• Title/Summary/Keyword: finite group action

Search Result 50, Processing Time 0.02 seconds

GROUP ACTIONS IN A REGULAR RING

  • HAN, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.807-815
    • /
    • 2005
  • Let R be a ring with identity, X the set of all nonzero, nonunits of Rand G the group of all units of R. We will consider two group actions on X by G, the regular action and the conjugate action. In this paper, by investigating two group actions we can have some results as follows: First, if G is a finitely generated abelian group, then the orbit O(x) under the regular action on X by G is finite for all nilpotents x $\in$ X. Secondly, if F is a field in which 2 is a unit and F $\backslash\;\{0\}$ is a finitley generated abelian group, then F is finite. Finally, if G in a unit-regular ring R is a torsion group and 2 is a unit in R, then the conjugate action on X by G is trivial if and only if G is abelian if and only if R is commutative.

GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.253-260
    • /
    • 2002
  • For an outer action $\alpha$ of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action $\beta$ of F on the crossed product algebra M $\times$$_{\alpha}$ G = (M $\times$$_{\alpha}$ F. We generalize this to infinite group actions. For an outer action $\alpha$ of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When $\alpha$ satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action $\alpha$ of a compact group G and a closed normal subgroup H, we prove $M^{G}$ = ( $M^{H}$)$^{{beta}(G/H)}$for a minimal action $\beta$ of G/H on $M^{H}$.f G/H on $M^{H}$.TEX> H/.

INDEX AND STABLE RANK OF C*-ALGEBRAS

  • Kim, Sang Og
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1999
  • We show that if the stable rank of $B^{\alpha}$ is one, then the stable rank of B is less than or equal to the order of G for any action of a finite group G. Also we give a short proof to the known fact that if the action of a finite group on a $C^*$-algebra B is saturated then the canonical conditional expectation from B to $B^{\alpha}$ is of index-finite type and the crossed product $C^*$-algebra is isomorphic to the algebra of compact operators on the Hilbert $B^{\alpha}$-module B.

  • PDF

THE ZERO-DIVISOR GRAPH UNDER A GROUP ACTION IN A COMMUTATIVE RING

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1097-1106
    • /
    • 2010
  • Let R be a commutative ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will investigate some ring theoretic properties of R by considering $\Gamma$(R), the zero-divisor graph of R, under the regular action on X by G as follows: (1) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then there is a vertex of $\Gamma$(R) which is adjacent to every other vertex in $\Gamma$(R) if and only if R is a local ring or $R\;{\simeq}\;\mathbb{Z}_2\;{\times}\;F$ where F is a field; (2) If R is a local ring such that X is a union of n distinct orbits under the regular action of G on X, then all ideals of R consist of {{0}, J, $J^2$, $\ldots$, $J^n$, R} where J is the Jacobson radical of R; (3) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then the number of all ideals is finite and is greater than equal to the number of orbits.

Design and Implementation of Group Behaviors for Doves by Using a Finite State Machine (유한상태기계를 사용한 비둘기들에 대한 집단행동의 설계 및 구현)

  • Lee, Jae-Moon;Cho, Sae-Hong
    • Journal of Korea Game Society
    • /
    • v.10 no.3
    • /
    • pp.93-102
    • /
    • 2010
  • This paper is to design and implement the system to simulate spontaneously the group behaviors for the various states of doves. To do this, the group behaviors of doves were divided into the four action models such as 'Flying', 'Landing', 'Eating' and 'Taking off'. The steering forces composing of each action model were found and each action model was designed by using the finite state machine. The designed system was implemented by integrating the Ogre engine. From the simulations of the implemented system, the values of the parameters for the steering forces were found so that it can represent the spontaneous group behaviors of doves.

GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2009
  • Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if E(R), the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)\;=\;o_r(x)$, $o_c(x)\;=\;\{x\}$ for all $x\;{\in}\;X$ where $o_{\ell}(x)$ (resp. $o_r(x)$, $o_c(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2\;=\;1\;+\;1\;{\in}\;G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.

FIXED POING ALGEBRAS OF UHF-ALGEBRA $S^*$

  • Byun, Chang-Ho;Cho, Sung-Je;Lee, Sa-Ge
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.179-183
    • /
    • 1988
  • In this paper we study a $C^{*}$-dynamical system (A, G, .alpha.) where A is a UHF-algebra, G is a finite abelian group and .alpha. is a *-automorphic action of product type of G on A. In [2], A. Kishimoto considered the case G= $Z_{n}$, the cyclic group of order n and investigated a condition in order that the fixed point algebra $A^{\alpha}$ of A under the action .alpha. is UHF. In later N.J. Munch studied extremal tracial states on $A^{\alpha}$ by employing the method of A. Kishimoto [3], where G is a finite abelian group. Generally speaking, when G is compact (not necessarily discrete and abelian), $A^{\alpha}$ is an AF-algebra and its ideal structure was well analysed by N. Riedel [4]. Here we obtain some conditions for $A^{\alpha}$ to be UHF, where G is a finite abelian group, which is an extension of the result of A. Kishimoto.oto.

  • PDF

HOMOTOPY FIXED POINT SET $FOR \rho-COMPACT$ TORAL GROUP

  • Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.143-148
    • /
    • 2001
  • First, we show the finiteness property of the homotopy fixed point set of p-discrete toral group. Let $G_\infty$ be a p-discrete toral group and X be a finite complex with an action of $G_\infty such that X^K$ is nilpotent for each finit p-subgroup K of $G_\infty$. Assume X is $F_\rho-complete$. Then X(sup)hG$\infty$ is F(sub)p-finite. Using this result, we give the condition so that X$^{hG}$ is $F_\rho-finite for \rho-compact$ toral group G.

  • PDF

Nilpotent action by an elementary amenable group and euler characteristic

  • Lee, Jong-Bum;Park, Cnah-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.253-258
    • /
    • 1996
  • Let X be a finite connected CW-complex, $\Gamma = \pi_1(X)$ its fundamental group, $\tilde{X}$ its universal covering space. Then $\Gamma$ acts on $\tilde{X}$ by covering transformations and on the homology group $H_*(\tilde{X})$. In this note we establish the following vanishing result for the Euler characteristic $x(X)$ of X.

  • PDF

SUBGROUP ACTIONS AND SOME APPLICATIONS

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.181-189
    • /
    • 2011
  • Let G be a group and X be a nonempty set and H be a subgroup of G. For a given ${\phi}_G\;:\;G{\times}X{\rightarrow}X$, a group action of G on X, we define ${\phi}_H\;:\;H{\times}X{\rightarrow}X$, a subgroup action of H on X, by ${\phi}_H(h,x)={\phi}_G(h,x)$ for all $(h,x){\in}H{\times}X$. In this paper, by considering a subgroup action of H on X, we have some results as follows: (1) If H,K are two normal subgroups of G such that $H{\subseteq}K{\subseteq}G$, then for any $x{\in}X$ ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) = ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_K}(x)$) = ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$); additionally, in case of $K{\cap}stab_{{\phi}_G}(x)$ = {1}, if ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}H}(x)$) and ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$) are both finite, then ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) is finite; (2) If H is a cyclic subgroup of G and $stab_{{\phi}_H}(x){\neq}$ {1} for some $x{\in}X$, then $orb_{{\phi}_H}(x)$ is finite.