• Title/Summary/Keyword: first order differential operator

Search Result 19, Processing Time 0.025 seconds

SANDWICH THEOREMS FOR HIGHER-ORDER DERIVATIVES OF p-VALENT FUNCTIONS DEFINED BY CERTAIN LINEAR OPERATOR

  • Aouf, Mohamed K.;Seoudy, Tamer M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.627-636
    • /
    • 2011
  • In this paper, we obtain some applications of first order differential subordination and superordination results for higher-order derivatives of p-valent functions involving certain linear operator. Some of our results improve and generalize previously known results.

Classes of Multivalent Functions Defined by Dziok-Srivastava Linear Operator and Multiplier Transformation

  • Kumar, S. Sivaprasad;Taneja, H.C.;Ravichandran, V.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.97-109
    • /
    • 2006
  • In this paper, the authors introduce new classes of p-valent functions defined by Dziok-Srivastava linear operator and the multiplier transformation and study their properties by using certain first order differential subordination and superordination. Also certain inclusion relations are established and an integral transform is discussed.

  • PDF

Sandwich Results for Certain Subclasses of Multivalent Analytic Functions Defined by Srivastava-Attiya Operator

  • Aouf, M.K.;Shamandy, A.;Mostafa, A.O.;Adwan, Eman A.
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.209-222
    • /
    • 2012
  • In this paper, we obtain some applications of first order differential subordination and superordination results involving the operator $J_{s,b}^{{\lambda},p}$ for certain normalized p-valent analytic functions associated with that operator.

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

On a Class of Meromorphic Functions Defined by Certain Linear Operators

  • Kumar, Shanmugam Sivaprasad;Taneja, Harish Chander
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.631-646
    • /
    • 2009
  • In the present investigation, we introduce new classes of p-valent meromorphic functions defined by Liu-Srivastava linear operator and the multiplier transform and study their properties by using certain first order differential subordination and superordination.

ON THE BOUNDARY VALUE PROBLEMS FOR LOADED DIFFERENTIAL EQUATIONS

  • Dzhenaliev, Muvasharkhan T.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1031-1042
    • /
    • 2000
  • The equations prescribed in Ω⊂R(sup)n are called loaded, if they contain some operations of the traces of desired solution on manifolds (of dimension which is strongly less than n) from closure Ω. These equations result from approximations of nonlinear equations by linear ones, in the problems of optimal control when the control when the control actions depends on a part of independent variables, in investigations of the inverse problems and so on. In present work we study the nonlocal boundary value problems for first-order loaded differential operator equations. Criterion of unique solvability is established. We illustrate the obtained results by examples.

  • PDF

SOLVABILITY OF IMPULSIVE NEUTRAL FUNCTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS WITH STATE DEPENDENT DELAY

  • Karthikeyan, K.;Anguraj, A.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.57-69
    • /
    • 2012
  • In this paper, we prove the existence of mild solutions for a first order impulsive neutral differential inclusion with state dependent delay. We assume that the state-dependent delay part generates an analytic resolvent operator and transforms it into an integral equation. By using a fixed point theorem for condensing multi-valued maps, a main existence theorem is established.

A Priori Boundary Estimations for an Elliptic Operator

  • Cho, Sungwon
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.273-277
    • /
    • 2014
  • In this article, we consider a singular and a degenerate elliptic operators in a divergence form. The singularities exist on a part of boundary, and comparable to the logarithmic distance function or its inverse. If we assume that the operator can be treated in a pointwise sense than distribution sense, with this operator we obtain a priori Harnack continuity near the boundary. In the proof we transform the singular elliptic operator to uniformly bounded elliptic operator with unbounded first order terms. We study this type of estimations considering a De Giorgi conjecture. In his conjecture, he proposed a certain ellipticity condition to guarantee a continuity of a solution.

On the structure of discrete spectrum of the non-selfadjoint system of differential equations in the first order

  • Akin, Omer;Bairamov, Elgiz
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.401-413
    • /
    • 1995
  • This paper is concerned with the problem given below $$ (1.1) i\frac{dx}{du_1(x,\lambda)} + q1(x)u_2(x,\lambda) = \lambdau_1(x,\lambda) 0 \leq x < \infty - i\frac{dx}{du_2(x,\lambda)} + q2(x)u_1(x,\lambda) = \lambdau_2(x,\lambda), $$ $$ (2) u_2(0,\lambda) - hu_1(0,\lambda) = 0 $$ where $\lambda$ is a complex parameter and h is a non-zero complex number.

  • PDF