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UNIQUENESS IN THE CAUCHY PROBLEM FOR A CERTAIN
FIRST ORDER LINEAR PARTIAL DIFFERENTIAL OPERATOR

Jongsik Kim
1. Introduetion

In this article we prove uniqueness of the solution in the Cauchy
problem
Lu=0
u(z,0)=0
where L is the first order linear partial differential operator
a—i—i-z'b(t)%
and 5(¢) is a strictly monotone real valued continuous odd function of ¢.
The proof is based on a technique, called as a local constancy principle,
developed by Treves in [4] and [5] to construct a first order linear
partial differential equation without any nonconstant solution. Thus the
proof is quite different from the usual uniqueness proofs based on the
Carleman estimate.
As b(#) appearing in the definition of L can have =0 as a zero point
of infinite order, our result partially generalizes the uniqueness result of

Strauss-Treves (cf. [3]) for the case where ¢=0 is a finite-order zero
point of &(¢).

2. Theorems

Let Q be an open neighborhood of the origin in R We denote a
point in R2? by (=, ).

Let L be a linear partial differential operator of the first order defined
by

=0 0
2.1 L= o +ib () P
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We assume that

(2.2 b(¢) is real valued and continuous,
(2.3) b(#)=—b(—1¢) for any t€R, and
2.4) b(¢) is strictly monotone.

Under these assumptions we have the following

THEOREM 1. Let L be a linear partial differential operator of the first
order given by (2.1)-(2.4). If u is a C! solution of Lu=0 in a neig-
hborhood Q of the origin, vanishing identically on Q0N {(z,2)|t<0},
then =0 in a full neighborhood of the origin.

Proof. Let U be an open neighborhood of origin invariant under the
symmetry

(.’L‘, t)—*)(x: _t)-

We assume that U is contained in Q.

Let S denote the intersection of U with the axist z=0, U* (resp.,
U-) that with the half plane £>0 (resp., ¢<0). We denote by z*
(resp., u~) the restriction of « to U* (resp., U-).

We note that the Cauchy problem

0z , . 0z _
—g‘{"ib(t)—a‘x—
z(z,0) ==z

has a unique solution

z=x—iB(t)
where

B(®) =J:b(t) dz,

From the relations
z=z—iB(t), z=xz-+iB(2)
and the strict monotonicity of 5(¢), we can solve (2.9) with respect
to « and # to get
z=z(z,2), t=t(z, z).

It follows that £ and # are C! functions of z and 2 if Im z+#0 (e,

B(#) #0 or £+0) and are continuous for all z and z.
We set

R (2, 2) =u'(z,2), b (2, 2)=u"(z,¢).
Then A™ and %~ are two C! functions on
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differential operator
V=2(U*)=2(U"),

which can be continuously extended to VUz(S). We notice that z(S)
is a nonempty open subset of the real axis Im z=0 and that =z(S) is

a part of the boundary of V.
On the other hand,

0=Lu*
= (0h*/0z) Lz (0h*/9z) Lz
= (oh*/0%) Lz
as Lz=0.
Now

g
ot
Therefore, if ¢t+#0 (as ¢ is in U*), we must have

oh* [92=0.

In other words, A" and A~ are functions of z alone and A*(z) and
b= (2) are holomorphic in V.

Since 2" and k- are equal on z(S), they are equal in the whole V.
In fact, A*—hA~ is holomorphic in V and is real valued on =2(S).
Therefore, by the Schwarz reflection principle, A*—~ can be extended
holomorphically across z(S). Since A*—A~=0 on 2z(S), A*—h =0 in
V by the connectedness of the latter.

Now the mapping

Ls:( —]—z’b(t)—aa;)(:z:+iB(t))=2ib(t).

(z,t)—z(z, 1)
is a bijection of U* or of U~ onto V. Therefore we have
ut(z, t) =u (z, —t)
for all (z,t) U™,
But from the hypotheses

u (z, —t)=0 for all (z,z) e U™.
Therefore

ut(z,t)=0 for all (z,2)cU".
Thus =0 on U, completing the proof.

THEOREM 2. Let Q be an open subset of R? and L a linear partial

differential operator given by (2.1)~(2.4). Let Y, be a continuous curve
in Q separating Q\3] into two parts. If u is a C* solution of Lu=0 in
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Q and satisfies w=0 on one side of 2., then u=0 in a full neighborhood
of 2.

Proof. H suffices to prove the theorem locally in a neighborhood U
of an arbitrary point(zg, £,) in 2.

If #,+0, then under the local C' change of variables

y=z, s=B()
in such a neighborhood, L becomes
0 ,.0
L=5() (—3?+z—a?),
proportional to the Cauchy-Riemann operator and hence the unique
continuation across 2 holds. In particular, »=0 in a full neighborhood
of 2.

Assume now #=0. Since L is invariant under z-translation, we may
assume that z,=0, that is, 2 passes through the origin. We may also
asssume that U is invariant under the symmetry (z, #)—(z, —¢). '

Suppose the side of 3 on which 4=0 intersects the half plane z>>0.
Let U* denote the intersection of U with that half plane £>0. As in
the proof of the theorem 1, we have that « is a holomorphic function
of z=z—iB({) in z(U*). Therefore u=0 in U™.

But #(z, —2) =u(x,t) if (z,£) €U. Therefore =0 in U-, and hence
#=0 on U. This completes the proof.

THEOREM 3. Let Q be a connected open subset of R2 and L a linear
partial differential operator of the first order given by (2.1)~(2.4).
Let u be a C! solution of Lu=0 in Q. If u vanishes on a nonempty open
subset of Q, then u==0 in 0.

Proof. Let U={(x,£)R%|u(z,t)=0} and U, be the connected
component of U containing a nonempty open subset of Q where #=0.
Then U, is clearly closed in Q since # is a C! function.

Let (g, 2;) be a limit point of U, in Q. Then (z,, %) is a boundary
point of U, and lies on a C! curve 5 on one side of which # vanishes.
By the previous theorem #==0 in a full neighborhood of (z,#,). This
shows that U, is also open.

Since 2 is connected, Q=U,, completing the proof.

THEOREM 4. Let Q be a connected open subset of R2. Let 3 be a C!
curve separating Q\2 into two parts. Let L be a first order linear partial
differential operator in Q satisfying (2.1)~(2.4). Then the Cauchy
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problem
Lu=f(z,t)
u| z=up(x)
where f and uy are continuous functions in Q and 2, respectively, has a
unique C'-solution.
Proof. As Y is a C! curve, by a C! local coordinate change we may
assume that Y is the axis ¢=0.
Let « be a C! solution of
Lu=(
u(x, 0) =0.
Then H(#)u(x,£), where H(¢) is a Heaviside function, is a C! solution
of Lu=0.
As H(t)u(z,t)=0 for ¢<0, by theorem 2 H(@)u(z,t)=0 in a full
neighborhood of 3. Similarly, H(—#)u(z, #)=0 and hence u(z, t)=0
in a full neighborhood of Z.

Since Q is connected, the same reasoning as in the proof of the
theorem 3 completes the proof.

3. Remarks

1) The prototype of the first order linear partial differential operator
satisfying the condition (2.1)~(2.4) is the generalized Mizohata type
operator

::_.@._ 'ka
M, ot "l'tt*a-;

where & is an odd nonnegative integer.

2) We note that in the theorem 4 the C! curve 2 may be characteristic
with respect to L.
3) In our discussions we may write L as

L=i(D,+ib()D,)

1 3 =1 0
where D,——-—i— % and D,= B
r+ib(¢)€. Thus 7+ib()é=0 has a simple root t=—ib()& If b(r) is
strictly increasing C* function, then

2 (-8 <o,

The (principal) symbol of %.—L is
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and hence —&(¢)& is strictly decreasing along the null bicharacteristic
curve of ¢ in T*(Q)=QXR2 Therefore, in this particular case, our
theorem 1 can be obtained as a consequence of §6, theorem 5 in
Nirenberg [2]. When 5(z) is strictly decreasing, however, theorem 1
does not follow from the Nirenberg’s results.

4) We note that, in general, the first order linear partial differential
operator L given by (2.1)~(2.4) does not satisfy the condition (P) of
Nirenberg-Treves, and hence is not locally solvable. The function &(¢)
in the definition of L is not (infinitely) oscillating in a neighborhood
of origin, but still can have £=0 as a zero point of infinite order.

Therefore theorem 1 partially generalizes the following Strauss—Treves

result (cf. [3], [6]).

THEOREM. Let L=—§t——{—z‘b (=, t)—a%+c be defined in a neighborhood of

the origin in R2 where b and ¢ are C function. Suppose that t—5(0, t)
has at t=0 a zero of finite order. Then there exists a neighborhood V
of the origin in whick every C! solution of Lu=0(0 satisfying u(x,t)=0
Sfor £<0 vanishes.

5) Consider %—L=D,—[—ib (t) D, with its symbol p(z, ¢, &, 7) =7+ib(2)&.
At the point z=t=0, z=0, £+0,
Re p=0, Im p=0
but

_»
{Re pa Im P}‘— at 5-

Therefore, if 5(¢) is a C™ real valued function and %9&0 at =0,
then by the result of Alinhac [1] there exist C* functions z(z,¢) in
R? and a(x,#) with support in { (z,£)|£>0} such that

Lu—au=0
originEsupp .
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