Sandwich Results for Certain Subclasses of Multivalent Analytic Functions Defined by Srivastava-Attiya Operator

M. K. Aouf, A. Shamandy, A. O. Mostafa and Eman A. Adwan*
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com, shamandy16@hotmail.com, adelaeg254@yahoo.com and eman.a2009@yahoo.com

AbStract. In this paper, we obtain some applications of first order differential subordination and superordination results involving the operator $J_{s, b}^{\lambda, p}$ for certain normalized p -valent analytic functions associated with that operator.

1. Introduction

Let $H(U)$ be the class of analytic functions in the open unit disc $U=$ $\{z: z \in \mathbb{C},|z|<1\}$ and let $H[a, p]$ be the subclass of $H(U)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=a+a_{p} z^{p}+a_{p+1} z^{p+1}+\ldots \quad(a \in \mathbb{C} ; p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

Also, let $A(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in \mathbb{N}), \tag{1.2}
\end{equation*}
$$

and let $A_{1}=A(1)$.
If $f, g \in A(p)$, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence (cf., e.g., [5], [9] and [10]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

[^0]Let $p, h \in H(U)$ and let $\varphi(r, s, t ; z): \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$. If p and $\varphi\left(p(z), z p^{\prime}(z)\right.$, $\left.z^{2} p^{\prime \prime}(z) ; z\right)$ are univalent functions in U and if p satisfies the second-order superordination

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \tag{1.3}
\end{equation*}
$$

then p is a solution of the differential superordination (1.3). Note that if f is subordinate to g, then g is superordinate to f. An analytic function q is called a subordinant of (1.3), if $q(z) \prec p(z)$ for all functions p satisfying (1.3). An univalent subordinant \widetilde{q} that satisfies $q(z) \prec \widetilde{q}(z)$ for all subordinants of (1.3) is called the best subordinant. Recently, Miller and Mocanu [11] obtained sufficient conditions on the functions h, q and φ for which the following implication holds:

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \Rightarrow q(z) \prec p(z) . \tag{1.4}
\end{equation*}
$$

Using the results of Miller and Mocanu [11], Bulboaca [4] considered certain classes of first order differential superordinations as well as superordinationpreserving integral operators [3]. Ali et al. [1], have used the results of Bulboaca [4] to obtain sufficient conditions for normalized analytic functions to satisfy:

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z),
$$

where q_{1} and q_{2} are univalent functions in U with $q_{1}(0)=q_{2}(0)=1$. Also, Tuneski [20] obtained a sufficient condition for starlikeness of f in terms of the quantity $\frac{f^{\prime \prime}(z) f(z)}{\left(f^{\prime}(z)\right)^{2}}$. Recently, Shanmugam et al. [17] obtained sufficient conditions for the normalized analytic functions f to satisfy

$$
q_{1}(z) \prec \frac{f(z)}{z f^{\prime}(z)} \prec q_{2}(z)
$$

and

$$
q_{1}(z) \prec \frac{z^{2} f^{\prime}(z)}{\{f(z)\}^{2}} \prec q_{2}(z) .
$$

They [17] also obtained results for functions defined by using Carlson-Shaffer operator.

For functions f given by (1.1) and $g \in A(p)$ given by $g(z)=z^{p}+\sum_{k=1}^{\infty} b_{k+p} z^{k+p}$, the Hadamard product (or convolution) of f and g is defined by

$$
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} b_{k+p} z^{k+p}=(g * f)(z) .
$$

We begin our investigation by recalling that a general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined by (see [19])

$$
\begin{equation*}
\Phi(z, s, a)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+a)^{s}}, \tag{1.5}
\end{equation*}
$$

$$
\begin{aligned}
& a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; \mathbb{Z}_{0}^{-}=\mathbb{Z} \backslash \mathbb{N}, \mathbb{Z}=\left\{0,{ }_{-}^{+},{ }_{-}^{+} 2, \ldots\right\} ; s \in \mathbb{C} \\
& \text { when }|z|<1 ; R\{s\}>1 \text { when }|z|=1 .
\end{aligned}
$$

Recently, Srivastava and Attiya [18] (see also [8], [13] and [14]) introduced and investigated the linear operator $J_{s, b}(f): A_{1} \rightarrow A_{1}$, defined in terms of the Hadamard product by

$$
J_{s, b} f(z)=G_{s, b}(z) * f(z)\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C}\right)
$$

where for convenience,

$$
G_{s, b}=(1+b)^{s}\left[\Phi(z, s, b)-b^{-s}\right](z \in U) .
$$

In [21], Wang et al. defined the operator $J_{s, b}^{\lambda, p}: A(p) \rightarrow A(p)$ by

$$
\begin{gather*}
J_{s, b}^{\lambda, p} f(z)=f_{s, b}^{\lambda, p}(z) * f(z) \tag{1.6}\\
\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; \lambda>-p ; p \in \mathbb{N} ; f \in A(p)\right)
\end{gather*}
$$

where

$$
\begin{equation*}
f_{s, b}^{p}(z) * f_{s, b}^{\lambda, p}(z)=\frac{z^{p}}{(1-z)^{\lambda+p}} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{s, b}^{p}(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k+b}{p+b}\right) z^{k+p} \quad(z \in U ; p \in \mathbb{N}) . \tag{1.8}
\end{equation*}
$$

It is easy to obtain from (1.6), (1.7) and (1.8) that

$$
\begin{equation*}
J_{s, b}^{\lambda, p} f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}}{k!}\left(\frac{p+b}{k+p+b}\right)^{s} a_{k+p} z^{k+p} \tag{1.9}
\end{equation*}
$$

where $(\gamma)_{k}$, is the Pochhammer symbol defined in terms of the Gamma function Γ, by

$$
(\gamma)_{k}=\frac{\Gamma(\gamma+n)}{\Gamma(\gamma)}= \begin{cases}1 & (k=0) \\ \gamma(\gamma+1) \ldots(\gamma+k-1) & (k \in \mathbb{N})\end{cases}
$$

We note that

$$
J_{0, b}^{1-p, p} f(z)=f(z)(f \in A(p))
$$

Using (1.9), it is easy to verify that (see [21])

$$
\begin{equation*}
z\left(J_{s+1, b}^{\lambda, p} f\right)^{\prime}(z)=(p+b) J_{s, b}^{\lambda, p}(f)(z)-b J_{s+1, b}^{\lambda, p}(f)(z) \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(J_{s, b}^{\lambda, p} f\right)^{\prime}(z)=(p+\lambda) J_{s, b}^{\lambda+1, p}(f)(z)-\lambda J_{s, b}^{\lambda, p}(f)(z) \tag{1.11}
\end{equation*}
$$

It should be remarked that the linear operator $J_{s, b}^{\lambda, p} f(z)$ is generalization of many other linear operators considered earlier. We have:
(1) $J_{0, b}^{\lambda, p} f(z)=D^{\lambda+p-1} f(z)(\lambda>-p, p \in \mathbb{N})$, where $D^{\lambda+p-1}$ is the $(\lambda+p-1)$-th order Ruscheweyh derivative of a function $f(z) \in A(p)$ (see [7]);
(2) $J_{1, v}^{1-p, p} f(z)=J_{v, p} f(z)(v>-p)$, where the generalized Bernardi-LiberaLivingston operator $J_{v, p}$ was studied by Choi et al. [6];
(3) $J_{m, 0}^{1-p, p} f(z)=I_{p}^{m} f(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p}{k+p}\right)^{m} a_{k+p} z^{k+p} \quad\left(m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$, where for $p=1$ the integral operator $I_{1}^{m}=I^{m}$ was introduced and studied by Salagean [15];
(4) $J_{\sigma, 1}^{1-p, p} f(z)=I_{p}^{\sigma} f(z)(\sigma>0)$, where the integral operator I_{p}^{σ} was studied by Shams et al. [16] and Aouf et al. [2];
(5) $J_{\gamma, \tau}^{0,1} f(z)=P_{\tau}^{\gamma} f(z)(\gamma \geq 0, \tau>1)$, where the integral operator P_{τ}^{γ} was introduced and studied by Patel and Sahoo [12].

In this paper, we obtain sufficient conditions for the normalized analytic function f defined by using the operator $J_{s, b}^{\lambda, p}$ to satisfy:

$$
q_{1}(z) \prec\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu} \prec q_{2}(z)
$$

and q_{1} and q_{2} are given univalent functions in U.

2. Definitions and preliminaries

In order to prove our results, we shall need the following definition and lemmas.

Definition $\mathbf{1}([\mathbf{1 1}])$. Let Q be the set of all functions f that are analytic and injective on $\bar{U} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.
Lemma 1([9]). Let q be univalent in the unit disc U, and let θ and φ be analytic in a domain D containing $q(U)$, with $\varphi(w) \neq 0$ when $w \in q(U)$. Set

$$
\begin{equation*}
Q(z)=z q^{\prime}(z) \varphi(q(z)) \text { and } h(z)=\theta(q(z))+Q(z) \tag{2.1}
\end{equation*}
$$

suppose that
(i) Q is a starlike function in U,
(ii) $\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}>0, z \in U$.

If p is analytic in U with $p(0)=q(0), p(U) \subseteq D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \tag{2.2}
\end{equation*}
$$

then $p(z) \prec q(z)$, and q is the best dominant of (2.2).
Lemma 2([4]). Let q be a convex univalent function in U and θ and φ be analytic in a domain D containing $q(U)$. Suppose that
(i) $\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}\right\}>0$ for $z \in U$,
(ii) $Q(z)=z q^{\prime}(z) \varphi(q(z))$ is starlike univalent in U .

If $p \in H[q(0), 1] \cap Q$, with $p(\mathrm{U}) \subseteq D, \theta(p(z))+z p^{\prime}(z) \varphi(p(z))$ is univalent in U , and

$$
\begin{equation*}
\theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \prec \theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \tag{2.3}
\end{equation*}
$$

then $q(z) \prec p(z)$, and q is the best subordinant of (2.3).

3. Applications to the operator $J_{s, b}^{\lambda, p}$ and sandwich theorems

Unless otherwise mentioned, we shall assume in the reminder of this paper that $b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, s \in \mathbb{C}, p \in \mathbb{N}, \lambda>-p, \gamma, \tau, \zeta \in \mathbb{C}, \Omega, \mu \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}, z \in U$ and the powers are understood as principle values.

Theorem 1. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. Let

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{\gamma}{\Omega} q(z)+\frac{2 \zeta}{\Omega}(q(z))^{2}-\frac{z q^{\prime}(z)}{q(z)}+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu)= & \tau+\gamma\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu}+\zeta\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{2 \mu} \tag{3.2}\\
& +\Omega \mu\left(p-\frac{z\left(J_{s, b}^{\lambda, p} f(z)\right)^{\prime}}{J_{s, b}^{\lambda, p} f(z)}\right)
\end{align*}
$$

If q satisfies the following subordination:

$$
\begin{equation*}
\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \tag{3.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu} \prec q(z) \tag{3.4}
\end{equation*}
$$

and q is the best dominant.
Proof. Define a function $p(z)$ by

$$
\begin{equation*}
p(z)=\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu} \quad(z \in U) \tag{3.5}
\end{equation*}
$$

Then the function $p(z)$ is analytic in U and $p(0)=1$. Therefore, differentiating (3.5) logarithmically with respect to z and using the identity (1.10) in the resulting equation, we have

$$
\begin{gathered}
\tau+\gamma\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu}+\zeta\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{2 \mu}+\Omega \mu\left(p-\frac{z\left(J_{s, b}^{\lambda, p} f(z)\right)^{\prime}}{J_{s, b}^{\lambda, p} f(z)}\right) \\
=\tau+\gamma p(z)+\zeta(p(z))^{2}+\Omega \frac{z p^{\prime}(z)}{p(z)}
\end{gathered}
$$

Using (3.3) and (3.6), we have

$$
\begin{equation*}
\tau+\gamma p(z)+\zeta(p(z))^{2}+\Omega \frac{z p^{\prime}(z)}{p(z)} \prec \tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \tag{3.7}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\theta(w)=\tau+\gamma w+\zeta w^{2} \text { and } \varphi(w)=\frac{\Omega}{w} \tag{3.8}
\end{equation*}
$$

it can be easily observed that θ is analytic in \mathbb{C}, φ is analytic in \mathbb{C}^{*} and $\varphi(w) \neq$ $0\left(w \in \mathbb{C}^{*}\right)$. Hence, the result now follows by using Lemma 1 .

Taking $q(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1)$ in Theorem 1, the condition (3.1) reduces to
(3.9) $\operatorname{Re}\left\{1+\frac{\gamma}{\Omega}\left(\frac{1+A z}{1+B z}\right)+\frac{2 \zeta}{\Omega}\left(\frac{1+A z}{1+B z}\right)^{2}-\frac{(A-B) z}{(1+A z)(1+B z)}-\frac{2 B z}{1+B z}\right\}>0$.
hence, we obtain the following corollary.
Corollary 1. Let $f(z) \in A(p)$, assume that (3.9) holds true, $-1 \leq B<A \leq 1$ and (3.10)
$\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau+\gamma\left(\frac{1+A z}{1+B z}\right)+\zeta\left(\frac{1+A z}{1+B z}\right)^{2}+\Omega \frac{(A-B) z}{(1+A z)(1+B z)}$,
where $\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu)$ is given by (3.2), then

$$
\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu} \prec \frac{1+A z}{1+B z},
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (3.10).
Taking $q(z)=\left(\frac{1+z}{1-z}\right)^{v} \quad(0<v \leq 1)$ in Theorem 1, the condition (3.1) reduces to

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{\gamma}{\Omega}\left(\frac{1+z}{1-z}\right)^{v}+\frac{2 \zeta}{\Omega}\left(\frac{1+z}{1-z}\right)^{2 v}-\frac{2 z^{2}}{1-z^{2}}\right\}>0 \tag{3.11}
\end{equation*}
$$

hence, we obtain the following corollary.
Corollary 2. Let $f(z) \in A(p)$, assume that (3.11) holds true, $0<v \leq 1$ and

$$
\begin{equation*}
\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau+\gamma\left(\frac{1+z}{1-z}\right)^{v}+\zeta\left(\frac{1+z}{1-z}\right)^{2 v}+\Omega \frac{2 v z}{(1-z)^{2}} \tag{3.12}
\end{equation*}
$$

where $\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu)$ is given by (3.2), then

$$
\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu} \prec\left(\frac{1+z}{1-z}\right)^{v}
$$

and $\left(\frac{1+z}{1-z}\right)^{v}$ is the best dominant of (3.12).
Putting $s=0$ and $\lambda=1-p(p \in \mathbb{N})$ in Theorem 1 , we obtain the following corollary.

Corollary 3. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. If $f(z) \in A(p)$, assume that (3.1) holds true and

$$
\begin{equation*}
G(f, p, \gamma, \tau, \zeta, \Omega, \mu)=\tau+\gamma\left(\frac{z^{p}}{f(z)}\right)^{\mu}+\zeta\left(\frac{z^{p}}{f(z)}\right)^{2 \mu}+\Omega \mu\left(p-\frac{z f^{\prime}(z)}{f(z)}\right) \tag{3.13}
\end{equation*}
$$

If q satisfies the following subordination:

$$
\begin{equation*}
G(f, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \tag{3.14}
\end{equation*}
$$

Then

$$
\left(\frac{z^{p}}{f(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant of (3.14).
Putting $p=1$ in Corollary 3, we obtain the following corollary.
Corollary 4. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. If $f(z) \in A$, assume that (3.1) holds true and

$$
\begin{equation*}
K(f, p, \gamma, \tau, \zeta, \Omega, \mu)=\tau+\gamma\left(\frac{z}{f(z)}\right)^{\mu}+\zeta\left(\frac{z}{f(z)}\right)^{2 \mu}+\Omega \mu\left(1-\frac{z f^{\prime}(z)}{f(z)}\right) . \tag{3.15}
\end{equation*}
$$

If q satisfies the following subordination:

$$
\begin{equation*}
K(f, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \tag{3.16}
\end{equation*}
$$

Then

$$
\left(\frac{z}{f(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant of (3.16).
Putting $s=0$ in Theorem 1, we obtain the following corollary.
Corollary 5. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. If $f(z) \in A(p)$, assume that (3.1) holds true and

$$
\begin{align*}
& D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu) \tag{3.17}\\
= & \tau+\gamma\left(\frac{z^{p}}{D^{\lambda+p-1} f(z)}\right)^{\mu}+\zeta\left(\frac{z^{p}}{D^{\lambda+p-1} f(z)}\right)^{2 \mu}+\Omega \mu\left(p-\frac{z\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{D^{\lambda+p-1} f(z)}\right) .
\end{align*}
$$

If q satisfies the following subordination:

$$
\begin{equation*}
D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \tag{3.18}
\end{equation*}
$$

then

$$
\left(\frac{z^{p}}{D^{\lambda+p-1} f(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant of (3.18).
Putting $s=1, b=v(v>-p)$ and $\lambda=1-p(p \in \mathbb{N})$ in Theorem 1, we obtain the following corollary.
Corollary 6. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. If $f(z) \in A(p)$, assume that (3.1) holds true and (3.19)

$$
(f, v, p, \gamma, \tau, \zeta, \Omega, \mu)=\tau+\gamma\left(\frac{z^{p}}{J_{v, p} f(z)}\right)^{\mu}+\zeta\left(\frac{z^{p}}{J_{v, p} f(z)}\right)^{2 \mu}+\Omega \mu\left(p-\frac{z\left(J_{v, p} f(z)\right)^{\prime}}{J_{v, p} f(z)}\right)
$$

If q satisfies the following subordination:

$$
\begin{equation*}
(f, v, p, \beta, \delta, \alpha, \eta, \mu) \prec \tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \tag{3.20}
\end{equation*}
$$

then

$$
\left(\frac{z^{p}}{J_{v, p} f(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant of (3.20).
Putting $s=m\left(m \in \mathbb{N}_{0}\right), b=0$ and $\lambda=1-p(p \in \mathbb{N})$ in Theorem 1 , we obtain the following corollary.

Corollary 7. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. If $f(z) \in A(p)$, assume that (3.1) holds true and (3.21)
$S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu)=\tau+\gamma\left(\frac{z^{p}}{I_{p}^{m} f(z)}\right)^{\mu}+\zeta\left(\frac{z^{p}}{I_{p}^{m} f(z)}\right)^{2 \mu}+\Omega \mu\left(p-\frac{z\left(I_{p}^{m} f(z)\right)^{\prime}}{I_{p}^{m} f(z)}\right)$.
If q satisfies the following subordination:

$$
\begin{equation*}
S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \tag{3.22}
\end{equation*}
$$

then

$$
\left(\frac{z^{p}}{I_{p}^{m} f(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant of (3.22).
Putting $s=\sigma(\sigma>0), b=1$ and $\lambda=1-p(p \in \mathbb{N})$ in Theorem 1, we obtain the following corollary.

Corollary 8. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. If $f(z) \in A(p)$, assume that (3.1) holds true and (3.23)
$\varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu)=\tau+\gamma\left(\frac{z^{p}}{I_{p}^{\sigma} f(z)}\right)^{\mu}+\zeta\left(\frac{z^{p}}{I_{p}^{\sigma} f(z)}\right)^{2 \mu}+\Omega \mu\left(p-\frac{z\left(I_{p}^{\sigma} f(z)\right)^{\prime}}{I_{p}^{\sigma} f(z)}\right)$.
If q satisfies the following subordination:

$$
\begin{equation*}
\varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \tag{3.24}
\end{equation*}
$$

then

$$
\left(\frac{z^{p}}{I_{p}^{\sigma} f(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant of (3.24).
Theorem 2. Let q be a convex univalent function in $U, q(z) \neq 0$ and $\frac{z q^{\prime}(z)}{q(z)}$ be starlike univalent in U. Assume that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{2 \zeta}{\Omega}(q(z))^{2}+\frac{\gamma}{\Omega} q(z)\right\}>0 \tag{3.25}
\end{equation*}
$$

If $f \in A(p), 0 \neq\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu} \in H[q(0), 1] \cap Q, \chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu)$ univalent in U, and

$$
\begin{equation*}
\tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \prec \chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \tag{3.26}
\end{equation*}
$$

where $\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu)$ is given by (3.2), then

$$
q(z) \prec\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu},
$$

and q is the best subordinant of (3.26).
Proof. Taking

$$
\theta(w)=\tau+\gamma w+\zeta w^{2} \text { and } \varphi(w)=\frac{\Omega}{w}
$$

it is easily observed that θ is analytic in \mathbb{C}, φ is analytic in \mathbb{C}^{*} and $\varphi(w) \neq$ $0\left(w \in \mathbb{C}^{*}\right)$. Since q is a convex (univalent) function it follows that

$$
\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}\right\}=\operatorname{Re}\left\{\frac{2 \zeta}{\Omega}(q(z))^{2}+\frac{\gamma}{\Omega} q(z)\right\} q^{\prime}(z)>0
$$

Thus the assertion (3.26) of Theorem 2 follows by an application of Lemma 2.
Putting $s=0$ and $\lambda=1-p(p \in N)$ in Theorem 2 , it is easy to check that the assumption (3.25) holds, we obtain the following corollary.

Corollary 9. Let q be a convex univalent function in $U, q(z) \neq 0$ and $\frac{z q^{\prime}(z)}{q(z)}$ be starlike univalent in U. If $f \in A(p), 0 \neq\left(\frac{z^{p}}{f(z)}\right)^{\mu} \in H[q(0), 1] \cap Q$ and $G(f, p, \gamma, \tau, \zeta, \Omega, \mu)$ univalent in U, where $G(f, p, \gamma, \tau, \zeta, \Omega, \mu)$ is given by (3.13), then

$$
\begin{equation*}
\tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \prec G(f, p, \gamma, \tau, \zeta, \Omega, \mu) \tag{3.27}
\end{equation*}
$$

implies

$$
q(z) \prec\left(\frac{z^{p}}{f(z)}\right)^{\mu}
$$

and qis the best dominant of (3.27).
Putting $s=0$ in Theorem 2, it is easy to check that the assumption (3.25) holds, we obtain the following corollary.
Corollary 10. Let q be a convex univalent function in $U, q(z) \neq 0$ and $\frac{z q^{\prime}(z)}{q(z)}$ be starlike univalent in U. If $f \in A(p), 0 \neq\left(\frac{z^{p}}{D^{\lambda+p-1} f(z)}\right)^{\mu} \in H[q(0), 1] \cap Q$ and $D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu)$ univalent in U, where $D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu)$ is given by (3.17), then

$$
\begin{equation*}
\tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \prec D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu), \tag{3.28}
\end{equation*}
$$

implies

$$
q(z) \prec\left(\frac{z^{p}}{D^{\lambda+p-1} f(z)}\right)^{\mu}
$$

and q is the best dominant of (3.28).
Putting $s=1, b=v(v>-p)$ and $\lambda=1-p(p \in \mathbb{N})$ in Theorem 2, it is easy to check that the assumption (3.25) holds, we obtain the following corollary.
Corollary 11. Let q be a convex univalent function in $U, q(z) \neq 0$ and $\frac{z q^{\prime}(z)}{q(z)}$ be starlike univalent in U. If $f \in A(p), 0 \neq\left(\frac{z^{p}}{J_{v, p} f(z)}\right)^{\mu} \in H[q(0), 1] \cap Q$ and $(f, v, p, \gamma, \tau, \zeta, \Omega, \mu)$ univalent in U, where $(f, v, p, \gamma, \tau, \zeta, \Omega, \mu)$ is given by (3.19), then

$$
\begin{equation*}
\tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \prec(f, v, p, \gamma, \tau, \zeta, \Omega, \mu) \tag{3.29}
\end{equation*}
$$

implies

$$
q(z) \prec\left(\frac{z^{p}}{J_{v, p} f(z)}\right)^{\mu}
$$

and q is the best dominant of (3.29).
Putting $s=m\left(m \in \mathbb{N}_{0}\right), b=0$ and $\lambda=1-p(p \in \mathbb{N})$ in Theorem 2, it is easy to check that the assumption (3.25) holds, we obtain the following corollary.

Corollary 12. Let q be a convex univalent function in $U, q(z) \neq 0$ and $\frac{z q^{\prime}(z)}{q(z)}$ be starlike univalent in U. If $f \in A(p), 0 \neq\left(\frac{z^{p}}{I_{p}^{m} f(z)}\right)^{\mu} \in H[q(0), 1] \cap Q$ and $S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu)$ univalent in U, where $S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu)$ is given by (3.21), then

$$
\begin{equation*}
\tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \prec S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu) \tag{3.30}
\end{equation*}
$$

implies

$$
q(z) \prec\left(\frac{z^{p}}{I_{p}^{m} f(z)}\right)^{\mu}
$$

and q is the best dominant of (3.30).
Putting $s=\sigma(\sigma>0), b=1$ and $\lambda=1-p(p \in \mathbb{N})$ in Theorem 2 , it is easy to check that the assumption (3.25) holds, we obtain the following corollary.

Corollary 13. Let q be a convex univalent function in $U, q(z) \neq 0$ and $\frac{z q^{\prime}(z)}{q(z)}$ be starlike univalent in U. If $f \in A(p), 0 \neq\left(\frac{z^{p}}{I_{p}^{F} f(z)}\right)^{\mu} \in H[q(0), 1] \cap Q$ and $\varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu)$ univalent in U, where $\varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu)$ is given by (3.23), then

$$
\begin{equation*}
\tau+\gamma q(z)+\zeta(q(z))^{2}+\Omega \frac{z q^{\prime}(z)}{q(z)} \prec \varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu) \tag{3.31}
\end{equation*}
$$

implies

$$
q(z) \prec\left(\frac{z^{p}}{I_{p}^{\sigma} f(z)}\right)^{\mu}
$$

and q is the best dominant of (3.31).
Combining Theorem 1 and Theorem 2, we get the following sandwich theorem.

Theorem 3. Let q_{1} be convex univalent in U and q_{2} be univalent in $U, q_{1} \neq 0$ and $q_{2} \neq 0$ in U. Suppose that q_{1} and q_{2} satisfies (3.1) and (3.25), respectively. If $f \in A(p),\left(\frac{z^{p}}{J_{s, b}^{\lambda, b} f(z)}\right)^{\mu} \in H[q(0), 1] \cap Q$ and $\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu)$ is univalent in U, where $\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu)$ is defined in (3.2), then

$$
\begin{align*}
\tau+\gamma q_{1}(z)+\zeta\left(q_{1}(z)\right)^{2}+\Omega \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} & \prec \chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \tag{3.32}\\
& \prec \tau+\gamma q_{2}(z)+\zeta\left(q_{2}(z)\right)^{2}+\Omega \frac{z q_{2}^{\prime}(z)}{q_{2}(z)},
\end{align*}
$$

implies

$$
q_{1}(z) \prec\left(\frac{z^{p}}{J_{s, b}^{\lambda, p} f(z)}\right)^{\mu} \prec q_{2}(z)
$$

and q_{1}, q_{2} are respectively the best subordinant and dominant of (3.32).
Putting $s=0$ and $\lambda=1-p(p \in \mathbb{N})$ in Theorem 3, we obtain the following corollary.

Corollary 14. Let q_{1} be convex univalent in U and q_{2} univalent in $U, q_{1} \neq 0$ and
$q_{2} \neq 0$ in U. Suppose that q_{1} and q_{2} satisfies (3.1) and (3.25), respectively. If $f \in A(p),\left(\frac{z^{p}}{f(z)}\right)^{\mu} \in H[q(0), 1] \cap Q$ and $G(f, p, \gamma, \tau, \zeta, \Omega, \mu)$ is univalent in U, where $G(f, p, \gamma, \tau, \zeta, \Omega, \mu)$ is defined in (3.13), then

$$
\begin{align*}
\tau+\gamma q_{1}(z)+\zeta\left(q_{1}(z)\right)^{2}+\Omega \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} & \prec G(f, p, \gamma, \tau, \zeta, \Omega, \mu) \tag{3.33}\\
& \prec \tau+\gamma q_{2}(z)+\zeta\left(q_{2}(z)\right)^{2}+\Omega \frac{z q_{2}^{\prime}(z)}{q_{2}(z)},
\end{align*}
$$

implies

$$
q_{1}(z) \prec\left(\frac{z^{p}}{f(z)}\right)^{\mu} \prec q_{2}(z)
$$

and q_{1}, q_{2} are respectively the best subordinant and dominant of (3.33).
Remark. Combining: (1) Corollary 5 and Corollary 10; (2) Corollary 6 and Corollary 11; (3) Corollary 7 and Corollary 12; (4)Corollary 8 and Corollary 13, we obtain similar sandwich theorems for the corresponding operators.

Acknowledgements The authors would like to thank the referees of the paper for their helpful suggestions.

References

[1] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math., Sci., 15(2004), 87-94.
[2] M. K. Aouf , T. Bulboaca and A. O. Mostafa, Subordination properties of subclasses of p-valent functions involving certain operators, Publ. Math. Debrecen, 73(2008), 401-416.
[3] T. Bulboacă, A class of superordination-preserving integral operators, Indag. Math. (N. S.)., 13(2002), 301-311.
[4] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math., 35(2002), 287-292.
[5] T. Bulboacă, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[6] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276(2002), 432-445.
[7] V. Kumar and S. L. Shakla, Multivalent functions defined by Ruscheweyh derivatives, I, Indian J. Pure Appl. Math., 15(1984), 1216-1227; II, Indian J. Pure Appl. Math., 15(1984), 1228-1238.
[8] J. L. Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct., 18(2007), 207-216.
[9] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[10] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.
[11] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48(2003), 815-826.
[12] J. Patel and P. Sahoo, Som applications of dierential subordination to certain oneparameter families of integral operators, Indian J. Pure Appl. Math., 35(2004), 11671177.
[13] J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal., 3(2009), 129-137.
[14] D. Raducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct., 18(2007), 933-943.
[15] G. S. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth RomanianFinnish Seminar, Part 1(Bucharest, 1981), Lecture Notes in Math. (Springer-Verlag), 1013, 362-372.
[16] S. Shams, S. R. Kulkarni and Jay M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Internat. J. Math. Math. Sci., (2006), Art. ID 94572, 1-3.
[17] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, J. Austr. Math. Anal. Appl., 3(2006), Art. 8, 1-11.
[18] H. M. Srivastava and A. A. Attiya, An integral operator associated with the HurwitzLerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18(2007), 207-216.
[19] H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[20] N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math. Math. Sci., 23(2000), 521-527.
[21] Z. G. Wang, Q. G. Li and Y. P. Jiang, Certain subclasses of multivalent analytic functions involving the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct., 21(2010), 221-234.

[^0]: * Corresponding Author.

 Received December 23, 2010; accepted September 23, 2011. 2010 Mathematics Subject Classification: 30C45.
 Key words and phrases: Multivalent functions, differential subordination, superordination, sandwich theorems, Srivastava-Attiya operator.

