DOI QR코드

DOI QR Code

On a Class of Meromorphic Functions Defined by Certain Linear Operators

  • Received : 2008.08.29
  • Accepted : 2008.12.11
  • Published : 2009.12.31

Abstract

In the present investigation, we introduce new classes of p-valent meromorphic functions defined by Liu-Srivastava linear operator and the multiplier transform and study their properties by using certain first order differential subordination and superordination.

Keywords

References

  1. M. K. Aouf and H. M. Hossen, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17(2)(1993), 481-486. https://doi.org/10.21099/tkbjm/1496162274
  2. T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. (N. S.), 13(3)(2002), 301-311. https://doi.org/10.1016/S0019-3577(02)80013-1
  3. T. Bulboaca, Classes of first-order differential superordinations, Demonstratio Math., 35(2)(2002), 287-292.
  4. N. E. Cho and S. H. Lee, Certain subclasses of meromorphic functions defined by subordination. II, Kyungpook Math. J., 36(2)(1996), 283-291.
  5. M. R. Ganigi and B. A. Uralegaddi, New criteria for meromorphic univalent functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), 33(81)(1)(1989), 9-13.
  6. J. -L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bull. Inst. Math. Acad. Sinica, 31(1)(2003), 23-32.
  7. J. -L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39(1)(2004), 21-34. https://doi.org/10.1016/S0895-7177(04)90503-1
  8. S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker Inc., New York, 2000.
  9. S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48(10)(2003), 815-826. https://doi.org/10.1080/02781070310001599322
  10. J. Patel and P. Sahoo, On certain subclasses of meromorphically p-valent functions, Bull. Calcutta Math. Soc., 93(6)(2001), 455-464.
  11. V. Ravichandran, S. Sivaprasad Kumar, and K. G. Subramanian, Convolution conditions for spirallikeness and convex spirallikeness of certain meromorphic p-valent functions, JIPAM. J. Inequal. Pure Appl. Math., 5(1)(2004), Article 11, 7 pp. (electronic).
  12. B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43(1)(1991), 137-140. https://doi.org/10.1017/S0004972700028859
  13. D. Yang, On new subclasses of meromorphic p-valent functions, J. Math. Res. Exposition, 15(1)(1995), 7-13.
  14. D. Yang, On a class of meromorphic starlike multivalent functions, Bull. Inst. Math. Acad. Sinica, 24(2)(1996), 151-157.

Cited by

  1. Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking vol.57, pp.3-4, 2013, https://doi.org/10.1016/j.mcm.2012.10.005