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SANDWICH THEOREMS FOR HIGHER-ORDER

DERIVATIVES OF p-VALENT FUNCTIONS

DEFINED BY CERTAIN LINEAR OPERATOR

Mohamed K. Aouf and Tamer M. Seoudy

Abstract. In this paper, we obtain some applications of first order differ-
ential subordination and superordination results for higher-order deriva-
tives of p-valent functions involving certain linear operator. Some of our

results improve and generalize previously known results.

1. Introduction

Let H (U) be the class of analytic functions in the open unit disk U = {z ∈
C : |z| < 1} and let H[a, p] be the subclass of H (U) consisting of functions of
the form:

(1.1) f(z) = a+ apz
p + ap+1z

p+1 + · · · (a ∈ C).
For simplicity H[a] = H[a, 1]. Also, let A (p) be the subclass of H (U) consist-
ing of functions of the form:

(1.2) f(z) = zp +

∞∑
k=p+1

akz
k (p ∈ N = {1, 2, . . .}) .

which are p-valent in U. If f , g ∈ H (U), we say that f is subordinate to g or
f is superordinate to g, written f(z) ≺ g(z) if there exists a Schwarz function
ω, which (by definition) is analytic in U with ω(0) = 0 and |ω(z)| < 1 for
all z ∈ U, such that f(z) = g(ω(z)), z ∈ U. Furthermore, if the function g is
univalent in U, then we have the following equivalence (cf., e.g., [6], [9] and
[10]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let ϕ : C2 ×U → C and h (z) be univalent in U. If p (z) is analytic in U and
satisfies the first order differential subordination:

(1.3) ϕ
(
p (z) , zp

′
(z) ; z

)
≺ h (z) ,
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then p (z) is a solution of the differential subordination (1.3). The univalent
function q (z) is called a dominant of the solutions of the differential subordi-
nation (1.3) if p (z) ≺ q (z) for all p (z) satisfying (1.3). A univalent dominant
q̃ that satisfies q̃ ≺ q for all dominants of (1.3) is called the best dominant. If

p (z) and ϕ
(
p (z) , zp

′
(z) ; z

)
are univalent in U and if p(z) satisfies first order

differential superordination:

(1.4) h (z) ≺ ϕ
(
p (z) , zp

′
(z) ; z

)
,

then p (z) is a solution of the differential superordination (1.4). An analytic
function q (z) is called a subordinant of the solutions of the differential su-
perordination (1.4) if q (z) ≺ p (z) for all p (z) satisfying (1.4). A univalent
subordinant q̃ that satisfies q ≺ q̃ for all subordinants of (1.4) is called the
best subordinant. Using the results of Miller and Mocanu [10], Bulboaca [5]
considered certain classes of first order differential superordinations as well as
superordination-preserving integral operators [6]. Ali et al. [1], have used the
results of Bulboaca [5] to obtain sufficient conditions for normalized analytic
functions f ∈ A (1) to satisfy:

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1.
Also, Tuneski [15] obtained a sufficient condition for starlikeness of f ∈ A (1)

in terms of the quantity f ′′(z)f(z)
(f ′(z))2 . Recently, Shanmugam et al. [14] obtained

sufficient conditions for the normalized analytic function f ∈ A (1) to satisfy

q1(z) ≺
f(z)

zf ′(z)
≺ q2(z)

and

q1(z) ≺
z2f ′(z)

{f(z)}2
≺ q2(z).

They [14] also obtained results for functions defined by using Carlson-Shaffer
operator [7], Ruscheweyh derivative [12] and Sălăgean operator [13].

Upon differentiating both sides of (1.1) j-times with respect and to z, we
have

(1.5) f (j)(z) = δ (p; j) zp−j +
∞∑

k=p+1

δ (k; j) akz
k−j ,

where

(1.6) δ (p; j) =
p!

(p− j)!
(p > j; p ∈ N; j ∈ N0 = N ∪ {0}) .

For a function f ∈ A (p) , we define the linear operator Dn
p : A (p) → A (p) by:

D0
pf

(j)(z) = f (j)(z),



SANDWICH THEOREMS FOR HIGHER-ORDER DERIVATIVES 629

D1
pf

(j)(z) = D
(
f (j)(z)

)
= δ (p; j) zp−j +

∞∑
k=p+1

δ (k; j)

(
k − j

p− j

)
akz

k−j ,

D2
pf

(j)(z) = D
(
D1
pf

(j)(z)
)

= δ (p; j) zp−j +
∞∑

k=p+1

δ (k; j)

(
k − j

p− j

)2

akz
k−j ,

and (in general)

Dn
p f

(j)(z) = D(Dn−1
p f (j)(z))

= δ (p; j) zp−j +
∞∑

k=p+1

δ (k; j)

(
k − j

p− j

)n
akz

k−j(1.7)

(p > j; p, n ∈ N; j ∈ N0; z ∈ U) .

From (1.7), we can easily deduce that

(1.8) z
(
Dn
p f

(j)(z)
)′

= (p− j)Dn+1
p f (j)(z) (p > j; p ∈ N;n, j ∈ N0; z ∈ U) .

The operator Dn
p f

(j)(z) (p > j, p ∈ N, n, j ∈ N0) was introduced and studied
by Aouf [2, 3] where

f(z) = zp −
∞∑

k=p+1

akz
k (ak ≥ 0) .

We note that
(i) the differential operator Dn

p f
(0)(z) = Dn

p f(z) was introduced by Kamali
and Orhan [8] and Aouf and Mostafa [4];

(ii) the differential operatorDn
1 f

(0)(z) = Dnf(z) was introduced by Sălăgean
[13].

In this paper, we will derive several subordination results, superordination
results and sandwich results involving the operator Dn

p f
(j)(z).

2. Definitions and preliminaries

In order to prove our subordinations and superordinations, we need the
following definition and lemmas.

Definition 1 ([10]). Denote by Q, the set of all functions f that are analytic
and injective on U\E(f), where

E(f) =

{
ζ ∈ ∂U : lim

z→ζ
f (z) = ∞

}
,

and are such that f
′
(ζ) ̸= 0 for ζ ∈ ∂U\E (f).
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Lemma 1 ([10]). Let q (z) be univalent in U and θ and φ be analytic in a
domain D containing q(U) with φ (w) ̸= 0 when w ∈ q(U). Set

(2.1) ψ (z) = zq
′
(z)φ (q (z)) and h (z) = θ (q (z)) + ψ (z) .

Suppose that
(i) ψ (z) is starlike univalent in U ,

(ii) ℜ
{
zh

′
(z)

ψ(z)

}
> 0 for z ∈ U .

If p (z) is analytic with p(0) = q(0), p(U) ⊂ D and

(2.2) θ (p (z)) + zp
′
(z)φ (p (z)) ≺ θ (q (z)) + zq

′
(z)φ (q (z)) ,

then p(z) ≺ q(z) and q (z) is the best dominant.

Taking θ (w) = αw and φ (w) = γ in Lemma 1, Shanmugam et al. [14]
obtained the following lemma.

Lemma 2 ([14]). Let q (z) be univalent in U with q(0) = 1. Let α ∈ C, γ ∈ C∗,
further assume that

(2.3) ℜ

{
1 +

zq
′′
(z)

q′ (z)

}
> max

{
0,−ℜ

(
α

γ

)}
.

If p (z) is analytic in U , and

αp (z) + γzp
′
(z) ≺ αq (z) + γzq

′
(z) ,

then p (z) ≺ q (z) and q (z) is the best dominant.

Lemma 3 ([5]). Let q (z) be convex univalent in U and ϑ and ϕ be analytic in
a domain D containing q(U). Suppose that

(i) ℜ
{
ϑ
′
(q(z))

ϕ(q(z))

}
> 0 for z ∈ U ,

(ii) Ψ (z) = zq
′
(z)ϕ (q (z)) is starlike univalent in U .

If p(z) ∈ H[q(0), 1] ∩ Q, with p(U) ⊆ D, and ϑ (p (z)) + zp
′
(z)ϕ (p (z)) is

univalent in U and

(2.4) ϑ (q (z)) + zq
′
(z)ϕ (q (z)) ≺ ϑ (p (z)) + zp

′
(z)ϕ (p (z)) ,

then q(z) ≺ p(z) and q (z) is the best subordinant.

Taking ϑ (w) = αw and ϕ (w) = γ in Lemma 3, Shanmugam et al. [14]
obtained the following lemma.

Lemma 4 ([14]). Let q (z) be convex univalent in U, q(0) = 1. Let α ∈ C,
γ ∈ C∗ and ℜ

(
α
γ

)
> 0. If p(z) ∈ H[q(0), 1] ∩Q, αp (z) + γzp

′
(z) is univalent

in U and

αq (z) + γzq
′
(z) ≺ αp (z) + γzp

′
(z) ,

then q (z) ≺ p (z) and q (z) is the best subordinant.
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3. Sandwich results

Unless otherwise mentioned, we assume throughout this paper that p > j;
p ∈ N and n, j ∈ N0.

Theorem 1. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further,
assume that

(3.1) ℜ

{
1 +

zq
′′
(z)

q′ (z)

}
> max

{
0,−ℜ

(
1

γ

)}
.

If f ∈ A (p) satisfy the following subordination condition:
(3.2)

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

≺ q (z) + γzq
′
(z) ,

then
Dn
p f

(j)(z)

Dn+1
p f (j)(z)

≺ q (z)

and q (z) is the best dominant.

Proof. Define a function p (z) by

(3.3) p (z) =
Dn
p f

(j)(z)

Dn+1
p f (j)(z)

(z ∈ U) .

Then the function p (z) is analytic in U and p(0) = 1. Therefore, differentiat-
ing (3.3) logarithmically with respect to z and using the identity (1.8) in the
resulting equation, we have

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

= p (z) + γzp
′
(z) ,

that is,

p (z) + γzp
′
(z) ≺ q (z) + γzq

′
(z) .

Therefore, Theorem 1 now follows by applying Lemma 2. □

Putting q(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 1, we obtain the fol-

lowing corollary.

Corollary 1. Let γ ∈ C∗ and

ℜ
{
1−Bz

1 +Bz

}
> max

{
0,−ℜ

(
1

γ

)}
.

If f ∈ A (p) satisfy the following subordination condition:

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

≺ 1 +Az

1 +Bz
+γ

(A−B) z

(1 +Bz)
2 ,
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then

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

≺ 1 +Az

1 +Bz

and the function 1+Az
1+Bz is the best dominant.

Taking p = 1 and j = 0 in Theorem 1, we obtain the following subordination
result for Sălăgean operator which improves the result of Shanmugam et al. [14,
Theorem 5.1] and also obtained by Nechita [11, Corollary 7].

Corollary 2. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Fur-
ther assume that (3.1) holds. If f ∈ A (1) satisfies the following subordination
condition:

Dnf(z)

Dn+1f(z)
+ γ

{
1− Dnf(z)Dn+2f(z)

[Dn+1f(z)]
2

}
≺ q (z) + γzq

′
(z) ,

then
Dnf(z)

Dn+1f(z)
≺ q (z)

and q (z) is the best dominant.

Remark 1. Taking n = j = 0 and p = 1 in Theorem 1, we obtain the subordi-
nation result of Shanmugam et al. [14, Theorem 3.1].

Now, by appealing to Lemma 4 it can be easily prove the following theorem.

Theorem 2. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C with

ℜ (γ̄) > 0. If f ∈ A (p) such that
Dn

p f
(j)(z)

Dn+1
p f(j)(z)

∈ H [q (0) , 1] ∩Q,

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

is univalent in U , and the following superordination condition

q (z) + γzq
′
(z) ≺

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

holds, then

q (z) ≺
Dn
p f

(j)(z)

Dn+1
p f (j)(z)

and q (z) is the best subordinant.

Taking q(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 2, we have the following

corollary.



SANDWICH THEOREMS FOR HIGHER-ORDER DERIVATIVES 633

Corollary 3. Let γ ∈ C with ℜ (γ̄) > 0. If f ∈ A (p) such that
Dn

p f
(j)(z)

Dn+1
p f(j)(z)

∈
H [q (0) , 1] ∩Q,

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

is univalent in U , and the following superordination condition

1 +Az

1 +Bz
+γ

(A−B) z

(1 +Bz)
2 ≺

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

holds, then

1 +Az

1 +Bz
≺

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

and q (z) is the best subordinant.

Taking p = 1 and j = 0 in Theorem 2, we obtain the following superordina-
tion result for Sălăgean operator which improves the result of Shanmugam et
al. [14, Theorem 5.2] and also obtained by Nechita [11, Corollary 12].

Corollary 4. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C
with ℜ (γ̄) > 0. If f ∈ A (1) such that Dnf(z)

Dn+1f(z) ∈ H [q (0) , 1] ∩Q,

Dnf(z)

Dn+1f(z)
+ γ

{
1− Dnf(z).Dn+2f(z)

[Dn+1f(z)]
2

}
is univalent in U , and the following superordination condition

q (z) + γzq
′
(z) ≺ Dnf(z)

Dn+1f(z)
+ γ

{
1− Dnf(z).Dn+2f(z)

[Dn+1f(z)]
2

}
holds, then

q (z) ≺ Dnf(z)

Dn+1f(z)

and q (z) is the best subordinant.

Remark 2. Taking j = n = 0 and p = 1 in Theorem 2, we obtain the superor-
dination result of Shanmugam et al. [14, Theorem 3.2].

Combining Theorem 1 and Theorem 2, we get the following sandwich theo-
rem for the linear operator Dn

p f
(j)(z).

Theorem 3. Let q1 (z) be convex univalent in U with q1 (0) = 1, γ ∈ C
with ℜ (γ̄) > 0, q2 (z) be univalent in U with q2 (0) = 1, and satisfies (3.1) . If

f ∈ A (p) such that
Dn

p f
(j)(z)

Dn+1
p f(j)(z)

∈ H [q (0) , 1] ∩Q,

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}
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is univalent in U , and

q1 (z) + γzq
′

1 (z) ≺
Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

≺ q2 (z) + γzq
′

2 (z)

holds, then

q1 (z) ≺
Dn
p f

(j)(z)

Dn+1
p f (j)(z)

≺ q2 (z)

and q1 (z) and q2 (z) are, respectively, the best subordinant and the best domi-
nant.

Taking qi(z) =
1+Aiz
1+Biz

(i = 1, 2;−1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1) in Theorem
3, we obtain the following corollary.

Corollary 5. Let γ ∈ C with ℜ (γ̄) > 0. If f ∈ A (p) such that
Dn

p f
(j)(z)

Dn+1
p f(j)(z)

∈
H [q (0) , 1] ∩Q,

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

is univalent in U , and

1 +A1z

1 +B1z
+
γ

λ

(A1 −B1) z

(1 +B1z)
2

≺
Dn
p f

(j)(z)

Dn+1
p f (j)(z)

+ γ (p− j)

{
1−

Dn
p f

(j)(z)Dn+2
p f (j)(z)[

Dn+1
p f (j)(z)

]2
}

≺ 1 +A2z

1 +B2z
+
γ

λ

(A2 −B2) z

(1 +B2z)
2

holds, then

1 +A1z

1 +B1z
≺

Dn
p f

(j)(z)

Dn+1
p f (j)(z)

≺ 1 +A2z

1 +B2z

and 1+A1z
1+B1z

and 1+A2z
1+B2z

are, respectively, the best subordinant and the best dom-
inant.

Taking p = 1 and j = 0 in Theorem 3, we obtain the following sandwich
result for Sălăgean operator which improves the result of Shanmugam et al.
[14, Theorem 5.3].

Corollary 6. Let q1 (z) be convex univalent in U with q1 (0) = 1, γ ∈ C
with ℜ (γ̄) > 0, q2 (z) be univalent in U with q2 (0) = 1, and satisfies (3.1) . If

f ∈ A (1) such that Dnf(z)
Dn+1f(z) ∈ H [q (0) , 1] ∩Q,

Dnf(z)

Dn+1f(z)
+ γ

{
1− Dnf(z).Dn+2f(z)

[Dn+1f(z)]
2

}
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is univalent in U , and

q1 (z)+γzq
′

1 (z) ≺
Dnf(z)

Dn+1f(z)
+γ

{
1− Dnf(z).Dn+2f(z)

[Dn+1f(z)]
2

}
≺ q2 (z)+γzq

′

2 (z)

holds, then

q1 (z) ≺
Dnf(z)

Dn+1f(z)
≺ q2 (z)

and q1 (z) and q2 (z) are, respectively, the best subordinant and the best domi-
nant.

Remark 3. Taking n = j = 0 and p = 1 in Theorem 3, we obtain the sandwich
result of Shanmugam et al. [14, Corollary 3.3].
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