• Title/Summary/Keyword: finite commutative ring

Search Result 63, Processing Time 0.025 seconds

NEGACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm

  • Klin-eam, Chakkrid;Phuto, Jirayu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1385-1422
    • /
    • 2019
  • Let p be an odd prime. The algebraic structure of all negacyclic codes of length $8_{p^s}$ over the finite commutative chain ring ${\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}$ where $u^2=0$ is studied in this paper. Moreover, we classify all negacyclic codes of length $8_{p^s}$ over ${\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}$ into 5 cases, i.e., $p^m{\equiv}1$ (mod 16), $p^m{\equiv}3$, 11 (mod 16), $p^m{\equiv}5$, 13 (mod 16), $p^m{\equiv}7$, 15 (mod 16) and $p^m{\equiv}9$ (mod 16). From that, the structures of dual and some self-dual negacyclic codes and number of codewords of negacyclic codes are obtained.

PRIMARY DECOMPOSITION OF SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A BÉZOUT DOMAIN

  • Fatemeh Mirzaei;Reza Nekooei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.475-484
    • /
    • 2023
  • Let R be a commutative ring with identity. In this paper, we characterize the prime submodules of a free R-module F of finite rank with at most n generators, when R is a GCD domain. Also, we show that if R is a Bézout domain, then every prime submodule with n generators is the row space of a prime matrix. Finally, we study the existence of primary decomposition of a submodule of F over a Bézout domain and characterize the minimal primary decomposition of this submodule.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

ON RINGS WHOSE ANNIHILATING-IDEAL GRAPHS ARE BLOW-UPS OF A CLASS OF BOOLEAN GRAPHS

  • Guo, Jin;Wu, Tongsuo;Yu, Houyi
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.847-865
    • /
    • 2017
  • For a finite or an infinite set X, let $2^X$ be the power set of X. A class of simple graph, called strong Boolean graph, is defined on the vertex set $2^X{\setminus}\{X,{\emptyset}\}$, with M adjacent to N if $M{\cap}N={\emptyset}$. In this paper, we characterize the annihilating-ideal graphs $\mathbb{AG}(R)$ that are blow-ups of strong Boolean graphs, complemented graphs and preatomic graphs respectively. In particular, for a commutative ring R such that AG(R) has a maximum clique S with $3{\leq}{\mid}V(S){\mid}{\leq}{\infty}$, we prove that $\mathbb{AG}(R)$ is a blow-up of a strong Boolean graph if and only if it is a complemented graph, if and only if R is a reduced ring. If assume further that R is decomposable, then we prove that $\mathbb{AG}(R)$ is a blow-up of a strong Boolean graph if and only if it is a blow-up of a pre-atomic graph. We also study the clique number and chromatic number of the graph $\mathbb{AG}(R)$.

FIBREWISE INFINITE SYMMETRIC PRODUCTS AND M-CATEGORY

  • Hans, Scheerer;Manfred, Stelzer
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.671-682
    • /
    • 1999
  • Using a base-point free version of the infinite symmetric product we define a fibrewise infinite symmetric product for any fibration $E\;\longrightarrow\;B$. The construction works for any commutative ring R with unit and is denoted by $R_f(E)\;l\ongrightarrow\;B$. For any pointed space B let $G_I(B)\;\longrightarrow\;B$ be the i-th Ganea fibration. Defining $M_R-cat(B):= inf{i\midR_f(G_i(B))\longrihghtarrow\;B$ admits a section} we obtain an approximation to the Lusternik-Schnirelmann category of B which satisfies .g.a product formula. In particular, if B is a 1-connected rational space of finite rational type, then $M_Q$-cat(B) coincides with the well-known (purely algebraically defined) M-category of B which in fact is equal to cat (B) by a result of K.Hess. All the constructions more generally apply to the Ganea category of maps.

  • PDF

ON THE LOCAL COHOMOLOGY OF MINIMAX MODULES

  • Mafi, Amir
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1125-1128
    • /
    • 2011
  • Let R be a commutative Noetherian ring, a an ideal of R, and M a minimax R-module. We prove that the local cohomology modules $H^j_a(M)$ are a-cominimax; that is, $Ext^i_R$(R/a, $H^j_a(M)$) is minimax for all i and j in the following cases: (a) dim R/a = 1; (b) cd(a) = 1, where cd is the cohomological dimension of a in R; (c) dim $R{\leq}2$. In these cases we also prove that the Bass numbers and the Betti numbers of $H^j_a(M)$ are finite.

COMINIMAXNESS WITH RESPECT TO IDEALS OF DIMENSION ONE

  • Irani, Yavar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.289-298
    • /
    • 2017
  • Let R denote a commutative Noetherian (not necessarily local) ring and let I be an ideal of R of dimension one. The main purpose of this note is to show that the category ${\mathfrak{M}}(R,\;I)_{com}$ of I-cominimax R-modules forms an Abelian subcategory of the category of all R-modules. This assertion is a generalization of the main result of Melkersson in [15]. As an immediate consequence of this result we get some conditions for cominimaxness of local cohomology modules for ideals of dimension one. Finally, it is shown that the category ${\mathcal{C}}^1_B(R)$ of all R-modules of dimension at most one with finite Bass numbers forms an Abelian subcategory of the category of all R-modules.

INJECTIVE DIMENSIONS OF LOCAL COHOMOLOGY MODULES

  • Vahidi, Alireza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1331-1336
    • /
    • 2017
  • Assume that R is a commutative Noetherian ring with non-zero identity, a is an ideal of R, X is an R-module, and t is a non-negative integer. In this paper, we present upper bounds for the injective dimension of X in terms of the injective dimensions of its local cohomology modules and an upper bound for the injective dimension of $H^t_{\alpha}(X)$ in terms of the injective dimensions of the modules $H^i_{\alpha}(X)$, $i{\neq}t$, and that of X. As a consequence, we observe that R is Gorenstein whenever $H^t_{\alpha}(R)$ is of finite injective dimension for all i.

GLn- DECOMPOSITION OF THE SCHUR COMPLEX Sr2 φ)

  • Choi, Eun J.;Kim, Young H.;Ko, Hyoung J.;Won, Seoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.29-51
    • /
    • 2003
  • In this paper we construct a natural filtration associated to the plethysm $S_{r}(\wedge^2 \varphi)$ over arbitrary commutative ring R. Let $\phi$ : G longrightarrow F be a morphism of finite free R-modules. We construct the natural filtration of $S_{r}(\wedge^2 \varphi)$ as a $GL(F){\times}GL(G)$- complex such that its associated graded complex is ${\Sigma}_{{\lambda}{\in}{\Omega}_{\gamma}}=L_{2{\lambda}{\varphi}$, where ${{\Omega}_{\gamma}}^{-}$ is a set of partitions such that $│\wedge│\;=;{\gamma}\;and\;2{\wedge}$ is a partition of which i-th term is $2{\wedge}_{i}$. Specializing our result, we obtain the filtrations of $S_{r}(\wedge^2 F)\;and\;D_{r}(D_2G).

COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO IDEALS OF DIMENSION ONE

  • Roshan-Shekalgourabi, Hajar
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.211-218
    • /
    • 2018
  • Let R be a commutative Noetherian ring, a be an ideal of R and M be an R-module. It is shown that if $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}{\dim}\;M$, then the R-module $Ext^i_R(N,M)$ is minimax for all $i{\geq}0$ and for any finitely generated R-module N with $Supp_R(N){\subseteq}V(a)$ and dim $N{\leq}1$. As a consequence of this result we obtain that for any a-torsion R-module M that $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}dim$ M, all Bass numbers and all Betti numbers of M are finite. This generalizes [8, Corollary 2.7]. Also, some equivalent conditions for the cominimaxness of local cohomology modules with respect to ideals of dimension at most one are given.