;) }

Since %(Q =0 at & = &, & exist such that §, < nt. A simple
computation say

v “dv\ V2
33 g (2©) = st ol  5)

g (uc) 1/2
(Fey)

1/2
implies d%(%(fl)) =0. By the definition of €1, 0 < (g) < (?,((Ze))

on (£,17%]. Thus we have 4 €T ( dv U(g)) <O0até=¢&. On the other hand,
differentiation of (3.3) gives

dv

2 ) \
js Cﬁ;@):"‘g"Wc)“’eiﬁ)+f”<vs>v:(s) (@) >0

at £ = £1, a contradiction. Thus we see that 4 (du )) < O0on (—o0,n<]
and hence for any & € (—o00,n%],

Then
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Since u_ < u(n®) < uy, we see that u.(n®) is bounded from above,

independent of € for u(n®) < @. Analogous computation shows that if
ue(n%) > B we have

g'(uy) 12
ve(nS) <wy + [ = U(N ) — u—_
o) <o+ (SE0) T (ular) - )
and since u_ < u(n°) < w4, a bound on v.(n'.) independent of ¢ is
provided. ]

LEMMA 3.5. Let n° denote the points such chat v (€) takes on its
local minimum, a < u.(n) < 3. If there is a subsequence {n‘"} of
{n*}, €n — O+ such that either (a) n°» > m > 0 or n°» < —m < 0,
m a constant independent of €, or (b) v.(n") is bounded from below
independently of €, then for Case i(d) {(u., (§), v, (€)} satisfies (3.1).

Proof. Assume n» < m < 0. Then v;, (§) < 0 on (—oco,n*] and
&vc, (§) = —mv( (€) on (—o0,n*]. Now

—m(w(n) —v_) < /_ nengul (€1 de

il

/_ | 7 (g’ (u) — env™) d€

g(u(n)) — g(u )

It

hence
1

a(g(u—) —g(u(n))) +v_ <vin™)

Since u(€) is monotone, u_. < u(§) < uy , we see that v (") is
bounded from below independently of . The case n°*) > m > 0 is
similar. Thus in (a) or (b), v(y*") is bounded for below and hence
{(ue, (€),ve,(€)) |0 < € < 1} satisfies (3.1). O

LEMMA 3.6. In case ii(a,b,c), iii(a,b,c,d) assume {n} satisfies the
hypothesis of Lemma 3.4. Then {(u.,(£),ve,(£))]|0 < €, < 1} satisfies
(3.1).

From Lemmas 3.4, 3.5, 3.6 and Prop 3.1 we Lave
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THEOREM 3.7. Assume u_ < o, uy > flor u- > a,uy < fB)
and let (u¢(€),ve(€)) denote the solution of P, given by Corollary 2.7.
Let Assumptions (II) and (III) and the hypothesis of Lemma 3.4 hold.
Then {(u, (£),ve,(€§))|0 < €, < 1} possesses a subsequence which
converges almost everywhere on (—00,00) to a function (u(€),v(§)) of
bounded variation. The pair uw($), v(%) provides a solution of the
Riemann problem.

REMARK 3.8. If the hypothesis of Lemma 3.5 does not hold then
nt — 0, v (n®) — —oo as € — 0+.

4. Existence of solutions to the Riemann problem: the case
when v.(n®) — —co as 5 — 0.

In this section we will prove the existence of solution to the Riemann
problem in case when v(n¢) — —oo as n° — 0. This situation was
mentioned in Remark 3.8. First we must show that u(§), ve(§) has a
pointwise a.e. limit.

LEMMA 4.1. Let (uc(€),v.(€)) be a solution of P, as given by Corol-
lary 2.7 when u_ < a,uy > 3. Let = min(v_,vy . Then if v (§) has
a local minimum at n° with a < u.(n®) < @, we have the estimate

(A1) Nols1 —s3) > / " (€)de > (s — 1) + (9(B) — 9(a))

9(8) — g(e)
€ — el
Here (s1,82) C (—o0,00) and Ny is a constant independent of €.

Proof. The bound from above on v.(€) in (4.1). (4.2) follows from
the proof of Lemma 3.3, 3.4, and 3.5. Thus we now proceed to get the
bounds from below. i(d) Fix I < oc sufficiently large so that u(—1) <
a,u.(l) > 3. Assume for the moment ve(—1) < v, (),and let § > —I
be such that v.(6) = v.(—!). Then we have v.(£) <X v(—!) on (—,0),
v (&) > ve(~1l)on @ < & <lwhen -l < n® <8 <! From (F.) we know
that

(4.3) e(ve(§) —ve(—1))" + &(uc(€) —uc(=1))' = —g(uc)’

(4.2) T+ < ve(€) < Ny, —00 <€ < oo
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and integration of (4.3) from —[ to 6 shows that
o

€(ve(6) —ve(-1)) —/ (ve(€) = ve(—1)) d€ = —g(uc(9)) + g(uc(-1))

~1
But v'(6) > 0, v'(—1) < 0 and hence

7]
(4.4) / (0 (~1) — ve(€)) d€ < glue(—1)) — g(ue(8))

-1

Since uc(f) > uc(—!), the right-hand side of («.4) is bounded from
above by g(a) — g(8). Then for any (s1, s2) C (~1,6) we have

(4.5) /32(v6(~l) — ve(£)) d€ < g(a) — g(B)
and hence
ve(~1)(s2 — 51) + (9(8) — g(a)) < / u.(€)) de.

Letting | — —oco we have

@0 s s +(6(8) - o) < [ wile))ae
If (s1,s2) C (8,1), then v (£) > v.(—1) and we see
(4.7) O(sy — 81) < /‘2 ve(€) d€.

Finally if -] < s1 < 6, 8 < s9 < [. we write

/sjzve(ﬁ)d€=/: ve»(é)d§+/;216(§)d§

and use (4.6) and (4.7) to obtain (4.1) again. To get the bound from
below in (4.2), we observe that when n® < £ < 6
0

(48)  (v(~l) ~ w (E)E — 7' < / (ve(~1) — ve(£)) d.

—1
From (4.8) and (4.5) we see that
(ve(=1) = ve(€))(§ — 1) < g(@) — g(9)
Now letting | — oo we obtain (4.2). If —I < £ < 7° we again (4.2)

and if § < £ <, we also obtain (4.2). The prool for v (—1) > v.(l) is
analogous. O
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LEMMA 4.2. Let {(u.(€),ve(£))i0 < € < 1} be a solution of (F)
as given by Corollary 2.7 when u_ < a,uy > (3. Then for any given
compact subset S of (—o00,0) or (0,00) there exisis constants K and
¢o (depending at most on u_,u,,v ,v4, f,g,85) such that

sup(luc(§)] + [ve(€)]) < K for 0 Ze<eg.
s

Proof. Let S, C [a,b], S- C [~b,—a], 0 < u < b < co. Then
for € sufficiently small || < § and (4.2) yield supgcg, [ve(§)] < K.
We now need to get a similar estimate on u(€). In case i(a), i(b) of
Lemma 2.4, the proof of Lemma 3.3, 3.4, 3.5 yields a uniform in € and
£, (—oo < € < o0), bound on u(§) where as in case 0, i(c), ii(a), iii(a),
uc(€) is monotone so that trivially u— < uc(§) < uy for £ € (—00,00).
Hence the only cases left to search are ii(b),(c), iii’b),(c),(d).

Case ii(b). On S., u.(€) is uniformly bounded in ¢, £ and so we
need only verify S . Let n € S_, { € S;. For € sufficiently small
n < n* < (. Integrate (P,) from 7 to ¢ to obtain

¢
(49)  el(Q) - el + / €0/ (€) dé = glu(m) — g(e(Q)).
7
Since v/ (¢) > 0 and v!(n) < 0, (4.9) implies

¢
/ £/ (€) de < gluc(n)) — g(uc(C)).
n

and integration by parts yields

¢
(410)  Cu(C) —mu.(n) / €0/ (€) de < gluc(2) — g(welO)).

Now use (4.1), (4.2) to bound the right-hand side of (4.10) from below

—nNo — No(¢ —n) < glu-(n) — g(u(())-
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Since a < u(¢) < u+, we see g u.(¢)) < g(8). Hence this fact com-
bined with [( — 7| > 5 yields

(4.11) —bla| + b(g(ﬁ)a“ g(ar))

~bNg + g 8) < glue(n)).

Since u.(n) < #, (4.11) and the fact that g(u) — —o0o as u — —oo
show uc(n) uniformly bounded in €, 7 for ¢ sufficiently small, n € S_.

Case ii(c), iii(b). Proceed as for Case ii(b).

Case iii(c). From the mean value theorem there is ¢ € [1,2] such
that v/(¢) = v(2) — v.(1) and so by (4.2) ev’(¢) s uniformly bounded.
Thus for this ¢ and arbitrary n = S_ we again derive (4.9) and since
vl(n) < 0 we find that

< g(uc(n)) — 3().
The same argument as given above for case iii(l) shows u(n) is uni-

formly bounded in ¢, n for € sufficiently small, n € S_.
Case iii(d). Proceed analogously as in Case iii(c). )

LEMMA 4.3. Let {{uc(§),v(£))[0 < € < 1} be a solution of (P,)
as given by Corollary 2.7 when «_ < o, uy > 3. Let &, £, denote
the points of local minima for v.(§) (when they exist). Define . =
min(u_,uy ),

e () () i)

R (8] ) (ol _4,?)
1,1

Then in the case of Lemma 2.4(with p = = o0) we have the
following estimates:
In cases 0, i(a),(b),(c), (3.1) holds.
In the remaining cases v, (§) satisfies (4.2) and u,(§) satisfies
u- < u (&) <wuy in case i(d), ii(a), iii(a).
B <, (&) < wuy in case ii(b). iii(c).
u.. <u (&) < Bl in case ii(c). iii(d).
B <wu (&) < B in case iii(b).
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LEMMA 4.4. Let {(uc(§),v(§))|0 < € < 1} be a solution of (P,)
as given by Corollary 2.7 when u_ < &, uy > 3. Then on any semi-
infinite interval (—oo, —a] or [a,0), a > 0 there exist constants k and
€0 (depending at most on u_,uy,v ,vy, f,g,a) such that

sup (Jue(§)| + |ve(E)]) <k,

(-—O0,0.]

sup ([ue(§)| + [ve(€)]) < k,

[a,00)

(4.12)

for 0 < e < €.

LEMMA 4.5. Let {(uc(€),v(£))I0 < € < 1} be a solution of (P.)
as given by Corollary 2.7 when u_ < «, uy > 3. Then the sequence
(ue(§),ve(€)) possesses a subsequence which converges almost every-
where on (—o0,00) to functions (u(€),v(€)). On compact subsets of
(—00,0) U (0,00) the convergent subsequence is bounded uniformly in
€ with uniformly bounded total variation. The limit functions have
bounded variation on compact subsets of (—o0,0) U (0, 00).

LEMMA 4.6. The functions u(€). v(§) defined by Lemma 4.5 satisfy
the boundary conditions

u(£00) = uy, v(to0) = v4.

Proof. Let Y (§) = (uc(€),ve(€)!7, F(Ye) = (- f(v.),—g(u))T, T
transpose. Then

i (o0 (5)v0) - L (vroorioes (£))

and integrating from 1 to &, £ > 1, we find

o () 110 - (2) v - [0 (&)

Since by Lemma 4.4, |Y(£)| is uniformly bounded by & on [1,00), we
know |VF(Y,)] < R for some constant R > 0. Thus

exp(gi)m&)‘Sexp(g;) | /|Y(g exp( )dc
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and using Grownwall’s inequality we have

e (5 ) 710 < Jow (5 ) ] ow () -
and hence
413 YOI < e (HEZZEELZEY,
Note that
o (5) ¥(0
=+ —i—/jf’m(o)'exp (;—) ¢

A A (§—> -2 /1 CR(Y.(0)) exp (gi) i

€

and hence

(4.14)
2N\

Y/(€) = 2 exp (-g-) TP - 5 CR(YC) exp (gi) .

Here
(4.15)

2 2
zz/1 exp <_g—e) d€

~Ye(2) - n(l)——/ F(Yexé)df+~/ ¢F Ye(<)>exp<<2) a.

Thus from (4.14) we have

YA < falexi -5 ) + HF(H ()
(4.16) -
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From (4.15) and the inequality

/ exp( ) dé > exp (——)
1
we see that

const ~ const 2 2
|z9| < [ const + - + o exp | - ) exp

and hence by (4.16) that
(4.17) YD) < 2 exp (—7—) .
€ 2e
Now insert (4.17) into (4.13) to find that
const (2R — 2R+ 8 — 2
€2 2¢ '
Thus for £ > R+ (R?—2R+8)'/? (4.18) shows that |Y/(£)| — O as € —
0+. Recalling that (ue(€),v.(€)) converges pointwise to (u(£),v(£)), we
see (u(€),v(£)) must be constants for € > R+ (R? — 2R+ 8)!/2. Since

for any € > 0 limg 00 % (§) = U, limg, o0 v (§) = v+, these constants
must be u; and vy. A similar argiament works for £ = —oo. 4

(4.18) Y/ (&) <

COROLLARY 4.7. The functions u(§), v(§) deiined by Lemma 4.5
satisfy the conditions

(u(€), v(§)) = {

for some positive constant M.

(U .,'U,,), §< ‘Ma
(’LL, ,”U+), §> v

LEMMA 4.8. The functions (u(¢),v(§)) defined by Lemma 4.5 sat-
isfy
__é'u’ - f('l}), = Oa
4.19
19 60’ g{u) = 0

in the sense of distributions at any & # 0.
At any point & # 0 of discontinuity of (u(€). v(§)) the Rankine-
Hugoniot jump conditions are satisfied:
—&o(u(éo+) — u(o—)) -~ (f(v(&o+)) — f(v(&—))) =0,

0
(4.20) —&o(v(&o+) —v(éo—)) - (g(u(éo+)) — a(u(é—))) = 0.
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Proof. By Lemma 4.5 there exists a sequence of solutions of (P.)
which converges bounded almost everywhere on any compact subset
of (0,00) U (—00,0). hence if we multiply (P,) by C* test functions
with compact support excluding £ = 0, integrate by parts, pass to
the limits as the relevant sequence of €¢’s goes to zero, and use the
Lebesgue dominated convergence theorem, we obtain (4.19). Equation

(4.19) follows from (4.18) in the standard manne:. O
DEFINITION 4.9. u, v is a distributional solut on of (4.19) at £ = 0
if
lim f(v = lim f(v ,
. lim F(0(6)) = lim f(0(6))
lim g(u(€)) = lim g(u(€))
LEMMA 4.10. Assume that
(4.22) = / g(ﬁ)d&l — 00 as |u| — .
lul /s

Then {u.(§)} has absolutely equicontinuous integrals and the functions
u(§), v(§) defined by Lemma 4.5 are locally integrable in (—o0, 00).

Proof. From (4.1), |v.(£)] is locally integrable. Since a subsequence
of ve(€) converges to v(€), Fatou's theorem implies v(€) is locally in-
tegrable. To show locally integrability of u(¢), we will show at first
{uc(€)} have absolutely equicontinuous integral. In case i(d), ii(a),
iti(a) of Lemma 2.4 there is nothing to prove since u (£) is monotone
and hence uniformly bounded in £, ¢. Theorem 3.8 implies that Case
0, i(a, b, ¢) were covered. We need only prove Case ii(b, ¢), iii(b, c, d).
Consider ii(c). Given any interval (I1,l2) we either

(D) (Lyle) = ({1,t ] U [te,lz) where (Iy,t] if v < u(€) < B and
[te,l2) If B < u,, uc(t) =3,

(I1) w, > B on (Iy,12), or

(IIT) (&) < B on (I1,l2).

First we consider (I). Multiply (F.); by g(u) and (P.)2 by f(v)
and add. If we define n(u,v) = F(v) + f;; g(€)a, F'(v) = f(v) and

Ne(€) == n(u (&), v (€)) we see that
(4.23) en/ (&) +&nl(&) + (F(v)g(r)) — e(w)?g (W) — f (v)(v')* = 0.
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Let 7 = max{n(u_,v_),n(us,v4)). On any subinterval (s;,s;) C
te, l2) set

| sup{§ € [te, s1)In(€) < 71} if netsy) >
< | inf{€ € (s1,52)[ne(€) = A} if me(51) < ﬁ

and

SUP{€ € (31,82)177e(§) > 77} if 775{52) <.
Observe that n/(¢.) > 0, 7.(6.) <0 and

_ { inf{§ € (s2,l2)ne(§) < 7} if ne(s2) > 7,

te

So B,
(4.24) / (ne(€) — ) de < /C ) ~mas=— [ “enie)as

Thus if we integrate (4.23) over (¢.,6.) and use (4.24) we see that
N

/ C(ne(6) - 7)de + ¢ / ()29 () + £'(v.)(0))?) d

< fve(Be)) — f(vexcf)) (e (Ce)-

By the definitions of 6, (., n(ue(f.),vc(0)) and n(uc(¢),ve(C)) are
uniformly bounded from above and since u.(6.) > B, n is convex at
these values. This implies u(6.), ve(6c), ue(Ce), ve({) are uniformly
bounded in €. Hence the right-hand side of (4.25) is bounded by a con-
stant K = K(f,g,uc,v.) independent of e. Now since 1 fﬁ s)ds —
00 as u — 00, for any § > 0 there is ug > 3 such that

(4.25)

4 ix s _
Set () = PRt Fix s1,52,0 < sp — s; < I(4). Note that
for any s1, 52,81 € (I1,t], 82 € (¢, 12),

/u £)de = /u d£+/s e (€) de

L

<Blte= s+ [ o+ genfule).v(e)) de

3.

< Bt =)+ (o2~ tuo + g [ e (e .
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Using (4.24) with so = s9,51 = t.,

/ 2 uc(§) d€ < Bt — 51) + (82 — te)up + —O(K + 7(s2 — s1))

2K

| TR
< (59— s1)(F + uo + 2%-(-) +3
<5

[ ude < [T + penud@), i d <5

and if s1, 50 < £,
[ vty de < ptox s <

Also since u¢(€) > u_ we have

/82 u((E) df > u*(SQ - 51) > —IUV’(SQ — 81) > —0.

Thus we proved that

/ we(€) dg‘ < S0 < sp— sy << 1(3).

Now using Vitali’s theorem, u is locally integrabie. O

LEMMA 4.11. The four limits which appear in (4.21) always ex-
ist and (4.21) is always satisfled. Equation (4.21) is satisfied if the
sequence {fo'E v (€) d€} is absolutely equicontinuous. Furthermore in
general

9(8) —gla) < lim glu(f)) - Cl_igg_ g(u(¢)) <0.
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Proof. Let {(uc(&),ve(§))} denote the convergent subsequence of
Lemma 4.5. Note that since u (&), v.(§) are piecewise monotone in
(—00,00), the limit functions u(€),v(€) are also monotone and hence
the set of points of continuity of u,v is dense in any finite £-interval.
Let ¢ and @ be points of continuity of u(€),v(£),{ < 0 < . From the
mean value theorem for every small ¢ > 0 we can find ¢, € [( — €l/2, ¢,
9. € (6,0 + €}/?] such that

/200 (C) = ve(Q) — v (¢~ 2), MG = u (Q) — uc(¢ — P,
/20 (0) = ve(8) — v (0 —€/%), Ul (0) = u, (6) — u (6 — /7).

By Lemma 2.4 there are constants Ky, K¢ such that

€ /20L(C) < K¢, M2l (¢ < K,

4.26 ,
(420 €20 (0)] < Ko, |e'?u;(80)] < K.

for € sufficiently small. Now we integrate (P.) on ((,,0.) obtaining

0.
eu'(@ ) Eu Cc) -+ 9 U(\g ) - Ccuf(Cc) o / ue(g) d&
=1(v(¢) = F((6.)), |
0.
(6 )—ev (Cf) +0vct0:) — G (C) - / v (§) d€
=g(u(¢e)) — g(u (b))

(4.27)

Now let € — 0+ in (4.27). Since ¢, ¢ are points of continuity of u, v
we find by virtue of (4.26) and the Vitali’s theoretn that

0.
0u(0) — Cu(C) + F(u(0) - F((C)) = lim / w. (€) de

(4.28) o ”
00(0) - Go() + 9(u(0)) - g(u(@)) = Jon [ v.(e)de

¢

Since the limits on the left hand side of (4.27) exists, we have from
(4.1)

¢-y0+

O
im Ve = S((, 0
i [ w0 de = 5(¢0)
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satisfies

0(C = 6) + (9(8) — g(cr)) < S(¢,8) < No(¢ - 6).
By Lemma 4.4 for fixed ¢ < 0, 5(¢,6) is continuous in 6, § > 0, |6
small and for fixed § > 0, S(¢,0) is continuous in ¢, ¢ < 0, |¢| small.
Now since |u(£)| may be infinite only at £ = 0 pointwise limits of ii(b,
c), iii(b, ¢, d) of Lemma 2.4 shows that if |u(0)] = co, u must one of

these shape shown in figure.
In all these cases (I), (II), (III| we see that

7}
cu(Q)] < /C ()] d,

Ou(0)| < U d
| <)|_./<|(s>|s
i

But since u(() is locally integrable,

0
Jip Cu€) = g ouo) = iy [ o(@de =0
¢—0—
Since v(£) has the shape of (I) near £ = 0 and v s locally integrable
Jm Cu(¢) = lim fu(f) = C

Now let § — 0+, ¢ — 0— along a sequence of points of continuity
of u, v and possibly extract a further subsequence such that S(¢,6)
converges we find that

lim f(v(6)) = Jim f((¢)) =0,

60—
Jim g(u(6)) - Jim g(u(¢)) = Jim S(¢,0).
{—0-

Moreover if f; v (€) d€ is absolutely equicontinucus, the Vitali’s theo-
rem implies
1 —
. _1)m+b ¢,6)=0.
{—0-

In general, the bounds on S({,#) shows that
— < ki 1 — L wlC < (). ]
9(8) — g(a) < Jim g((0)) Cgr(r)lﬁsz( (¢)) <0
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THEOREM 4.12. The functions u(§), v(§) defined by Lemma 4.5 is

a solution of the Riemann problem provided

(1]

lim g(u(€)) = lim g(u(€))-

£550— £—0-+

Proof. Use Lemma 4.11. O
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