THE RIEMANN PROBLEM FOR A SYSTEM OF CONSERVATION LAWS OF MIXED TYPE (I)

CHOON-HO LEE

ABSTRACT. We prove the existence of solutions of the Riemann problem for a system of conservation laws of mixed type using the method of vanishing viscosity term.

0. Introduction

In this paper we study the existence of solutions of the Riemann Problem for a 2×2 system of conservation laws of the mixed type

(0.1)
$$u_t - f(v)_x = 0,$$
$$v_t - g(u)_x = 0$$

with the initial data

(0.2)
$$(u,v)(x,0) = \begin{cases} (u_+,v_+) & x > 0, \\ (u_-,v_-) & x < 0. \end{cases}$$

Here we assume

- (I) $f \in C^2(\mathbb{R})$ is a strictly increasing convex function.
- (II) $g \in C^2(\mathbb{R})$ and there exist α , β , η with $\alpha < \eta < \beta$ such that

$$g'(u) \ge 0$$
 if $u \notin (\alpha, \beta)$ and $g'(u) < 0$ for $u \in (\alpha, \beta)$, $g''(u) < 0$ if $u < \eta$ and $g''(u) > 0$ if $u > \eta$.

(III)
$$g(u) \to \pm \infty$$
 as $u \to \pm \infty$.

Received December 10, 1996.

This paper was supported by PostDoc Program of KOSEF, Fall 1995.

¹⁹⁹¹ Mathematics Subject Classification: 35L45, 35L65.

Key words and phrases: Riemann problem, existence of solutions, fixed point theorem.

If f(v) = v, then the typical model of this equation (0.1) is the onedimensional isothermal motion of a compressible elastic fluid or solid in the Lagrangian coordinates. In this case the existence of solutions to the Riemann problem (0.1), (0.2) has been studied by Dafermos[1], Dafermos and DiPerna[2], Fan[3], James[4], Slemrod[6]. These approach was based on a vanishing "viscosity" term pursued by Kalashnikov[5], Tupchiev[7][8]. Their idea is to replace (0.1) with the system

$$(0.3) \qquad \begin{aligned} u_t - f(v)_x &= \epsilon t u_{xx}, \\ v_t - g(u)_x &= \epsilon t v_{xx} \end{aligned}$$

for $x \in \mathbb{R}$, t > 0 and construct solutions as the limit of the solutions of (0.3), (0.2) as $\epsilon \to 0+$. Since the system is invariant under the transformation $(x,t) \to (ax,at)$ where a > 0, (0.3) and (0.2) admit solutions of the form $(u_{\epsilon}(\xi), v_{\epsilon}(\xi))$, where $\xi = \frac{x}{t}$. A simple computation shows that $u = u_{\epsilon}(\xi), v = v_{\epsilon}(\xi)$ is a solution of (0.3), (0.2) if it satisfies

(0.4)
$$\begin{aligned} -\xi u' - f(v)' &= \epsilon u'', \\ -\xi v' - g(u)' &= \epsilon v'' \end{aligned}$$

with the boundary condition

$$(0.5) (u,v)(\pm \infty) = (u_+, v_+)$$

where $'=\frac{d}{d\xi}$ and $''=\frac{d^2}{d\xi^2}$. We shall call the boundary value problem (0.4) and (0.5) the problem (P_{ϵ}) . Similarly the initial value problem (0.1) and (0.2) are called the Riemann problem (P). This paper consists of two parts. The first part carried out in Section 1 and 2 establishes that if the data are in different phases there is solution of P_{ϵ} which exhibits one change of phase. In order to proof the results, we use the arguments of Dafermos[1] and Slemrod[6]. In second part in Section 3 and 4 we prove the existence of solution to the Riemann problem to give conditions on which solutions of P_{ϵ} possess limits. Throughout this paper we always assume Assumptions (I) and (II) unless other mentions it.

1. The existence theorem of the problem (P_{ϵ})

In this section we will study the existence of solutions to the boundary value problem

(1.1)
$$\epsilon u'' = -\xi u' - \mu f(v)'$$

$$\epsilon v'' = -\xi v' - \mu g(u)'$$

$$(u, v)(\pm I) = (u_+, v_+)$$

where L > 1, and $0 \le \mu \le 1$.

THEOREM 1.1. Assume $u_- < \alpha$, $u_+ > \beta$ and there exists a constant M_0 such that every possible solution of (1.1) with $u'(\xi) > 0$ when $\alpha \le u(\xi) \le \beta$ satisfies the a priori estimate

(1.2)
$$\sup_{|\xi| < L} (|u(\xi)| + |u'(\xi)| + |v(\xi)| + |v'(\xi)|) \le M_0$$

then P_{ϵ} has a solution with $u'(\xi) > 0$ if $\alpha \le u(\xi) \le \beta$.

Proof. Let $u_- < \alpha$, $u_+ > \beta$. Set $U(\xi) = u(\xi) - u_0(\xi)$ and $V(\xi) = v(\xi) - v_0(\xi)$, where $(u_0(\xi), v_0(\xi))$ is a unique solution of (1.1) with $\mu = 0$. Then U(-L) = U(L) = V(L) = V(-L) = 0. If u and v are solutions of (1.1), U, V satisfies

$$\epsilon U'' = -\xi U' - \mu f(V + v_0)',$$

$$\epsilon V'' = -\xi V' - \mu g(U + u_0)'.$$

Define

$$Y(\xi) = \begin{pmatrix} U(\xi) \\ V(\xi) \end{pmatrix}, F(\xi, Y) = \begin{pmatrix} -f(V + v_0) \\ -g(U + u_0) \end{pmatrix}.$$

Then

(1.3)
$$\epsilon Y'' = -\xi Y' - \mu F(\xi, Y)', Y(-L) = Y(L) = 0.$$

Let $Z \in C^1([-L, L]; \mathbb{R}^2)$. Define T to be the solution map that carries Z into Y where Y solves

(1.4)
$$\epsilon Y'' = -\xi Y' + F(\xi, Z)', Y(-L) = Y(L) = 0.$$

The integral formula of (1.4) is of the form

$$Y(\xi) = c \int_{-L}^{\xi} \exp\left(-\frac{\zeta^2}{2\epsilon}\right) d\zeta + \frac{1}{\epsilon} \int_{-L}^{\xi} F(\zeta, Z(\zeta)) d\zeta + \frac{1}{\epsilon^2} \int_{-L}^{\xi} \int_{0}^{\zeta} \tau F(\tau, Z(\tau)) \exp\left(\frac{\tau^2 - \zeta^2}{2\epsilon}\right) d\tau d\zeta$$

where

$$\begin{split} c\int_{-L}^{L} \exp\left(-\frac{\zeta^2}{2\epsilon}\right) \, d\zeta &= -\frac{1}{\epsilon} \int_{-L}^{L} F(\zeta, Z(\zeta)) \, d\zeta \\ &+ \frac{1}{\epsilon^2} \int_{-L}^{L} \int_{0}^{\zeta} \tau F(\tau, Z(\tau)) \exp\left(\frac{\tau^2 - \zeta^2}{2\epsilon}\right) \, d\tau d\zeta \end{split}$$

Then $T:C^1([-L,L];\mathbb{R}^2)\to C^1([-L,L];\mathbb{R}^2)$ is continuous and compact. Define Ω by the set of pairs U,V in $C^1([-L,L];\mathbb{R}^2)$ such that

$$U(-L) + u_0(-L) < \alpha, \quad U(L) + u_0(L) > \beta$$
$$U'(\xi) + u'_0(\xi) > 0 \text{ if } \alpha < U(\xi) + u_0(\xi) < \beta$$

$$\sup_{|\xi| < L} (|U(\xi) + u_0(\xi)| + |U'(\xi) + u'_0(\xi)| + |V(\xi) + v_0(\xi)| + |V'(\xi) + v'_0(\xi)|)$$

$$\leq M + 1$$

Then Ω is open and $0 \in \text{int}\Omega$

We note that $\phi \in \partial\Omega$, $\phi = \mu T \phi$, $\mu \in (0,1)$ if and only if there is a solution $(u(\xi), v(\xi))$ of (1.1) satisfying $u'(\xi) \geq 0$ if $\alpha \leq u(\xi) \leq \beta$ and either

(i)
$$u'(\xi_0) = 0$$
, $\alpha \le u(\xi_0) \le \beta$ for some $\xi_0 \in (-L, L)$ or

(ii)
$$\sup_{-L<\xi< L}\{|u(\xi)|+|v(\xi)|+|u'(\xi)|+|v'(\xi)|\}=M_0+1$$
 or both (i) and (ii).

The following lemma proved by Dafermos[1] is often useful.

LEMMA 1.2. The initial value problem for (1.3), with fixed $\epsilon > 0$, $\mu \in [0,1]$, has a unique solution.

In order to use the Leray-Schauder fixed theorem, we take the Banach space $X = C^1([-L, L]; \mathbb{R}^2)$.

Let us consider the case (i): either $\alpha < u(\xi_0) < \beta$, $u(\xi_0) = \alpha$, or $u(\xi_0) = \beta$.

Case 1. $\alpha < u(\xi_0) < \beta$, $u(\xi_0) = \alpha$, $u(\xi_0) = \beta$. Using Lemma 1.2 and the same method of Slemrod's proof[6], we can not satisfy (1.1), $u_- < \alpha$, $u_+ > \beta$.

Case 2. $u(\xi_0) = \alpha$, $u'(\xi_0) = 0$. In this case there are the three possibilities, $u''(\xi_0) > 0$, $u''(\xi_0) = 0$, or $u''(\xi_0) < 0$. The first and second cases are same as Case 1. So we need only consider $u''(\xi_0) < 0$. In this case $u(\xi_0) = \alpha$ is a local maximum. Hence if $u(L) = u_+ > \beta$, the local maximum of u occurs at $\xi_1 > \xi_0$, i.e. $u(\xi_1) < \alpha$, $u'(\xi_1) = 0$, $u''(\xi_1) \geq 0$; $u(\xi) < \alpha$, $u'(\xi) < 0$, $\xi_0 < \xi \leq \xi_1$. The case $u''(\xi_1) = 0$ is impossible because of $v'(\xi_1) = 0$ and the Lemma 1.2. Thus we only consider $u''(\xi_1) > 0$. From (1.1) and the assumption(I) of f we see that $v(\xi_1) < 0$ and $v(\xi_0) > 0$ which implies v has a local maximum at a point $\xi_0 < \zeta < \xi_1$, $u(\zeta) \leq 0$, and again Lemma 1.2 shows that $v''(\zeta) > 0$. Since g'(u) > 0 for $u < \alpha$ this implies by use of (1.1) that $u''(\zeta) > 0$ which contradicts the fact that u is decreasing on (ξ_0, ξ_1) .

Case 3. $u(\xi_0) = \beta$, $u'(\xi_0) = 0$. This case is similar to Case 1.

From Case 1, 2, 3 of (i) there is no solution of (1.1), $\mu \in (0,1)$, $(u(\xi) - u_0(\xi), v(\xi) - v_0(\xi))$ in Ω for which (i) can hold. Thus all solutions of $(1.1), \mu \in (0,1)$ in $\bar{\Omega}$ must satisfy $u'(\xi) > 0$ in $\alpha \le u(\xi) \le \beta$. But the hypothesis of our theorem, (ii) cannot hold either. Thus from Leray-Schauder fixed point theorem, (1.1) possesses a solution for which $(u(\xi) - u_0(\xi), v(\xi) - v_0(\xi))$ is in $\bar{\Omega}$. To extend the domain of u, v as follows: Set

$$u(\xi; L) = u_+, v(\xi; L) = v_+ \text{ if } \xi > L,$$

 $u(\xi; L) = u_-, v(\xi; L) = v_- \text{ if } \xi < -L.$

The extended pair $(u(\cdot;L),v(\cdot;L))$ form a sequence in $C^0((-\infty,\infty);\mathbb{R}^2)$ and by virtue of the hypothesis of theorem we know $\sup_{|\xi|< L}\{|u'(\xi;L)|+|v'(\xi;L)|\} \leq M$. Thus the sequence $\{(u(\xi;L),v(\xi;L))\}$ is precompact in $C^0((-\infty,\infty);\mathbb{R}^2)$ and so there is a subsequence $L_n\to\infty$ as $n\to\infty$

since that $(u(\xi; L), v(\xi; L)) \to (u(\xi), v(\xi))$ uniformly as $n \to \infty$ on $(-\infty, \infty)$. Thus $(u(\xi), v(\xi))$ is a solution of P_{ϵ} and by its construction $u'(\xi) \geq 0$ if $\alpha \leq u(\xi) \leq \beta$. But by the same reason used in Cases 2 and $3 u'(\xi) > 0$ if $\alpha \leq u(\xi) \leq \beta$. This completes the proof of Theorem 1.1.

REMARK 1.3. The conclusion of Theorem 1.1 remains valid if (1.2) is replaced by the a priori estimate

$$\sup_{|\xi| < L} (|u(\xi)| + |v(\xi)|) \le M_1$$

where $M_1 = M_1(u_-, v_-, u_+, v_+, \epsilon, f, g)$ but is independent of μ and L.

REMARK 1.4. Assume $v_- > v_+$ and $u_-, u_+ < \alpha(v_- < v_+)$ and $u_-, u_+ > \beta$ and there exist a constant M_2 such that every possible solution of (1.1) satisfies the a priori estimate

$$\sup_{|\xi| < L} (|u(\xi)| + |v(\xi)|) \le M_2$$

Here $M_2 = M_2(v_-, v_+, u_-, u_+, \epsilon, f, g)$ but not independent of μ and L. Then there exist solutions of (P_{ϵ}) which satisfy the constraints $u(\xi) < \alpha(u(\xi) > \beta)$.

2. The a priori estimates

In this section we derive the *a priori* estimates needed to apply Theorem 1.1 and Remark 1.3 and 1.4. We give a series of Lemmas which is useful. Lemma 2.1 is a result of Dafermos[1].

LEMMA 2.1. Let $(u(\xi), v(\xi))$ be a solution of (1.1) on [-L, L], $\mu > 0$. Then on any subinterval (l_1, l_2) for which $g'(u(\xi)) > 0$ one of the following holds:

- (i) $u(\xi)$ and $v(\xi)$ are constant on (l_1, l_2) .
- (ii) $v(\xi)$ is a strictly increasing(or decreasing) function with no critical points in (l_1, l_2) ; $u(\xi)$ has, at most, one critical point in (l_1, l_2) that necessarily must be a maximum(or minimum).
- (iii) $u(\xi)$ is a strictly increasing (or decreasing) function with no critical point in (l_1, l_2) ; $v(\xi)$ has, at most, one critical point in (l_1, l_2) that necessarily must be a maximum (or minimum).

LEMMA 2.2. $(u(\xi), v(\xi))$ be a solution of (1.1) on [-L, L], $\mu > 0$. Then on any subinterval (l_1, l_2) for which $g'(u(\xi)) < 0$ the graph of v = v(u) is convex(or concave) at points where $u'(\xi) > 0$ (or $u'(\xi) < 0$).

Proof. Denote by $\frac{dv}{du} = \frac{v'(\xi)}{u'(\xi)}$. Then

$$\epsilon rac{d^2v}{du^2} = rac{\mu}{u'} (f'(v)(rac{dv}{du})^2 - g'(u)).$$

The result follows from the above identity.

LEMMA 2.3. $(u(\xi), v(\xi))$ be a solution of (1.1) on [-L, L], $\mu > 0$ with $u'(\xi) > 0$ if $\alpha \le u(\xi) \le \beta$. Then u and v can have no local maxima or minima at ξ for which $u(\xi) = \alpha$ or $u(\xi) = \beta$.

Proof. Since $u'(\xi) > 0$ if $\alpha \le u(\xi) \le \beta$, u has no local maxima or a local minima at points where $u(\xi) = \alpha$. On the other hand if $v(\xi)$ has a local maximum or minimum at such a point, then $v'(\xi) = 0$ there and hence by (1.1) $v''(\xi) = 0$ as well. Differentiating (1.1) with respect to ξ , $g''(\alpha) < 0$, $g''(\beta) > 0$ implies that $u''(\xi) = 0$ at such points, so u could not have taken on a local maximum or minimum.

Lemma 2.4 is the same result as Slemrod[6]. The proof is similar to his Lemma 2.4.

- LEMMA 2.4. Assume that $u_- < \alpha$, $u_+ > \beta$ and let $u(\xi)$, $v(\xi)$ be a solution of (1.1) with $\mu > 0$ for which $u'(\xi) > 0$ when $\alpha \le u(\xi) \le \beta$. Then one of the following holds: (0) No extreme points: $u(\xi)$, $v(\xi)$ have no local maxima or minima on [-L, L]. They are non-constant and monotone, u being monotone increasing.
- (i) One extreme point: (a) $u(\xi)$ has a minimum at some ξ_- , $u(\xi_-) < u_-$; $v(\xi)$ is decreasing on [-L,L]. (b) $u(\xi)$ has a maximum at some ξ_+ , $u(\xi_+) > u_+$; $v(\xi)$ is decreasing on [-L,L]. (c) $v(\xi)$ has a maximum at some η_- (or η_+); $u(\eta_-) < \alpha$ (or $u(\eta_+) > \beta$) and $u(\xi)$ is increasing on [-L,L]. (d) $v(\xi)$ has a minimum at some η ; $\alpha < u(\eta) < \beta$ and $u(\xi)$ is increasing on [-L,L].
- (ii) Two extreme points: (a) $v(\xi)$ has a local maximum at η_- (or η_+) and a local minimum at η , $u(\xi)$ is increasing on [-L,L] and $u_- < u(\eta_-) < \alpha$ (or $u_+ > u(\eta_+) > \beta$), $\alpha < u(\eta) < \beta$. (b) $u(\xi)$ has a

minimum at ξ_- , $u(\xi_-) < u_-$; $v(\xi)$ has a local minimum at η , $\eta > \xi_-$, $\alpha < u(\eta) < \beta$. (c) $u(\xi)$ has a maximum at ξ_+ , $u(\xi_+) > u_+$; $v(\xi)$ has a local minimum at η , $\eta < \xi_+$, $\alpha < u(\eta) < \beta$.

(iii) Three extreme points: (a) $v(\xi)$ has local maxima at η_- , η_+ and a local minimum at η , $\eta_- < \eta < \eta_+$; $u(\xi)$ is increasing with $u_- < u(\eta_-) < \alpha$, $\alpha < u(\eta) < \beta$, $\beta < u(\eta_+) < u_+$. (b) $u(\xi)$ has a minimum at ξ_- , $u(\xi_-) < u_-$ and maximum at ξ_+ , $u(\xi_+) > u_+$ and $v(\xi)$ has a local minimum at η , $\xi_- < \eta < \xi_+$, $\alpha < u(\eta) < \beta$. (c) $u(\xi)$ has a minimum at ξ_- , $u(\xi_-) < u_-$, $v(\xi)$ has a local minimum at ξ_- , $u(\eta) < \beta$ and a local maximum at ξ_+ , $u(\xi_+) > u_+$, $\xi_- < \eta < \eta_+$. (d) $u(\xi)$ has a maximum at ξ_+ , $u(\xi_+) > u_+$, $v(\xi)$ has a local maximum at ξ_- , $u(\xi) < \alpha$, and a local minimum at ξ , $\alpha < u(\eta) < \beta$.

THEOREM 2.5. Assume $u_{-} < \alpha$, $u_{+} > \beta$ ($u_{-} > \beta$, $u_{+} < \alpha$). Then there exist constant M_{1} such that every possible solution of (1.1), $0 \le \mu \le 1$, with $u'(\xi) > 0$ ($u'(\xi) < 0$) when $\alpha \le u(\xi) \le \beta$ satisfies

$$\sup_{|\xi| < L} (|u(\xi)| + |v(\xi)|) \le M_1$$

where M_1 depends at most on u_- , u_+ , v_- , v_+ , ϵ , f, g and is independent of μ and L.

Proof. We will prove the case $u_- < \alpha$, $u_+ > \beta$. The proof for $u_- > \beta$, $u_+ < \alpha$ is similar.

The case (0) is nothing to prove.

The case (ia) Since v is decreasing, $v_+ \leq v(\xi) \leq v_-$. Since u has a minimum at ξ_- , we need only bound u from below. Assume $\xi_- \geq 0$. In case $\xi_- \leq 0$ will be similarly proved. Integrating (1.1) from ξ_- to L and use $u'(\xi_-) = 0$, we have

$$\epsilon u'(L) + \int_{\xi_-}^L \xi u'(\xi)\,d\xi \le -\mu f(v_+) + \mu f(v(\xi_-)).$$

Since u'(L) > 0, we have

$$\int_{\xi_{-}}^{L} \xi u'(\xi) \, d\xi \le -\mu f(v_{+}) + \mu f(v(\xi_{-})).$$

If $\zeta \ge \max\{1, \xi_-\}$, then $u'(\xi) \le \xi u'(\xi)$ on (ζ, L) so that

$$u(L) - u(\zeta) \le -\mu f(v_+) + \mu f(v(\xi_+)).$$

and hence

(2.1)
$$u(\zeta) \ge u_+ + \mu f(v_+) - \mu f(v(\xi_-)).$$

Since $v_+ \le v(\xi_-) \le v_-$, $0 \le \mu \le 1$, we have

$$u(\zeta) \ge u_+ + f(v_+) - f(v_-)$$
 if $\xi_- \ge 1$.

If $0 \le \xi_- < 1$, integrate (1.1) from ξ_- to ξ where $\xi_- < \xi < 1$, then

$$\epsilon u'(\xi) + \int_{\xi_-}^{\xi} \zeta u'(\zeta) \, d\zeta = -\mu f(v(\xi)) + \mu f(v(\xi_-)).$$

Since $u'(\xi) > 0$ on (ξ_-, L) , we obtain $\zeta u'(\zeta) > 0$ and

(2.2)
$$\epsilon u'(\xi) \le -\mu f(v(\xi)) + \mu f(v(\xi_{-})), \quad \xi_{-} < \xi < 1.$$

Integrate (2.2) from ξ_{-} to 1, We see that

(2.3)
$$\epsilon u(1) - \epsilon u'(\xi_{-}) \le -\mu \int_{\xi_{-}}^{1} (f(v(\xi)) + \mu f(v(\xi_{-}))) d\xi_{-}$$

Since $v_{+} \leq v(\xi) \leq v_{-}$ and u(1) is bounded from below by (2.1), (2.3) implies that $u(\xi_{-})$ is bounded from below when $0 \leq \xi_{-} < 1$.

The cases (ib) and (ic) are proven similarly.

The case (id): Since $u(\xi)$ is increasing so $u_{-} \leq u(\xi) \leq u_{+}$. Assume that $\eta \geq 0$. In case $\eta < 0$ is similar. First integrate (1.1) from η to L, this implies

$$\epsilon v'(L) + \int_{\eta}^L \xi u'(\xi) \, d\xi = -\mu g(u_+) + \mu g(u(\eta)).$$

Since v'(L) > 0 this implies

$$\int_u^L \xi u'(\xi) \, d\xi \le -\mu g(u_+) + \mu g(u(\eta)).$$

If $\zeta \ge \max\{1,\eta\}$, since $v'(\xi) > 0$ on (ζ,L) we find $v'(\xi) \le \xi v'(\xi)$ on (η,L) and

$$v_+ - v(\zeta) = \int_{\zeta}^L v'(\xi)\,d\xi \le \int_{\eta}^L \xi u'(\xi)\,d\xi \le -\mu g(u_+) + \mu g(u(\eta))$$

Thus we have

(2.4)
$$v(\zeta) \ge v_+ + \mu g(u_+) - \mu g(u(\eta)).$$

Since $\alpha < u(\eta) < \beta$, we see for $\eta \geq 1$

$$v(\eta) \ge v_+ + \mu g(u_+) - \mu g(\alpha)) \ge v_+ - g(\alpha).$$

Again if $0 \le \eta < 1$, integrate (1.1) from η to ξ where $\eta < \xi < 1$. Then we have

$$\epsilon v'(\xi) + \int_{\eta}^{\xi} \zeta u'(\zeta) d\zeta = -\mu g(u(\xi)) + \mu g(u(\eta)).$$

Since $\zeta v'(\zeta) > 0$ on (η, ξ) , we find

$$\epsilon v'(\xi) \le -\mu g(u(\xi)) + \mu g(u(\eta)).$$

and integrate it from η to 1 we have

$$\epsilon v(1) - \epsilon v(\eta) \le -\mu \int_{\eta}^{1} (g(u(\xi)) - g(u(\eta))) d\xi.$$

and

$$(2.5) \hspace{1cm} \epsilon v(1) + \mu \int_{\eta}^{1} (g(u(\xi)) - g(u(\eta))) \, d\xi \leq \epsilon v(\eta).$$

We know $\max(v_-, v_+) \geq v(\xi)$ and so v is bounded from above. Since $u(\xi)$ is bounded, (2.4) and (2.5) imply that $v(\xi)$ is bounded from below on [-L, L] independently of μ and L.

The case (iia): Assume v has a local maximum at η_- , $u(\eta_-) < \alpha$. The case $u(\eta_+)$ is similar. Then the local minimum is at η , $\eta_- < \eta$, $\alpha < u(\eta) < \beta$. For u we know $u_- \le u(\xi) \le u_+$. In case there are two cases $\eta \ge 0$ and $\eta < 0$. If $\eta \ge 0$, the same method of the proof of (id) implies the boundedness of v. If $\eta < 0$, then $\eta_- < 0$. We will show $u(\eta_-)$ is bounded from below. We consider first $\eta \le -1$ and then $-1 \le \eta_- \le 0$. In the first case we use (ic) on $-L \le \xi \eta$ to bound $v(\eta_-)$ from above; in the second case we use (id) on $\eta_- \le \xi \le L$ to bound $u(\xi)$ from below. These bounds is independent of μ and L.

The case (iib): If $\eta \geq 0$, the argument of (id) says that $v(\eta)$ is bounded from below. Since $v(\eta)$ is bounded from above by $\max(u_-, u_+)$, $v(\xi)$ is bounded from above and below. Use (ia) on $[-L, \eta]$, u is bounded from below at $\xi_- \in (-L, \eta)$. If $\eta < 0$, then argument of (id) implies

$$v(\zeta) \ge v_- + \mu g(u_-) - \mu g(u(\eta))$$

if $\zeta \leq \min\{-1, \eta\}$. But $\alpha < u(\eta) < \beta$ so $u(\eta)$ is bounded from below if $\eta \leq -1$. If $-1 < \eta \leq 0$, argument (id) can be used again. First integrate (1.1) from η to ξ where $\xi \in (-1, \eta)$. This implies

$$\epsilon v'(\xi) + \int_{\eta}^{\xi} \zeta v'(\zeta) \, d\zeta = \mu g(u(\eta)) - \mu g(u(\xi)).$$

On (ξ, η) , $\zeta v'(\zeta) > 0$ so

(2.6)
$$\epsilon v'(\xi) \ge \mu g(v(\eta)) - \mu g(u(\xi))$$

Now integrate (2.6) from -1 to η ,

(2.7)
$$\epsilon v(\eta) \ge \epsilon v(-1) + \mu \int_{-1}^{\eta} (g(u(\eta)) - g(u(\xi))) d\xi.$$

Now $u(\xi) \le u(\eta)$ on $(-1, \eta)$ since $\alpha < u(\eta) < \beta$,

$$(2.8) g(u(\eta)) - g(u(\xi)) \ge g(\beta) - g(\epsilon \epsilon).$$

Insert (2.8) into (2.7) we have

$$\epsilon v(\eta) \ge \epsilon v(-1) + \mu(\eta + 1)(g(\beta) - g(\alpha))$$

and hence

$$\epsilon v(\eta) \ge \epsilon v(-1) + \mu(g(\beta) - g(\alpha)).$$

Thus $v(\eta)$ is bounded if $\eta \leq 0$. Now use (ia) on $(-L, \eta)$ $u(\xi_{-})$ is bounded from below.

The case ii(c): This case is proved the same method of ii(b).

The case iii(a): Since u is monotone increase, $u_- \leq u(\xi) \leq u_+$ on [-L, L]. As to v, either $\eta_+ \geq 0$ or not. If $\eta \geq 0$, using the method of (ic) $v(\eta_+)$ is bounded from above. If $\eta_+ < 0$, then $\eta_- < 0$ and again using the same method of (ic) $v(\eta_-)$ is bounded from above. thus if $\eta_+ \geq 0$, $u_+ \leq u(\eta_+) \leq M_1$; if $\eta_+ < 0$ then $u_- \leq u(\eta_-) \leq M_2$. This case is reduced to the case (iia).

The case iii(b): If $\eta \geq 0$, then ii(c) implies that for $\eta \geq 1$

(2.9)
$$v(\eta) \ge v_{+} - \mu g(u(\eta)) + \mu g(u_{+})$$

Since $\alpha \le u(\eta) \le \beta$, (2.9) shows that $u(\eta)$ is bounded from below. If $0 \le \eta < 1$, ii(c) shows

$$\epsilon v(\eta) \ge \epsilon v(1) + \mu(g(\beta) - g(\alpha))$$

Thus $v(\eta)$ is bounded from below. If $\eta < 0$, ii(a) show $u(\eta)$ is bounded from below. Thus $v(\eta)$ is bounded from above and below.

The case iii(c): If $\eta \leq 0$, then the proof is same as the method of ii(b). If $\zeta \leq \min\{-1, \eta\}$, then

$$v(\zeta) \ge v_- - \mu(g(u_-) - g(u(\eta))).$$

Since $\alpha \le u(\eta) < \beta$, $v(\eta)$ is bounded from below if $\eta \le -1$. If $-1 < \eta \le 0$ we have

$$\epsilon v(\eta) \geq \epsilon v(-1) + \mu \int_{-1}^{\eta} g(u(\eta)) - g(u(\xi)) \, d\xi$$

where $u(\xi) \leq u(\eta), -1 \leq \xi \eta$. In this case

$$g(u(\eta)) - g(u(\xi)) \ge g(\beta) - g(\alpha)$$

and so

$$\epsilon v(\eta) \ge \epsilon v(-1) + \mu(g(\beta) - g(\alpha))$$

and $u(\eta)$ is bounded from above for $\eta \leq 0$. If $\eta \geq 0$, then $\eta_+ \geq 0$. The same argument of i(c) yields $v(\eta_+)$ is bounded from above. If $\zeta \geq \max\{\eta_+, 1\}$, we find

$$v(\zeta) \le v_+ + \mu g(u_+) - \mu g(u(\eta_+)).$$

Since $\beta \leq u(\eta_+) \leq u_+$, $v(\eta_+)$ is bounded from above if $\eta_+ \geq 1$. If $0 \leq \eta_+ < 1$, we find

$$\epsilon v(\eta_+) \leq \epsilon v(-1) + \mu \int_{\eta_+}^{-1} g(u(\xi)) - g(u(\eta_+)) d\xi.$$

But $\beta \leq u(\xi) \leq u_+$ for $\xi \in [\eta_+, 1]$, $v(\eta_+)$ is bounded from above. Then $\eta \leq 0$, $v(\eta)$ is bounded from above and below; if $\eta > 0$, then $v(\eta_+)$ is bounded from above and below.

The case iii(d): The proof is similar of the proof of iii(c).

THEOREM 2.6. Assume $v_+ < v_-$ and $u_-, u_+ < \alpha$ (or $v_- < v_+$ and $u_-, u_+ > \beta$). Then there is a constant M_2 such that every possible solution of (1.1), $0 \le \mu \le 1$, satisfies the a priori estimate

$$\sup_{|\xi| < L} (|v(\xi)| + |u(\xi)|) \leq M_2$$

where M_2 depends at most on $u_-, u_+, v_-, v_+, \epsilon, f, g$ and is independent of μ and L.

COROLLARY 2.7. If $u_- < \alpha, u_+ > \beta$ (or $u_- > \beta, u_+ < \alpha$), there are solutions of (P_{ϵ}) which satisfy the constants $u'(\xi) > 0(u'(\xi) < 0)$ when $\alpha \leq u(\xi) \leq \beta$. If $v_+ < v_-$ and $u_-, u_+ < \alpha$ (or $v_- < v_+$ and $u_-, u_+ > \beta$) there are solutions of P_{ϵ} which satisfy the constraints $u(\xi) < \alpha(u(\xi) > \beta)$.

3. Existence of Solutions of the Riemann problems assuming $\{(u_{\epsilon},v_{\epsilon})\}$ are uniformly bounded.

In this section we prove the existence of solutions to the Riemann problem assuming the set $\{(u_{\epsilon}, v_{\epsilon})\}$ are uniformly bounded. Proposition 3.1 is a result of Dafermos[1].

PROPOSITION 3.1. For fixed $\epsilon > 0$, let $(u_{\epsilon}, v_{\epsilon})$ denote a solution of P_{ϵ} . Suppose that the set $\{(u_{\epsilon}, v_{\epsilon}) : 0 < \epsilon < 1\}$ is of uniformly bounded variation. Then $\{(u_{\epsilon}, v_{\epsilon})\}$ possesses a subsequence which converges almost everywhere on $(-\infty, \infty)$ of bounded variation. The pair $u(\frac{x}{t})$, $v(\frac{x}{t})$ provided a weak solution of P.

Using Proposition 3.1, we have an existence theorem for the one phase case.

THEOREM 3.2. If $v_- > v_+$ and $u_-, u_+ < \alpha$ (or $u_-, u_+ > \beta$) and Assumption (III) holds. the sequence $\{(u_{\epsilon}(\xi), v_{\epsilon}(\xi)); 0 < \epsilon < 1\}$ as given by Corollary 2.7 possesses a subsequence which converges a.e. on $(-\infty, \infty)$ to function $(u(\xi), v(\xi))$ of bounded variation. The pair $u(\frac{x}{t})$, $v(\frac{x}{t})$ provides a solution to the Riemann problem (P) with $u(\frac{x}{t}) < \alpha$ (or $u(\frac{x}{t}) > \beta$).

LEMMA 3.3. The list for $(u_{\epsilon}(\xi), v_{\epsilon}(\xi))$ given in Lemma 2.4 is valid when $L = \infty$.

LEMMA 3.4. In case 0, i(a, b, c) of Lemma 2.4 $(u_{\epsilon}(\xi), v_{\epsilon}(\xi))$ are uniformly bounded independent of ϵ on $(-\infty, \infty)$. That is, there is a constant N dependent on u_-, u_+, v_-, v_+, f, g and independent of ϵ , $0 < \epsilon < 1$ such that

$$\sup_{|\xi|<\infty}(|u_{\epsilon}(\xi)|+|v_{\epsilon}(\xi)|)\leq N.$$

Proof. Case 0: it is obvious. Case i(a): Since $v_{\epsilon}(\xi)$ is monotone decreasing, $v_{+} \leq v_{\epsilon}(\xi) \leq v_{-}$ on $(-\infty, \infty)$. Denote $\frac{du}{dv}(\xi) = \frac{u'_{\epsilon}(\xi)}{v'_{\epsilon}(\xi)}$. We claim that

$$0 < rac{du}{dv}(\xi) < \left(rac{f'(v_{\epsilon})}{g'(u_{\epsilon})}
ight)^{1/2} \qquad ext{on} \qquad (-\infty, \xi_{-}^{\epsilon}].$$

Indeed, if not, set

$$\xi_1 = \max \left\{ \xi \in (-\infty, \xi_-^{\epsilon}) : \frac{du}{dv}(\xi) \ge \left(\frac{f'(v_{\epsilon})}{g'(u_{\epsilon})} \right)^{1/2} \right\}.$$

Since u_{ϵ} has its minimum at ξ_{-}^{ϵ} , $\frac{du}{dv}(\xi_{1}^{\epsilon})=0$ and so $\xi_{1}<\xi_{1}^{\epsilon}$ must exist. A simple computation shows that

$$\epsilon \frac{d}{d\xi} \left(\frac{du}{dv}(\xi) \right) = -f'(v_{\epsilon}) + g'(u_{\epsilon}) \left(\frac{du}{dv} \right)^2$$

and so $\epsilon \frac{d}{d\xi} (\frac{du}{dv}(\xi)) = 0$ at $\xi = \xi_1$. By the definition of ξ_1 we have

$$0 < rac{du}{dv}(\xi) < \left(rac{f'(v_\epsilon)}{g'(u_\epsilon)}
ight)^{1/2} \qquad ext{on} \qquad (\xi_1, \xi_-^\epsilon)$$

and thus $\frac{d}{d\xi} \frac{du}{dv}(\xi) < 0$ on $(\xi_1, \xi_-^{\epsilon})$ and $\frac{d^2}{d\xi^2} \frac{du}{dv}(\xi_1) < 0$. On the other hand, differentiation of (3.2) shows that

$$\epsilon \frac{d^2}{d\xi^2} \left(\frac{du}{dv}(\xi) \right) = -f''(v_\epsilon) v'_\epsilon(\xi) + g''(u_\epsilon) u'_\epsilon(\xi) \left(\frac{du}{dv} \right)^2 \quad \text{at} \quad \xi = \xi_1.$$

From Assumptions 1 and 2 it follows that

$$\frac{d^2}{d\xi^2}\left(\frac{du}{dv}(\xi)\right)>0\qquad\text{at}\quad \xi=\xi_1.$$

This contradicts the assumption. Thus we see $\frac{d}{d\xi}(\frac{du}{dv}(\xi)) \leq 0$ on $(-\infty, \xi_-^{\epsilon}]$. Hence for any $\xi \in (-\infty, \xi_-^{\epsilon}]$,

$$\frac{du}{dv}(\xi) < \frac{du}{dv}(-\infty) = \left(\frac{f'(v)}{g'(u)}\right)^{1/2}.$$

Now

$$u_{\epsilon}(\xi_{-}^{\epsilon}) - u_{-} = \int_{v_{-}}^{v_{\epsilon}(\xi_{-}^{\epsilon})} \frac{du}{dv} dv$$

$$> -\int_{v_{\epsilon}(\xi_{-}^{\epsilon})}^{v_{-}} \left(\frac{f'(v_{-})}{g'(u_{-})}\right)^{1/2} dv$$

$$= -\left(\frac{f'(v_{-})}{g'(u_{-})}\right)^{1/2} (v_{-} - v_{\epsilon}(\xi_{-}^{\epsilon})),$$

which is bounded from below.

Case i(b): The proof is similar to i(a).

Case i(c): Let η_{-}^{ϵ} be a point such that $v_{\epsilon}(\xi)$ has its maximum value and $u_{\epsilon}(\eta_{-}^{\epsilon}) < \alpha$. Since $u_{\epsilon}(\xi)$ is increasing, $u_{-} \leq u_{\epsilon}(\xi) \leq u_{+}$ on $(-\infty, \infty)$. Denote by $\frac{dv}{du}(\xi) = \frac{v'_{\epsilon}(\xi)}{u'_{\epsilon}(\xi)}$. We claim that $0 < \frac{dv}{du}(\xi) < (\frac{g'(u_{\epsilon})}{f'(v_{\epsilon})})^{1/2}$ on $(-\infty, \eta_{-}^{\epsilon}]$. For if not, set

$$|\xi_1| = \max \left\{ \xi \in (-\infty, \eta_-^\epsilon] \mid rac{dv}{du}(\xi) \geq \left(rac{g'(u_\epsilon)}{f'(v_\epsilon)}
ight)^{1/2}
ight\}.$$

Since $\frac{dv}{du}(\xi) = 0$ at $\xi = \xi_1$, ξ_1 exist such that $\xi_1 < \eta_-^{\epsilon}$. A simple computation say

$$(3.3) \qquad \epsilon \frac{d}{d\xi} \left(\frac{dv}{du}(\xi) \right) = -g'(u_{\epsilon}(\xi)) + f'(v_{\epsilon}(\xi)) \left(\frac{dv}{du} \right)^{1/2}$$

implies $\frac{d}{d\xi}(\frac{dv}{du}(\xi_1)) = 0$. By the definition of ξ_1 , $0 < \frac{dv}{du}(\xi) < \left(\frac{g'(u_{\epsilon})}{f'(v_{\epsilon})}\right)^{1/2}$ on $(\xi, \eta_-^{\epsilon}]$. Thus we have $\frac{d^2}{d\xi^2}(\frac{dv}{du}(\xi)) < 0$ at $\xi = \xi_1$. On the other hand, differentiation of (3.3) gives

$$\epsilon rac{d^2}{d\xi^2} \left(rac{dv}{du}(\xi)
ight) = -g''(u_\epsilon)u'_\epsilon(\xi) + f''(v_\epsilon)v'_\epsilon(\xi) \left(rac{dv}{du}
ight)^2 > 0$$

at $\xi = \xi_1$, a contradiction. Thus we see that $\frac{d}{d\xi}(\frac{dv}{du}(\xi)) < 0$ on $(-\infty, \eta_-^{\epsilon}]$ and hence for any $\xi \in (-\infty, \eta_-^{\epsilon}]$,

$$0<rac{dv}{du}(\xi)<rac{dv}{du}(-\infty)=\left(rac{g'(u_-)}{f'(v_-)}
ight)^{1/2}.$$

Then

$$v_\epsilon(\eta_-^\epsilon) - v_- = \int_{u_-}^{u_-(\eta_-^\epsilon)} rac{dv}{du} \, du \leq \left(rac{g'(u_-)}{f'(v_-)}
ight)^{1/2} (u_\epsilon(\eta_-^\epsilon) - u_-).$$

Since $u_{-} \leq u(\eta_{-}^{\epsilon}) \leq u_{+}$, we see that $u_{\epsilon}(\eta_{-}^{\epsilon})$ is bounded from above, independent of ϵ for $u(\eta_{-}^{\epsilon}) < \alpha$. Analogous computation shows that if $u_{\epsilon}(\eta_{+}^{\epsilon}) > \beta$ we have

$$v_{\epsilon}(\eta_+^{\epsilon}) \leq v_+ + \left(rac{g'(u_+)}{f'(v_+)}
ight)^{1/2} \left(u_{\epsilon}(\eta_-^{\epsilon}) - u_-
ight)$$

and since $u_{-} \leq u(\eta_{-}^{\epsilon}) \leq u_{+}$, a bound on $v_{\epsilon}(\eta_{-}^{\epsilon})$ independent of ϵ is provided.

LEMMA 3.5. Let η^{ϵ} denote the points such that $v_{\epsilon}(\xi)$ takes on its local minimum, $\alpha < u_{\epsilon}(\eta^{\epsilon}) < \beta$. If there is a subsequence $\{\eta^{\epsilon_n}\}$ of $\{\eta^{\epsilon}\}$, $\epsilon_n \to 0+$ such that either (a) $\eta^{\epsilon_n} \geq m > 0$ or $\eta^{\epsilon_n} \leq -m < 0$, m a constant independent of ϵ , or (b) $v_{\epsilon}(\eta^{\epsilon_n})$ is bounded from below independently of ϵ , then for Case i(d) $\{(u_{\epsilon_n}(\xi), v_{\epsilon_n}(\xi))\}$ satisfies (3.1).

Proof. Assume $\eta^{\epsilon_n} \leq m < 0$. Then $v'_{\epsilon_n}(\xi) \leq 0$ on $(-\infty, \eta^{\epsilon_n}]$ and $\xi v'_{\epsilon_n}(\xi) \geq -mv'_{\epsilon_n}(\xi)$ on $(-\infty, \eta^{\epsilon_n}]$. Now

$$\begin{aligned} -m(v_{\epsilon}(\eta^{\epsilon_n}) - v_{-}) &\leq \int_{-\infty} \eta^{\epsilon_n} \xi v'_{\epsilon_n}(\xi) d\xi \\ &= \int_{-\infty} \eta^{\epsilon_n} (g'(u) - \epsilon_n v'') d\xi \\ &= g(u(\eta^{\epsilon})) - g(u_{-}) \end{aligned}$$

hence

$$\frac{1}{m}(g(u_+)-g(u(\eta^\epsilon)))+v_-\leq v(\eta^{\epsilon_n})$$

Since $u_{\epsilon}(\xi)$ is monotone, $u_{-} \leq u_{\epsilon}(\xi) \leq u_{+}$, we see that $v_{\epsilon}(\eta^{\epsilon_{n}})$ is bounded from below independently of ϵ . The case $\eta^{\epsilon_{n}} \geq m > 0$ is similar. Thus in (a) or (b), $v(\eta^{\epsilon_{n}})$ is bounded for below and hence $\{(u_{\epsilon_{n}}(\xi), v_{\epsilon_{n}}(\xi)) \mid 0 < \epsilon < 1\}$ satisfies (3.1).

LEMMA 3.6. In case ii(a,b,c), iii(a,b,c,d) assume $\{\eta^{\epsilon}\}$ satisfies the hypothesis of Lemma 3.4. Then $\{(u_{\epsilon_n}(\xi), v_{\epsilon_n}(\xi)) \mid 0 < \epsilon_n < 1\}$ satisfies (3.1).

From Lemmas 3.4, 3.5, 3.6 and Prop 3.1 we have

THEOREM 3.7. Assume $u_- < \alpha$, $u_+ > \beta$ (or $u_- > \alpha$, $u_+ < \beta$) and let $(u_{\epsilon}(\xi), v_{\epsilon}(\xi))$ denote the solution of P_{ϵ} given by Corollary 2.7. Let Assumptions (II) and (III) and the hypothesis of Lemma 3.4 hold. Then $\{(u_{\epsilon_n}(\xi), v_{\epsilon_n}(\xi))|0 < \epsilon_n < 1\}$ possesses a subsequence which converges almost everywhere on $(-\infty, \infty)$ to a function $(u(\xi), v(\xi))$ of bounded variation. The pair $u(\frac{x}{t})$, $v(\frac{x}{t})$ provides a solution of the Riemann problem.

REMARK 3.8. If the hypothesis of Lemma 3.5 does *not* hold then $\eta^{\epsilon} \to 0$, $v_{\epsilon}(\eta^{\epsilon}) \to -\infty$ as $\epsilon \to 0+$.

4. Existence of solutions to the Riemann problem: the case when $v_{\epsilon}(\eta^{\epsilon}) \to -\infty$ as $\eta^{\epsilon} \to 0$.

In this section we will prove the existence of solution to the Riemann problem in case when $v(\eta^{\epsilon}) \to -\infty$ as $\eta^{\epsilon} \to 0$. This situation was mentioned in Remark 3.8. First we must show that $u_{\epsilon}(\xi)$, $v_{\epsilon}(\xi)$ has a pointwise a.e. limit.

LEMMA 4.1. Let $(u_{\epsilon}(\xi), v_{\epsilon}(\xi))$ be a solution of P_{ϵ} as given by Corollary 2.7 when $u_{-} < \alpha, u_{+} > \beta$. Let $\bar{v} = \min(v_{-}, v_{+})$. Then if $v_{\epsilon}(\xi)$ has a local minimum at η^{ϵ} with $\alpha < u_{\epsilon}(\eta^{\epsilon}) < \beta$, we have the estimate

$$(4.1) N_0(s_1 - s_2) \ge \int_{s_1}^{s_2} v_{\epsilon}(\xi) d\xi \ge \bar{v}(s_2 - s_1) + (g(\beta) - g(\alpha))$$

$$(4.2) \bar{v} + \frac{g(\beta) - g(\alpha)}{|\xi - \eta^{\epsilon}|} \le v_{\epsilon}(\xi) \le N_0, -\infty < \xi < \infty$$

Here $(s_1, s_2) \subset (-\infty, \infty)$ and N_0 is a constant independent of ϵ .

Proof. The bound from above on $v_{\epsilon}(\xi)$ in (4.1). (4.2) follows from the proof of Lemma 3.3, 3.4, and 3.5. Thus we now proceed to get the bounds from below. i(d) Fix $l < \infty$ sufficiently large so that $u_{\epsilon}(-l) < \alpha, u_{\epsilon}(l) > \beta$. Assume for the moment $v_{\epsilon}(-l) \leq v_{\epsilon}(l)$, and let $\theta > -l$ be such that $v_{\epsilon}(\theta) = v_{\epsilon}(-l)$. Then we have $v_{\epsilon}(\xi) \leq v_{\epsilon}(-l)$ on $(-l, \theta)$, $v_{\epsilon}(\xi) \geq v_{\epsilon}(-l)$ on $\theta < \xi < l$ when $-l < \eta^{\epsilon} < \theta < l$. From (P_{ϵ}) we know that

$$(4.3) \qquad \epsilon (v_{\epsilon}(\xi) - v_{\epsilon}(-l))'' + \xi (u_{\epsilon}(\xi) - u_{\epsilon}(-l))' = -g(u_{\epsilon})'$$

and integration of (4.3) from -l to θ shows that

$$\epsilon(v'_{\epsilon}(\theta) - v'_{\epsilon}(-l)) - \int_{-l}^{\theta} (v_{\epsilon}(\xi) - v_{\epsilon}(-l)) d\xi = -g(u_{\epsilon}(\theta)) + g(u_{\epsilon}(-l))$$

But $v'(\theta) > 0$, v'(-l) < 0 and hence

$$(4.4) \qquad \int_{-l}^{\theta} (v_{\epsilon}(-l) - v_{\epsilon}(\xi)) \, d\xi \le g(u_{\epsilon}(-l)) - g(u_{\epsilon}(\theta))$$

Since $u_{\epsilon}(\theta) > u_{\epsilon}(-l)$, the right-hand side of (4.4) is bounded from above by $g(\alpha) - g(\beta)$. Then for any $(s_1, s_2) \subset (-l, \theta)$ we have

(4.5)
$$\int_{s_1}^{s_2} (v_{\epsilon}(-l) - v_{\epsilon}(\xi)) d\xi \le g(\alpha) - g(\beta)$$

and hence

$$v_{\epsilon}(-l)(s_2-s_1)+(g(eta)-g(lpha))\leq \int_{s_{\epsilon}}^{s_{\epsilon}}v_{\epsilon}(\xi))\,d\xi.$$

Letting $l \to -\infty$ we have

$$(4.6) \qquad \bar{v}(s_2 - s_1) + (g(\beta) - g(\alpha)) \leq \int_{s_1}^{s_2} v_{\epsilon}(\xi) d\xi.$$

If $(s_1, s_2) \subset (\theta, l)$, then $v_{\epsilon}(\xi) \geq v_{\epsilon}(-l)$ and we see

$$(4.7) \qquad \qquad \bar{v}(s_2-s_1) \leq \int_{s_1}^{s_2} v_\epsilon(\xi) \, d\xi.$$

Finally if $-l < s_1 < \theta$, $\theta < s_2 < l$, we write

$$\int_{s_1}^{s_2} v_{\epsilon}(\xi) d\xi = \int_{s_1}^{\theta} v_{\epsilon}(\xi) d\xi + \int_{\theta}^{s_2} v_{\epsilon}(\xi) d\xi$$

and use (4.6) and (4.7) to obtain (4.1) again. To get the bound from below in (4.2), we observe that when $\eta^{\epsilon} < \xi < \theta$

$$(4.8) \qquad (v_{\epsilon}(-l) - v_{\epsilon}(\xi))(\xi - \eta^{\epsilon}) \leq \int_{-l}^{\theta} (v_{\epsilon}(-l) - v_{\epsilon}(\xi)) \, d\xi.$$

From (4.8) and (4.5) we see that

$$(v_{\epsilon}(-l) - v_{\epsilon}(\xi))(\xi - \eta^{\epsilon}) \le g(\alpha) - g(\beta)$$

Now letting $l \to \infty$ we obtain (4.2). If $-l < \xi < \eta^{\epsilon}$ we again (4.2) and if $\theta \le \xi \le l$, we also obtain (4.2). The proof for $v_{\epsilon}(-l) > v_{\epsilon}(l)$ is analogous.

LEMMA 4.2. Let $\{(u_{\epsilon}(\xi), v_{\epsilon}(\xi))|0 < \epsilon < 1\}$ be a solution of (P_{ϵ}) as given by Corollary 2.7 when $u_{-} < \alpha, u_{+} > \beta$. Then for any given compact subset S of $(-\infty, 0)$ or $(0, \infty)$ there exists constants K and ϵ_{0} (depending at most on $u_{-}, u_{+}, v_{-}, v_{+}, f, g, S$) such that

$$\sup_{\xi \in S} (|u_{\epsilon}(\xi)| + |v_{\epsilon}(\xi)|) \le K \quad \text{for} \quad 0 < \epsilon < \epsilon_0.$$

Proof. Let $S_+ \subset [a,b], S_- \subset [-b,-a], 0 < a < b < \infty$. Then for ϵ sufficiently small $|\eta^{\epsilon}| \leq \frac{a}{2}$ and (4.2) yield $\sup_{\xi \in S_{\pm}} |v_{\epsilon}(\xi)| \leq K$. We now need to get a similar estimate on $u_{\epsilon}(\xi)$. In case i(a), i(b) of Lemma 2.4, the proof of Lemma 3.3, 3.4, 3.5 yields a uniform in ϵ and ξ , $(-\infty < \xi < \infty)$, bound on $u_{\epsilon}(\xi)$ where as in case 0, i(c), ii(a), iii(a), $u_{\epsilon}(\xi)$ is monotone so that trivially $u_{-} \leq u_{\epsilon}(\xi) \leq u_{+}$ for $\xi \in (-\infty, \infty)$. Hence the only cases left to search are ii(b),(c), iii(b),(c),(d).

Case ii(b). On S_+ , $u_{\epsilon}(\xi)$ is uniformly bounded in ϵ , ξ and so we need only verify S_- . Let $\eta \in S_-$, $\zeta \in S_+$. For ϵ sufficiently small $\eta < \eta^{\epsilon} < \zeta$. Integrate (P_{ϵ}) from η to ζ to obtain

$$(4.9) \hspace{1cm} \epsilon v_{\epsilon}'(\zeta) - \epsilon v_{1}'(\eta) + \int_{\eta}^{\zeta} \xi v_{\epsilon}'(\xi) \, d\xi = g(u_{\epsilon}(\eta)) - g(u_{\epsilon}(\zeta)).$$

Since $v'_{\epsilon}(\zeta) > 0$ and $v'_{\epsilon}(\eta) < 0$, (4.9) implies

$$\int_{\eta}^{\zeta} \xi v_{\epsilon}'(\xi) \, d\xi \leq g(u_{\epsilon}(\eta)) - g(u_{\epsilon}(\zeta)).$$

and integration by parts yields

$$(4.10) \qquad \zeta v_{\epsilon}(\zeta) - \eta v_{\epsilon}(\eta) - \int_{\eta}^{\zeta} \xi v_{\epsilon}'(\xi) \, d\xi \leq g(u_{\epsilon}(\eta)) - g(u_{\epsilon}(\zeta)).$$

Now use (4.1), (4.2) to bound the right-hand side of (4.10) from below

$$\zeta \bar{u} + \frac{\zeta(g(\beta) - g(\alpha))}{|\zeta - \eta^\epsilon|} - \eta N_0 - N_0(\zeta - \eta) \leq g(u_\epsilon(\eta)) - g(u_\epsilon(\zeta)).$$

Since $\alpha \leq u_{\epsilon}(\zeta) \leq u_{+}$, we see $g(u_{\epsilon}(\zeta)) \leq g(\beta)$. Hence this fact combined with $|\zeta - \eta^{\epsilon}| \geq \frac{a}{2}$ yields

$$(4.11) -b|\bar{u}| + \frac{2b(g(\beta) - g(\alpha))}{a} - bN_0 + g(\beta) \le g(u_{\epsilon}(\eta)).$$

Since $u_{\epsilon}(\eta) \leq \beta$, (4.11) and the fact that $g(u) \to -\infty$ as $u \to -\infty$ show $u_{\epsilon}(\eta)$ uniformly bounded in ϵ , η for ϵ sufficiently small, $\eta \in S_{-}$.

Case ii(c), iii(b). Proceed as for Case ii(b).

Case iii(c). From the mean value theorem there is $\zeta \in [1,2]$ such that $v'_{\epsilon}(\zeta) = v_{\epsilon}(2) - v_{\epsilon}(1)$ and so by (4.2) $\epsilon v'_{\epsilon}(\zeta)$ is uniformly bounded. Thus for this ζ and arbitrary $\eta \in S_{-}$ we again derive (4.9) and since $v'_{\epsilon}(\eta) < 0$ we find that

$$\epsilon v_{\epsilon}'(\zeta) - \int_{\eta}^{\zeta} v_{\epsilon}(\xi) d\xi \le g(u_{\epsilon}(\eta)) - g(u_{\epsilon}(\zeta))$$

$$\le g(u_{\epsilon}(\eta)) - g(\alpha).$$

The same argument as given above for case iii(b) shows $u_{\epsilon}(\eta)$ is uniformly bounded in ϵ , η for ϵ sufficiently small, $\eta \in S_{-}$.

LEMMA 4.3. Let $\{(u_{\epsilon}(\xi), v_{\epsilon}(\xi))|0 < \epsilon < 1\}$ be a solution of (P_{ϵ}) as given by Corollary 2.7 when $u_{-} < \alpha$, $u_{+} > \beta$. Let ξ_{-}^{ϵ} , ξ_{+}^{ϵ} denote the points of local minima for $v_{\epsilon}(\xi)$ (when they exist). Define $\bar{u} = \min(u_{-}, u_{+})$,

$$\begin{split} B_{\epsilon}^{-} &= u_{-} - \left(\frac{f'(v_{-})}{g'(u_{-})}\right)^{1/2} v_{-} + \left(\frac{f'(v_{-})}{g'(u_{-})}\right)^{1/2} \left(\bar{v} + \frac{g(\beta) - g(\alpha)}{|\xi_{-}^{\epsilon} - \eta^{\epsilon}|}\right) \\ B_{\epsilon}^{+} &= u_{+} - \left(\frac{f'(v_{+})}{g'(u_{+})}\right)^{1/2} v_{+} - \left(\frac{f'(v_{+})}{g'(u_{+})}\right)^{1/2} \left(\bar{v} + \frac{g(\beta) - g(\alpha)}{|\xi_{+}^{\epsilon} - \eta^{\epsilon}|}\right). \end{split}$$

Then in the case of Lemma 2.4(with $\mu=1, l=\infty$) we have the following estimates:

In cases 0, i(a),(b),(c), (3.1) holds.

In the remaining cases $v_{\epsilon}(\xi)$ satisfies (4.2) and $u_{\epsilon}(\xi)$ satisfies

 $u_{-} \leq u_{\epsilon}(\xi) \leq u_{+}$ in case i(d), ii(a), iii(a).

 $B_{\epsilon}^- \leq u_{\epsilon}(\xi) \leq u_+$ in case ii(b), iii(c).

 $u_{-} \leq u_{\epsilon}(\xi) \leq B_{\epsilon}^{+}$ in case ii(c). iii(d).

 $B_{\epsilon}^{-} \leq u_{\epsilon}(\xi) \leq B_{\epsilon}^{+}$ in case iii(b).

LEMMA 4.4. Let $\{(u_{\epsilon}(\xi), v_{\epsilon}(\xi))|0 < \epsilon < 1\}$ be a solution of (P_{ϵ}) as given by Corollary 2.7 when $u_{-} < \alpha$, $u_{+} > \beta$. Then on any semi-infinite interval $(-\infty, -a]$ or $[a, \infty)$, a > 0 there exist constants k and ϵ_{0} (depending at most on $u_{-}, u_{+}, v_{-}, v_{+}, f, g, a$) such that

$$(4.12) \qquad \begin{aligned} \sup_{(-\infty,a]} (|u_{\epsilon}(\xi)| + |v_{\epsilon}(\xi)|) &\leq k, \\ \sup_{[a,\infty)} (|u_{\epsilon}(\xi)| + |v_{\epsilon}(\xi)|) &\leq k, \end{aligned}$$

for $0 < \epsilon < \epsilon_0$.

LEMMA 4.5. Let $\{(u_{\epsilon}(\xi), v_{\epsilon}(\xi))|0 < \epsilon < 1\}$ be a solution of (P_{ϵ}) as given by Corollary 2.7 when $u_{-} < \alpha$, $u_{+} > \beta$. Then the sequence $(u_{\epsilon}(\xi), v_{\epsilon}(\xi))$ possesses a subsequence which converges almost everywhere on $(-\infty, \infty)$ to functions $(u(\xi), v(\xi))$. On compact subsets of $(-\infty, 0) \cup (0, \infty)$ the convergent subsequence is bounded uniformly in ϵ with uniformly bounded total variation. The limit functions have bounded variation on compact subsets of $(-\infty, 0) \cup (0, \infty)$.

Lemma 4.6. The functions $u(\xi)$, $v(\xi)$ defined by Lemma 4.5 satisfy the boundary conditions

$$u(\pm\infty) = u_{\pm}, v(\pm\infty) = v_{\pm}.$$

Proof. Let $Y_{\epsilon}(\xi) = (u_{\epsilon}(\xi), v_{\epsilon}(\xi))^{T}$, $F(Y_{\epsilon}) = (-f(v_{\epsilon}), -g(u_{\epsilon}))^{T}$, T transpose. Then

$$\frac{d}{d\xi} \left(\exp\left(\frac{\xi^2}{2\epsilon}\right) Y_{\epsilon}'(\xi) \right) = \frac{1}{\epsilon} \left(\nabla F(Y_{\epsilon}) Y_{\epsilon}'(\xi) \exp\left(\frac{\xi^2}{2\epsilon}\right) \right)$$

and integrating from 1 to ξ , $\xi > 1$, we find

$$\exp\left(\frac{\xi^2}{2\epsilon}\right)Y_{\epsilon}'(\xi) - \exp\left(\frac{1}{2\epsilon}\right)Y_{\epsilon}'(1) = \frac{1}{\epsilon}\int_1^{\xi} \nabla(Y_{\epsilon})Y_{\epsilon}'(\zeta) \exp\left(\frac{\zeta^2}{2\epsilon}\right) d\zeta$$

Since by Lemma 4.4, $|Y_{\epsilon}(\xi)|$ is uniformly bounded by k on $[1, \infty)$, we know $|\nabla F(Y_{\epsilon})| \leq R$ for some constant R > 0. Thus

$$\left|\exp\left(\frac{\xi^2}{2\epsilon}\right)Y_\epsilon'(\xi)\right| \leq \left|\exp\left(\frac{1}{2\epsilon}\right)Y_\epsilon'(1)\right| + \frac{R}{\epsilon}\int_1^\xi |Y_\epsilon'(\zeta)| \exp\left(\frac{\zeta^2}{2\epsilon}\right) \, d\zeta$$

and using Grownwall's inequality we have

$$\left|\exp\left(\frac{\xi^2}{2\epsilon}\right)Y_\epsilon'(\xi)\right| \leq \left|\exp\left(\frac{1}{2\epsilon}\right)Y_\epsilon'(1)\right|\exp\left(\frac{R}{\epsilon}\right)(\xi-1)$$

and hence

$$(4.13) \qquad |Y'_{\epsilon}(\xi)| \leq |Y'_{\epsilon}(1)| \exp\left(\frac{2R\xi - 2R + 1 - \xi^2}{2\epsilon}\right).$$

Note that

$$\exp\left(\frac{\xi^{2}}{2\epsilon}\right) Y_{\epsilon}'(\xi)
= z_{1} + \frac{1}{\epsilon} \int_{1}^{\xi} F(Y_{\epsilon}(\zeta))' \exp\left(\frac{\zeta^{2}}{2\epsilon}\right) d\zeta
= z_{2} + \frac{1}{\epsilon} F(Y_{\epsilon}(\zeta)) \exp\left(\frac{\zeta^{2}}{2\epsilon}\right) - \frac{1}{\epsilon^{2}} \int_{1}^{\xi} \zeta F(Y_{\epsilon}(\zeta)) \exp\left(\frac{\zeta^{2}}{2\epsilon}\right) d\zeta$$

and hence (4.14)

$$Y'_{\epsilon}(\xi) = z_2 \exp\left(-\frac{\xi^2}{2\epsilon}\right) + \frac{1}{\epsilon}F(Y_{\epsilon}(\xi)) - \frac{1}{\epsilon^2} \int_1^{\xi} \zeta F(Y_{\epsilon}(\zeta)) \exp\left(\frac{\zeta^2}{2\epsilon}\right) d\zeta.$$

Here

$$(4.15)$$

$$z_2 \int_1^2 \exp\left(-\frac{\xi^2}{2\epsilon}\right) d\xi$$

$$= Y_{\epsilon}(2) - Y_{\epsilon}(1) - \frac{1}{\epsilon} \int_1^2 F(Y_{\epsilon}(\xi) d\xi + \frac{1}{\epsilon^2} \int_1^2 \zeta F(Y_{\epsilon}(\zeta)) \exp\left(\frac{\zeta^2}{2\epsilon}\right) d\zeta.$$

Thus from (4.14) we have

$$(4.16) |Y'_{\epsilon}(1)| \le |z_2| \exp\left(-\frac{1}{2\epsilon}\right) + \frac{1}{\epsilon} |F(Y_{\epsilon}(1))|$$

$$\le |z_2| \exp\left(-\frac{1}{2\epsilon}\right) + \frac{\text{const}}{\epsilon}$$

From (4.15) and the inequality

$$\int_{1}^{2} \exp\left(-\frac{\xi^{2}}{2\epsilon}\right) d\xi \ge \exp\left(-\frac{2}{\epsilon}\right)$$

we see that

$$|z_2| \le \left(\mathrm{const} + \frac{\mathrm{const}}{\epsilon} + \frac{\mathrm{const}}{\epsilon^2} \exp\left(\frac{2}{\epsilon}\right) \right) \exp\left(\frac{2}{\epsilon}\right)$$

and hence by (4.16) that

$$(4.17) |Y_{\epsilon}'(1)| \leq \frac{\text{const}}{\epsilon^2} \exp\left(\frac{7}{2\epsilon}\right).$$

Now insert (4.17) into (4.13) to find that

$$(4.18) |Y_{\epsilon}'(\xi)| \leq \frac{\operatorname{const}}{\epsilon^2} \left(\frac{2R\xi - 2R + 8 - \xi^2}{2\epsilon} \right).$$

Thus for $\xi > R + (R^2 - 2R + 8)^{1/2}$ (4.18) shows that $|Y'_{\epsilon}(\xi)| \to 0$ as $\epsilon \to 0+$. Recalling that $(u_{\epsilon}(\xi), v_{\epsilon}(\xi))$ converges pointwise to $(u(\xi), v(\xi))$, we see $(u(\xi), v(\xi))$ must be constants for $\xi > R + (R^2 - 2R + 8)^{1/2}$. Since for any $\epsilon > 0$ $\lim_{\xi \to \infty} u_{\epsilon}(\xi) = u_+$, $\lim_{\xi \to \infty} v_{\epsilon}(\xi) = v_+$, these constants must be u_+ and v_+ . A similar argument works for $\xi = -\infty$.

COROLLARY 4.7. The functions $u(\xi)$, $v(\xi)$ defined by Lemma 4.5 satisfy the conditions

$$(u(\xi),v(\xi)) = egin{cases} (u_{-},v_{-}), & & \xi < -M, \ (u_{-},v_{+}), & & \xi > M \end{cases}$$

for some positive constant M.

LEMMA 4.8. The functions $(u(\xi), v(\xi))$ defined by Lemma 4.5 satisfy

(4.19)
$$-\xi u' - f(v)' = 0, -\xi v' - g(u)' = 0$$

in the sense of distributions at any $\xi \neq 0$.

At any point $\xi_0 \neq 0$ of discontinuity of $(u(\xi), v(\xi))$ the Rankine-Hugoniot jump conditions are satisfied:

(4.20)
$$-\xi_0(u(\xi_0+) - u(\xi_0-)) - (f(v(\xi_0+)) - f(v(\xi_0-))) = 0, -\xi_0(v(\xi_0+) - v(\xi_0-)) - (g(u(\xi_0+)) - g(u(\xi_0-))) = 0.$$

Proof. By Lemma 4.5 there exists a sequence of solutions of (P_{ϵ}) which converges bounded almost everywhere on any compact subset of $(0,\infty) \cup (-\infty,0)$. hence if we multiply (P_{ϵ}) by C^{∞} test functions with compact support excluding $\xi = 0$, integrate by parts, pass to the limits as the relevant sequence of ϵ 's goes to zero, and use the Lebesgue dominated convergence theorem, we obtain (4.19). Equation (4.19) follows from (4.18) in the standard manner.

DEFINITION 4.9. u, v is a distributional solution of (4.19) at $\xi = 0$ if

(4.21)
$$\lim_{\xi \to 0} f(v(\xi)) = \lim_{\xi \to 0+} f(v(\xi)),$$
$$\lim_{\xi \to 0} g(u(\xi)) = \lim_{\xi \to 0+} g(u(\xi))$$

Lemma 4.10. Assume that

$$(4.22) \frac{1}{|u|} \left| \int_{\beta}^{u} g(\xi) \, d\xi \right| \to \infty \text{ as } |u| \to \infty.$$

Then $\{u_{\epsilon}(\xi)\}\$ has absolutely equicontinuous integrals and the functions $u(\xi)$, $v(\xi)$ defined by Lemma 4.5 are locally integrable in $(-\infty, \infty)$.

Proof. From (4.1), $|v_{\epsilon}(\xi)|$ is locally integrable. Since a subsequence of $v_{\epsilon}(\xi)$ converges to $v(\xi)$, Fatou's theorem implies $v(\xi)$ is locally integrable. To show locally integrability of $u(\xi)$, we will show at first $\{u_{\epsilon}(\xi)\}$ have absolutely equicontinuous integral. In case i(d), ii(a), iii(a) of Lemma 2.4 there is nothing to prove since $u_{\epsilon}(\xi)$ is monotone and hence uniformly bounded in ξ , ϵ . Theorem 3.8 implies that Case 0, i(a, b, c) were covered. We need only prove Case ii(b, c), iii(b, c, d). Consider ii(c). Given any interval (l_1, l_2) we either

- (I) $(l_1, l_2) = (l_1, t_{\epsilon}] \cup [t_{\epsilon}, l_2)$ where $(l_1, t_{\epsilon}]$ if $v_{-} \leq u_{\epsilon}(\xi) \leq \beta$ and $[t_{\epsilon}, l_2)$ if $\beta \leq u_{\epsilon}, u_{\epsilon}(t_{\epsilon}) = \beta$,
 - (II) $u_{\epsilon} \geq \beta$ on (l_1, l_2) , or
 - (III) $u_{\epsilon}(\xi) \leq \beta$ on (l_1, l_2) .

First we consider (I). Multiply $(P_{\epsilon})_1$ by g(u) and $(P_{\epsilon})_2$ by f(v) and add. If we define $\eta(u,v) = F(v) + \int_{\beta}^{u} g(\xi) \, d\xi$, F'(v) = f(v) and $\eta_{\epsilon}(\xi) = \eta(u_{\epsilon}(\xi), v_{\epsilon}(\xi))$ we see that

$$(4.23) \quad \epsilon \eta_{\epsilon}''(\xi) + \xi \eta_{\epsilon}'(\xi) + (f(v)g(u))' - \epsilon (u')^2 g'(u) - \epsilon f'(v)(v')^2 = 0.$$

Let $\bar{\eta} = \max\{\eta(u_-, v_-), \eta(u_+, v_+)\}$. On any subinterval $(s_1, s_2) \subset [t_{\epsilon}, l_2)$ set

$$\zeta_{\epsilon} = \begin{cases} \sup\{\xi \in [t_{\epsilon}, s_1) | \eta_{\epsilon}(\xi) \leq \bar{\eta}\} \text{ if } \eta_{\epsilon}(s_1) > \bar{\eta}, \\ \inf\{\xi \in (s_1, s_2) | \eta_{\epsilon}(\xi) \geq \bar{\eta}\} \text{ if } \eta_{\epsilon}(s_1) \leq \bar{\eta} \end{cases}$$

and

$$\theta_{\epsilon} = \begin{cases} \inf\{\xi \in (s_2, l_2) | \eta_{\epsilon}(\xi) \leq \bar{\eta}\} \text{ if } \eta_{\epsilon}(s_2) > \bar{\eta}, \\ \sup\{\xi \in (s_1, s_2) | \eta_{\epsilon}(\xi) \geq \bar{\eta}\} \text{ if } \eta_{\epsilon}(s_2) \leq \bar{\eta}. \end{cases}$$

Observe that $\eta'_{\epsilon}(\zeta_{\epsilon}) \geq 0$, $\eta'_{\epsilon}(\theta_{\epsilon}) \leq 0$ and

$$(4.24) \qquad \int_{s_1}^{s_2} (\eta_{\epsilon}(\xi) - \bar{\eta}) \, d\xi \leq \int_{\zeta_{\epsilon}}^{\theta_{\epsilon}} (\eta_{\epsilon}(\xi) - \bar{\eta}) \, d\xi = -\int_{\zeta_{\epsilon}}^{\theta_{\epsilon}} \xi \eta_{\epsilon}'(\xi) \, d\xi.$$

Thus if we integrate (4.23) over $(\zeta_{\epsilon}, \theta_{\epsilon})$ and use (4.24) we see that

$$(4.25) \qquad \int_{s_1}^{s_2} (\eta_{\epsilon}(\xi) - \bar{\eta}) \, d\xi + \epsilon \int_{\zeta_{\epsilon}}^{\theta_{\epsilon}} ((u'_{\epsilon})^2 g'(u_{\epsilon}) + f'(v_{\epsilon})(v'_{\epsilon})^2) \, d\xi \\ \leq f(v_{\epsilon}(\theta_{\epsilon})) - f(v_{\epsilon}(\zeta_{\epsilon})) g(u_{\epsilon}(\zeta_{\epsilon}).$$

By the definitions of θ_{ϵ} , ζ_{ϵ} , $\eta(u_{\epsilon}(\theta_{\epsilon}), v_{\epsilon}(\theta_{\epsilon}))$ and $\eta(u_{\epsilon}(\zeta_{\epsilon}), v_{\epsilon}(\zeta_{\epsilon}))$ are uniformly bounded from above and since $u_{\epsilon}(\theta_{\epsilon}) \geq \beta$, η is convex at these values. This implies $u_{\epsilon}(\theta_{\epsilon})$, $v_{\epsilon}(\theta_{\epsilon})$, $u_{\epsilon}(\zeta_{\epsilon})$, $v_{\epsilon}(\zeta_{\epsilon})$ are uniformly bounded in ϵ . Hence the right-hand side of (4.25) is bounded by a constant $K = K(f, g, u_{\epsilon}, v_{\epsilon})$ independent of ϵ . Now since $\frac{1}{u} \int_{\beta}^{u} g(s) ds \to \infty$ as $u \to \infty$, for any $\delta > 0$ there is $u_{0} \geq \beta$ such that

$$\frac{u}{\eta(u,v)} < \frac{\delta}{2K}$$
 for all $u \ge u_0$.

Set $l(\delta) = \frac{\delta}{(|u_-| + \beta + u_0 + \frac{\delta}{2K})}$. Fix $s_1, s_2, 0 < s_2 - s_1 < l(\delta)$. Note that for any $s_1, s_2, s_1 \in (l_1, t_{\epsilon}], s_2 \in (t_{\epsilon}, l_2)$,

$$\begin{split} \int_{s_1}^{s_2} u_{\epsilon}(\xi) \, d\xi &= \int_{s_1}^{t_{\epsilon}} u_{\epsilon}(\xi) \, d\xi + \int_{t_{\epsilon}}^{s_2} u_{\epsilon}(\xi) \, d\xi \\ &\leq \beta(t_{\epsilon} - s_1) + \int_{t_{\epsilon}}^{s_2} (u_0 + \frac{\delta}{2K} \eta(u_{\epsilon}(\xi), v_{\epsilon}(\xi))) \, d\xi \\ &\leq \beta(t_{\epsilon} - s_1) + (s_2 - t_{\epsilon}) u_0 + \frac{\delta}{2K} \int_{t}^{s_2} \eta(u_{\epsilon}(\xi), v_{\epsilon}(\xi))) \, d\xi. \end{split}$$

Using (4.24) with $s_2 = s_2, s_1 = t_{\epsilon}$,

$$\begin{split} \int_{s_1}^{s_2} u_{\epsilon}(\xi) \, d\xi &\leq \beta (t_{\epsilon} - s_1) + (s_2 - t_{\epsilon}) u_0 + \frac{\delta}{2K} (K + \bar{\eta}(s_2 - s_1)) \\ &\leq (s_2 - s_1) (\beta + u_0 + \frac{\bar{\eta}\delta}{2K}) + \frac{\delta}{2} \\ &\leq \delta. \end{split}$$

If $s_1, s_2 \geq t_{\epsilon}$,

$$\int_{s_1}^{s_2} u_\epsilon(\xi)\,d\xi \leq \int_{s_1}^{s_2} (u_0\,+\,\frac{\delta}{2K}\eta(u_\epsilon(\xi),v_\epsilon(\xi)))\,d\xi \leq \delta$$

and if $s_1, s_2 \leq t_{\epsilon}$

$$\int_{s_1}^{s_2} u_{\epsilon}(\xi) d\xi \le \beta(s_2 - s_1) \le \delta.$$

Also since $u_{\epsilon}(\xi) \geq u_{-}$ we have

$$\int_{s_1}^{s_2} u_{\epsilon}(\xi) \, d\xi \geq u_{-}(s_2-s_1) \geq -|u_{-}|(s_2-s_1) \geq -\delta.$$

Thus we proved that

$$\left| \int_{s_1}^{s_2} u_{\epsilon}(\xi) \, d\xi \right| \leq \delta \text{ if } 0 < s_2 - s_1 < l(\delta).$$

Now using Vitali's theorem, u is locally integrable.

Lemma 4.11. The four limits which appear in (4.21) always exist and (4.21) is always satisfied. Equation (4.21) is satisfied if the sequence $\{\int_0^{\xi} v_{\epsilon}(\xi) d\xi\}$ is absolutely equicontinuous. Furthermore in general

$$g(\beta) - g(\alpha) \le \lim_{\theta \to 0+} g(u(\theta)) - \lim_{\zeta \to 0-} g(u(\zeta)) \le 0.$$

Proof. Let $\{(u_{\epsilon}(\xi), v_{\epsilon}(\xi))\}$ denote the convergent subsequence of Lemma 4.5. Note that since $u_{\epsilon}(\xi), v_{\epsilon}(\xi)$ are piecewise monotone in $(-\infty, \infty)$, the limit functions $u(\xi), v(\xi)$ are also monotone and hence the set of points of continuity of u, v is dense in any finite ξ -interval. Let ζ and θ be points of continuity of $u(\xi), v(\xi), \zeta < 0 < \theta$. From the mean value theorem for every small $\epsilon > 0$ we can find $\zeta_{\epsilon} \in [\zeta - \epsilon^{1/2}, \zeta]$, $\theta_{\epsilon} \in [\theta, \theta + \epsilon^{1/2}]$ such that

$$\epsilon^{1/2}v'_{\epsilon}(\zeta_{\epsilon}) = v_{\epsilon}(\zeta) - v_{\epsilon}(\zeta - \epsilon^{1/2}), \quad \epsilon^{1/2}u'_{\epsilon}(\zeta_{\epsilon}) = u_{\epsilon}(\zeta) - u_{\epsilon}(\zeta - \epsilon^{1/2}),$$

$$\epsilon^{1/2}v'_{\epsilon}(\theta_{\epsilon}) = v_{\epsilon}(\theta) - v_{\epsilon}(\theta - \epsilon^{1/2}), \quad \epsilon^{1/2}u'_{\epsilon}(\theta_{\epsilon}) = u_{\epsilon}(\theta) - u_{\epsilon}(\theta - \epsilon^{1/2}).$$

By Lemma 2.4 there are constants K_{θ}, K_{ζ} such that

$$(4.26) |\epsilon^{1/2}v'_{\epsilon}(\zeta_{\epsilon})| \leq K_{\zeta}, \quad |\epsilon^{1/2}u'_{\epsilon}(\zeta_{\epsilon})| \leq K_{\zeta}, |\epsilon^{1/2}v'_{\epsilon}(\theta_{\epsilon})| \leq K_{\theta}, \quad |\epsilon^{1/2}u'_{\epsilon}(\theta_{\epsilon})| \leq K_{\theta}.$$

for ϵ sufficiently small. Now we integrate (P_{ϵ}) on $(\zeta_{\epsilon}, \theta_{\epsilon})$ obtaining

$$(4.27) \begin{aligned} \epsilon u_{\epsilon}'(\theta_{\epsilon}) - \epsilon u_{\epsilon}'(\zeta_{\epsilon}) + \theta_{\epsilon} u_{\epsilon}(\theta_{\epsilon}) - \zeta_{\epsilon} u_{\epsilon}(\zeta_{\epsilon}) - \int_{\zeta_{\epsilon}}^{\theta_{\epsilon}} u_{\epsilon}(\xi) \, d\xi \\ = f(v(\zeta_{\epsilon})) - f(v(\theta_{\epsilon})), \\ \epsilon v_{\epsilon}'(\theta_{\epsilon}) - \epsilon v_{\epsilon}'(\zeta_{\epsilon}) + \theta_{\epsilon} v_{\epsilon}(\theta_{\epsilon}) - \zeta_{\epsilon} v_{\epsilon}(\zeta_{\epsilon}) - \int_{\zeta_{\epsilon}}^{\theta_{\epsilon}} v_{\epsilon}(\xi) \, d\xi \\ = g(u(\zeta_{\epsilon})) - g(u(\theta_{\epsilon})) \end{aligned}$$

Now let $\epsilon \to 0+$ in (4.27). Since θ , ζ are points of continuity of u, v we find by virtue of (4.26) and the Vitali's theorem that

(4.28)
$$\theta u(\theta) - \zeta u(\zeta) + f(v(\theta)) - f(v(\zeta)) = \lim_{\epsilon \to 0+} \int_{\zeta_{\epsilon}}^{\theta_{\epsilon}} u_{\epsilon}(\xi) d\xi$$
$$\theta v(\theta) - \zeta v(\zeta) + g(u(\theta)) - g(u(\zeta)) = \lim_{\epsilon \to 0+} \int_{\zeta_{\epsilon}}^{\theta_{\epsilon}} v_{\epsilon}(\xi) d\xi$$

Since the limits on the left hand side of (4.27) exists, we have from (4.1)

$$\lim_{\epsilon \to 0+} \int_{\zeta_{\epsilon}}^{\theta_{\epsilon}} v_{\epsilon}(\xi) d\xi := S(\zeta, \theta)$$

satisfies

$$\bar{v}(\zeta - \theta) + (g(\beta) - g(\alpha)) \le S(\zeta, \theta) \le N_0(\zeta - \theta).$$

By Lemma 4.4 for fixed $\zeta < 0$, $S(\zeta, \theta)$ is continuous in θ , $\theta > 0$, $|\theta|$ small and for fixed $\theta > 0$, $S(\zeta, \theta)$ is continuous in ζ , $\zeta < 0$, $|\zeta|$ small. Now since $|u(\xi)|$ may be infinite only at $\xi = 0$ pointwise limits of ii(b, c), iii(b, c, d) of Lemma 2.4 shows that if $|u(0)| = \infty$, u must one of these shape shown in figure.

In all these cases (I), (II), (III) we see that

$$egin{aligned} |\zeta u(\zeta)| & \leq \int_{\zeta}^{ heta} |u(\xi)| \, d\xi, \ | heta u(heta)| & \leq \int_{\zeta}^{ heta} |u(\xi)| \, d\xi \end{aligned}$$

But since $u(\zeta)$ is locally integrable,

$$\lim_{\zeta \to 0-} \zeta u(\zeta) = \lim_{\theta \to 0+} \theta u(\theta) = \lim_{\substack{\theta \to 0+\\ \zeta \to 0-}} \int_{\zeta}^{\theta} u(\xi) \, d\xi = 0$$

Since $v(\xi)$ has the shape of (I) near $\xi = 0$ and v is locally integrable

$$\lim_{\zeta \to 0-} \zeta v(\zeta) = \lim_{\theta \to 0+} \theta v(\theta) = 0$$

Now let $\theta \to 0+$, $\zeta \to 0-$ along a sequence of points of continuity of u, v and possibly extract a further subsequence such that $S(\zeta, \theta)$ converges we find that

$$\begin{split} &\lim_{\theta \to 0+} f(v(\theta)) - \lim_{\zeta \to 0^-} f(v(\zeta)) = 0, \\ &\lim_{\theta \to 0+} g(u(\theta)) - \lim_{\zeta \to 0^-} g(u(\zeta)) = \lim_{\substack{\theta \to 0+ \\ \zeta \to 0^-}} S(\zeta,\theta). \end{split}$$

Moreover if $\int_0^\xi v_\epsilon(\xi) d\xi$ is absolutely equicontinuous, the Vitali's theorem implies

$$\lim_{\substack{\theta \to 0+\\ \zeta \to 0-}} S(\zeta, \theta) = 0.$$

In general, the bounds on $S(\zeta, \theta)$ shows that

$$g(\beta) - g(\alpha) \le \lim_{\theta \to 0+} g(u(\theta)) - \lim_{\zeta \to 0-} g(u(\zeta)) \le 0.$$

THEOREM 4.12. The functions $u(\xi)$, $v(\xi)$ defined by Lemma 4.5 is a solution of the Riemann problem provided

$$\lim_{\xi \to 0-} g(u(\xi)) = \lim_{\xi \to 0+} g(u(\xi)).$$

Proof. Use Lemma 4.11.

References

- [1] C. M. Dafermos, Solutions of the Riemann Problem for a Class of Hyperbolic Systems of Conservation laws by Viscosity method, Arch. Rational Mech. Anal. 52 (1973), 1-9.
- [2] C. M. Dafermos and R. J. DiPerna, The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Diff. Equat. 20 (1976), 90-114.
- [3] H. Fan, A limiting "Viscosity" approach to the Riemann problem for Materials exhibiting a change of phase (II), Arch. Rational Mech. Anal., 317-337.
- [4] R. D. James, The propagation of phase boundaries in elastic bars, Arch. Rational Mech. Anal. 73 (1980), 125-158.
- [5] A. S. Kalashnikov, Construction of generalized solutions of quasilinear equations of first order without convexity conditions as limits of solutions of parabolic equations with a small parameter, Dokl. Akad. Nauk. SSSR 127 (1959), 27-30. (Russian)
- [6] M. Slemrod, A Limiting "Viscosity" Approach to the Riemann problem for materials Exhibiting Change of Phase, Arch. Rational Mech. Anal. 105 (1989), 327-365.
- [7] V. A. Tupciev, The asymptotic behavior of the solution of the Cauchy problem for the equation $\epsilon^2 t u_{xx} = u_t + [\phi(u)]_x$ that degenerates for $\xi = 0$ into the problem of the decay of an arbitrary discontinuity for the case of a rarefaction wave, Z. Vycisl. Mat. Fiz. 12, 770-775; English transl. in USSR comput. Math. and Phys. 12.
- [8] V. A. Tupciev, On the method of introducing viscosity in the study of problems involving decay of a discontinuity, Dokl. Akad. Nauk. SSSR 211 (1973), 55-58; English transl. in Soviet Math. 14.

Department of Mathematics Hoseo University Asan 336-795, Korea E-mail: chlee@math.hoseo.ac.kr