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UNIQUENESS IN THE CAUCHY PROBLEM FOR A CERTAIN
FIRST ORDER LINEAR PARTIAL DIFFERENTIAL OPERATOR

JONGSIK KIM

1. Introduction

In this article we prove uniqueness of the solution m the Cauchy
problem

Lu=O
u(x, 0) =0

where L is the first order linear partial differential operator

~+ib(t)-Lot ox
and bet) is a strictly monotone real valued continuous odd function of t.

The proof is based on a technique, called as a local constancy principle,
developed by Treves in [4J and [5J to construct a first order linear
partial differential equation without any nonconstant solution. Thus the
proof is quite different from the usual uniqueness proofs based on the
Carleman estimate.

As bet) appearing in the definition of L can have t=O as a zero point
of infinite order, our result partially generalizes the uniqueness result of
Strauss-Treves (cf. [3J) for the case where t=O is a finite-order zero
point of b(t).

2. Theorems

Let Q be an open neighborhood of the origin in R2. We denote a
point in R2 by (x, t).

Let L be a linear partial differential operator of the first order defined
by

(2.1)
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We assume that

(2.2) bet) is real valued and continuous,
(2.3) b(t)=-b(-t) for any tER, and
(2.4) b(t) is strictly monotone.

Under these assumptions we have the following

THEOREM 1. Let L be a linear partial differential operator of the first
order given by (2.1)-(2.4). If u is a Cl solution of Lu=O in a neig­
hborhood Q of the origin, vanishing identically on Q n {(x, t) ItS::O },
then U==O in a full neighborhood of the origin.

Proof. Let U be an open neighborhood of origin invariant under the
symmetry

(x, t)~(x, -t).

We assume that U is contained in Q.
Let S denote the intersection of U with the axist t=O, U+ (resp.,

U-) that with the half plane t>O (resp., t<O). We denote by u+
(resp., u-) the restriction of u to U+ (resp., U-).

We note that the Cauchy problem

oz +ib(t)~=O
ot ox

z(x,O)=x

has a unique solution
z=x-iB(t)

where

B(t) = J:b(t)dt.

From the relations

z=x-iB(t), z=x+iB(t)

and the strict monotonicity of b(t), we can solve (2.9) with respect
to x and t to get

x=x(z, z), t=t(z, z).

It follows that x and t are Cl functions of z and z if Im z*0 (i. e. ,
B(t) *0 or t*O) and are continuous for all z and z.

We set

h+(z, z) =u+(x, t), h-(z, z) =u-(x, t).

Then h+ and h- are two Cl functions on
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V=z(U+) =z(U-),

which can be continuously extended to VU z(8). We notice that z(8)
is a nonempty open subset of the real axis Im z=O and that z(8) is
a part of the boundary of V.

On the other hand,

O=Lu±
= (oh±/oz)Lz+ (oh±/oz)Lz
= (oh±/oz) Lz

as Lz=O.
Now

LZ=(~ +ib(t) ;x)(X+iB(t))=2ib(t).

Therefore, if t:;60 (as t is in U±), we must have

oh±/oz=O.

In other words, h+ and h- are functions of z alone and h+ (z) and
h- (z) are holomorphic in V.

Since h+ and h- are equal on z (8), they are equal in the whole V.
In fact, h+-h- is holomorphic in V and is real valued on z(8).
Therefore, by the Schwarz reflection principle, h+-h- can be extended
holomorphically across z(8). Since h+-h-=O on z(8), h+-h-=:.O in
V by the connectedness of the latter.

Now the mapping

(x, t)--'>z(x, t)

is a bijection of U+ or of U- onto V. Therefore we have

u+(x, t) =u-(x, -t)

for all (x, t) E U+.
But from the hypotheses

u-(x, -t) =0 for all (x, t) E U+.

Therefore

u+ (x, t) =0 for all (x, t) E U+.

Thus u=:.O on U, completing the proof.

THEOREM 2. Let Q be an open subset of R2 and L a linear partial
differential operator given by (2. 1)"" (2. 4). Let 1: be a continuous curve
in Q separating 0\1: into two parts. If u is a Cl solution of Lu=O in
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Q and satisfies U=O on one side of 2:, then u=O in a full neighborhood
of 2:.

Proof. If·suffices to prove the theorem locally in a neighborhood U
of an arbitrary point (xo, to) in I.

If to =/= 0, then under the local Cl change of variables

y=x, s=B(t)

in such a neighborhood, L becomes

L=b(t) (~ +i ;y ),

proportional to the Cauchy-Riemann operator and hence the unique
continuation across I holds. In particular, u==O in a full neighborhood
of I.

Assume now t=O. Since L is invariant under x-translation, we may
assume that xo=O, that is, I passes through the origin. We may also
asssume that U is invariant under the symmetry (x, t)~(x, -t).

Suppose the side of I on which u=O intersects the half plane t>O.
Let U+ denote the intersection of U with that half plane t>O. As in
the proof of the theorem I, we have that u is a holomorphic function
of z=x-iB(t) in z(U+). Therefore u==O in U+.

But u(x, -t) =u(x, t) if (x, t) E U. Therefore u==O in U-, and hence
u==O on U. This completes the proof.

THEOREM 3. Let Q be a connected open subset of R2 and L a linear
partial differential operator of the first order given by (2. 1) '"'-' (2.4).
Let u be a Cl solution of Lu=O in Q. If u vanishes on a nonempty open
subset of Q, then u==O in Q.

Proof. Let U={ (x,t)ER2\u(x,t)=O} and Uo be the connected
component of U containing a nonempty open subset of Q where u=O.
Then Uo is clearly closed in Q since u is a Cl function.

Let (xo, to) be a limit point of Uo in Q. Then (xo, to) is a boundary
point of Uo and lies on a Cl curve I on one side of which u vanishes.
By the previous theorem u=O in a full neighborhood of (xo, to)' This
shows that Uo is also open.

Since Q is connected, Q= Uo, completing the proof.

THEOREM 4. Let Q be a connef:ted open subset of R2. Let 2 be a Cl

curve separating Q\2 into two parts. Let L be a first order linear partial
differential operator in Q satisfying (2.1)'"'-'(2.4). Then the Cauchy
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problem

Lu f(x, t)
ulz=Uo(.1:)

where f and Uo are continuous functions in Q and 2, respectively, has a
unique Cl-solution.

Proof. As 2 is a Cl curve, by a Cl local coordinate change we may
assume that 2 is the axis t = O.

Let u be a Cl solution of

Lu=O
u(x, 0) =0.

Then H(t)u(x, t), where H(t) is a Heaviside function, is a Cl solution
of Lu=O.

As H(t)u(x, t) =0 for t<O, by theorem 2 H(t)u(x, t)==O in a full

neighborhood of 2. Similarly, H( -t)u(x, t)==O and hence u(x, t)==O
in a full neighborhood of 2.

Since Q is connected, the same reasoning as in the proof of the
theorem 3 completes the proof.

3. Remarks

1) The prototype of the first order linear partial differential operator
satisfying the condition (2. 1)"J (2. 4) is the generalized Mizohata type
operator

Mk=~+itk~ot ox
where k is an odd nonnegative integer.

2) We note that in the theorem 4 the Cl curve 2 may be characteristic
with respect to L.

3) In our discussions we may write L as

L=i(Dt+ib(t)Dx )

where Dt=~ ! and Dz=~ ! . The (principal) symbol of ~L is
t ut t ux t

t'+ib(t)~. Thus t'+ib(t)~=O has a simple root r= -ib(t)~. If b(t) is
strictly increasing Coo function, then

;t (-b(t)~) :::;;0,
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and hence -b(t)~ is strictly decreasing along the null bicharacteristic
curve of 'C in T* (0) =OXR2. Therefore, in this particular case, our
theorem 1 can be obtained as a consequence of § 6, theorem 5' in
Nirenberg [2J. When b(t) is strictly decreasing, however, theot:em 1
does not follow from the Nirenberg's results.

4) We note that, in general, the first order linear partial differential
operator L given by (2. 1) "-' (2. 4) does not satisfy the condition (P) of
Nirenberg-Treves, and hence is not locally solvable. The function bet)
in the definition of L is not (infinitely) oscillating in a neighborhood
of origin, but still can have t=O as a zero point of infinite order.

Therefore theorem 1 partially generalizes the following Strauss-Treves
result (cf. [3J, [6J).

THEOREM. Let L= ~ +ib(x, t) :x +C be defined in a neighborhood of

the origin in R2 where band c are Coo function. Suppose that t-4b(O, t)
has at t=O a zero of finite order. Then there exists a neighborhood V
of the origin in which every Cl solution of Lu=O satisfying u(x, t) =0

for t<O vanishes.

5) Consider 4-L=Dt +ib(t)Dx with its symbol p(x, t,~, 'C) ='C+ib(t)~.
t

At the point x=t=O, 'C=O, ~*O,

Re p=O, lm P=O

but

ab{Re p, lm p} = at~.

Therefore, if bet) is a Coo real valued function and ~~ *0 at t=O,

then by the result of Alinhac ClJ there exist Coo functions u(x, t) in
R2 and a(x, t) with support in {(x, t) \t2:0} such that

Lu-au=O
origin E supp u.
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