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COMINIMAXNESS WITH RESPECT TO IDEALS OF

DIMENSION ONE

Yavar Irani

Abstract. Let R denote a commutative Noetherian (not necessarily lo-
cal) ring and let I be an ideal of R of dimension one. The main purpose
of this note is to show that the category M (R, I)com of I-cominimax R-
modules forms an Abelian subcategory of the category of all R-modules.
This assertion is a generalization of the main result of Melkersson in [15].
As an immediate consequence of this result we get some conditions for
cominimaxness of local cohomology modules for ideals of dimension one.
Finally, it is shown that the category C1

B
(R) of all R-modules of dimen-

sion at most one with finite Bass numbers forms an Abelian subcategory
of the category of all R-modules.

1. Introduction

Let R denote a commutative Noetherian ring, and let I be an ideal of R.
In [9], Hartshorne defined an R-module L to be I-cofinite, if Supp(L) ⊆ V (I)

and ExtiR(R/I, L) is finitely generated module for all i. He posed the following
question:

Is the category M (R, I)cof of I-cofinite modules forms an Abelian subcat-

egory of the category of all R-modules? That is, if f : M −→ N is an R-

homomorphism of I-cofinite modules, are ker f and cokerf I-cofinite?

Hartshorne proved that if I is a prime ideal of dimension one in a complete
regular local ring R, then the answer to his question is yes. On the other hand,
in [8], Delfino and Marley extended this result to arbitrary complete local
rings. Recently, Kawasaki [11] generalized the Delfino and Marley’s result
for an arbitrary ideal I of dimension one in a local ring R. More recently,
Melkersson in [15] have removed the local assumption on R.

The main purpose of this note is to generalize this result to other categories
of modules. In this direction we present similar results for two new categories
of modules. More precisely, we shall show that:

Received February 3, 2016; Revised May 14, 2016.
2010 Mathematics Subject Classification. 13D45, 14B15, 13E05.
Key words and phrases. arithmetic rank, Bass number, cominimax modules, minimax

modules.

c©2017 Korean Mathematical Society

289



290 YAVAR IRANI

Theorem 1.1. Let R be a Noetherian ring and I be an ideal of R with

dimR/I = 1. Let M (R, I)com denote the category of I-cominimax mod-

ules. Then M (R, I)com forms an Abelian subcategory of the category of all

R-modules.

Our methods of the proof for Theorem 1.1, is based on an adaptation of the
technique used in [5]. One of our tools for proving Theorem 1.1 is the following,
which is a generalization of a similar result in [5].

Proposition 1.2. Let I denote an ideal of a Noetherian ring R and let M

be an R-module such that dimM ≤ 1 and Supp(M) ⊆ V (I). Then M is I-

cominimax if and only if the R-modules HomR(R/I,M) and Ext1R(R/I,M)
are minimax.

Recall that, we say an R-moduleM is minimax if there is a finitely generated
submodule N of M , such that M/N is Artinian. The interesting class of
minimax modules was introduced by H. Zöshinger in [17] and he has in [17]
and [18] given many equivalent conditions for a module to be minimax. Also,
the R-module M is said to be an I-cominimax if support of M is contained
in V (I) and ExtiR(R/I,M) is minimax for all i ≥ 0. The concept of the I-
cominimax modules were introduced in [2] as a generalization of important
notion of I-cofinite modules.

Recall that, for each R-module M , all integers j ≥ 0 and all prime ideals p
of R, the j-th Bass number of M with respect to p is defined as µj(p,M) =

dimk(p) Ext
j
Rp

(k(p),Mp), where k(p) := Rp/pRp. Our other important result

in this paper is the following:

Theorem 1.3. Let R be a Noetherian ring and let C1
B(R) denote the category

of all R-modules of dimension at most one with finite Bass numbers. Then

C1
B(R) forms an Abelian subcategory of the category of all R-modules.

Our main tools for proving Theorem 1.3 is the following lemma.

Lemma 1.4. Let R be a Noetherian ring and M be an R-module with dimM =
d < ∞. Then the followings are equivalent:

(i) For each p ∈ Spec(R) and any 0 ≤ i ≤ d, the Bass numbers µi(p,M) are
finite.

(ii) For each p ∈ Spec(R) and any i ≥ 0, the Bass numbers µi(p,M) are

finite.

Finally, we get the following conditions for cominimaxness of local cohomol-
ogy modules for ideals of dimension one.

Theorem 1.5. Let (R,m) be a Noetherian local ring and I be an ideal of R

with dimR/I = 1. Then for any R-module M , the following conditions are

equivalent:
(a) ExtiR(R/I,M) is minimax for all i < cd(I,M) + 2.
(b) Hi

I(M) is I-cominimax for all i.
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(c) ExtiR(R/I,M) is minimax for all i.

(d) ExtiR(N,M) is minimax for all i < cd(I,M) + 2 and for any finitely

generated R-module N with SuppN ⊆ V (I).

(e) ExtiR(N,M) is minimax for all i < cd(I,M) + 2 and for some finitely

generated R-module N with SuppN = V (I).

(f) ExtiR(N,M) is minimax for all i and for any finitely generated R-module

N with SuppN ⊆ V (I).
(g) ExtiR(N,M) is minimax for all i and for some finitely generated R-

module N with SuppN = V (I).
(h) µi(p,M) is finite for all p ∈ V (I) and for all i < cd(I,M) + 2.
(i) µi(p,M) is finite for all p ∈ V (I) and for all i.

Throughout this paper, R will always be a commutative Noetherian ring
with non-zero identity and I will be an ideal of R. For an Artinian R-module
A we denote by AttR A the set of attached prime ideals of A. For each R-
module L, we denote by AsshRL the set {p ∈ AssR L : dimR/p = dimL} . We
shall use MaxR to denote the set of all maximal ideals of R. Also, for any ideal
a of R, we denote {p ∈ SpecR : p ⊇ a} by V (a). Finally, for any ideal b of R,
the radical of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b

for some n ∈ N}. For any unexplained notation and terminology we refer the
reader to [7] and [12].

2. Two Abelian categories of modules

The following lemma is crucial for the proof of the next theorem.

Lemma 2.1. Let R be a Noetherian ring and M be an R-module with dimM =
d < ∞. Then the followings are equivalent:

(i) For each p ∈ Spec(R) and any 0 ≤ i ≤ d, the Bass numbers µi(p,M) are
finite.

(ii) For each p ∈ Spec(R) and any i ≥ 0, the Bass numbers µi(p,M) are

finite.

Proof. (ii)⇒(i) Is clear.
(i)⇒(ii) Using localization we may assume (R,m, k) is a local Noetherian

ring and p = m is the unique maximal ideal of R. As by [7, Corollary 10.2.8]
the R-module ER(k), the injective hull of k, is Artinian it follows from the
hypothesis and from the definition of local cohomology modules that for any
0 ≤ i ≤ d the R-module Hi

m(M) is Artinian. But in view of [7, Theorem 6.1.2]
we have Hi

m(M) = 0 for all integers i > d. Therefore for all integers i ≥ 0
the R-modules Hi

m(M) are Artinian and hence are m-cofinite. So the assertion
follows from the [14, Proposition 3.9]. �

Now we are ready to state and prove the first main result of this section.
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Theorem 2.2. Let R be a Noetherian ring and let C1
B(R) denote the category

of all R-modules of dimension at most one with finite Bass numbers. Then

C1
B(R) forms an Abelian subcategory of the category of all R-modules.

Proof. Let M,N ∈ C1
B(R) and f : M → N be an R-homomorphism. It is

enough to prove that the R-modules ker(f) and coker(f) are in C1
B(R).

Now, the exact sequence

0 −→ ker(f) −→ M −→ im(f) −→ 0,

implies that for each p ∈ Spec(R) and any 0 ≤ i ≤ 1 the Bass numbers
µi(p, ker(f)) are finite. So by Lemma 2.1 it follows that ker(f) is in C1

B(R).
Now the reminder part of the proof follows from the exact sequences

0 −→ ker(f) −→ M −→ im(f) −→ 0,

and

0 −→ im(f) −→ N −→ coker(f) −→ 0,

as required. �

The following lemma will be useful in the proof of Proposition 2.4.

Lemma 2.3. Let R be a Noetherian ring and I be an ideal of R. Then for

every integer t ≥ 0 and any R-module T the following conditions are equivalent:
(i) ExtnR(R/I, T ) is minimax for all 0 ≤ n ≤ t.

(ii) For any finitely generated R-module N with support in V (I), ExtnR(N, T )
is minimax for all 0 ≤ n ≤ t.

Proof. The assertion follows from [1, Lemma 2.2] using [3, Lemma 2.1]. �

Now we are ready to state and prove the second main result of this section.

Proposition 2.4. Let I be an ideal of Noetherian ring R and M be a non-

zero R-module such that dim Supp(M) ≤ 1 and Supp(M) ⊆ V (I). Then the

following statements are equivalent:
(i) The R-module M is I-cominimax.

(ii) The R-modules HomR(R/I,M) and Ext1R(R/I,M) are minimax.

Proof. (i)⇒(ii) Is clear.
(ii)⇒(i) If dimSupp(M) = 0, then the R-module HomR(R/I,M) is min-

imnax of dimension 0 and hence is Artinian. Therefore, it follows from [7,
Theorem 7.1.2] that M is Artinian. So the assertion is clear in this case. So
we may assume dimSupp(M) = 1. Now, we use induction on t = araM (I) :=
ara(I +AnnR(M)/AnnR(M)). If t = 0, then it follows from the definition that
In ⊆ AnnR(M) and so M = (0 :M In) for some natural number n. Therefore,
the assertion holds by Lemma 2.3 in this case. So assume that t > 0 and the
result has been proved for 0, 1, . . . , t− 1. Let

T := {p ∈ Supp(M) | dimR/p = 1}.
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Now, it is easy to see that T ⊆ AsshR(M). But, since M is I-torsion, it is easy
to see that AssR M = AssR HomR(R/I,M) is finite. Therefore T is a finite
set. Moreover, using the definition of the minimax modules and [12, Exercice
7.7] it is easy to see that, for each p ∈ T , the Rp-module HomRp

(Rp/IRp,Mp)
is finitely generated and Mp is an IRp-torsion Rp-module, with Supp(Mp) ⊆
V (pRp). Thus, the Rp-module HomRp

(Rp/IRp,Mp) is Artinian. Consequently,
according to Melkersson’s results [13, Theorem 1.3] and [14, Proposition 4.3],
Mp is an Artinian and IRp-cofinite Rp-module. Let

T := {p1, . . . , pn}.

By [4, Lemma 2.5], we have

V (IRpj
) ∩ AttRpj

(Mpj
) ⊆ V (pjRpj

)

for all j = 1, 2, . . . , n. Next, let

U :=
n
⋃

j=1

{q ∈ SpecR | qRpj
∈ AttRpj

(Mpj
)}.

Then it is easy to see that U ∩ V (I) ⊆ T .
On the other hand, by definition of t = araM (I) ≥ 1, there exist elements

y1, . . . , yt ∈ I, such that

Rad(I +AnnR(M)/AnnR(M)) = Rad((y1, . . . , yt) + AnnR(M)/AnnR(M)).

Now, as

I 6⊆
⋃

q∈U\V (I)

q,

it follows that
(y1, . . . , yt) + AnnR(M) 6⊆

⋃

q∈U\V (I)

q.

But, since for each q ∈ U we have

qRpj
∈ AttRpj

(Mpj
)

for some integer 1 ≤ j ≤ n, it follows that

AnnR(M)Rpj
⊆ AnnRpj

(Mpj
) ⊆ qRpj

,

which implies AnnR(M) ⊆ q. Therefore from the fact that

AnnR(M) ⊆
⋂

q∈U\V (I)

q,

it follows that
(y1, . . . , yt) 6⊆

⋃

q∈U\V (I)

q.

Therefore, by [12, Exercise 16.8] there is a ∈ (y2, . . . , yt) such that

y1 + a 6∈
⋃

q∈U\V (I)

q.
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Let x := y1 + a. Then x ∈ I and

Rad(I +AnnR(M)/AnnR(M)) = Rad((x, y2, . . . , yt) + AnnR(M)/AnnR(M)).

Next, let N := (0 :M x). Now, it is easy to see that

araN (I) = ara(I +AnnR(N)/AnnR(N)) ≤ t− 1.

(Note that x ∈ AnnR(N) and hence

Rad(I +AnnR(N)/AnnR(N)) = Rad((y2, . . . , yt) + AnnR(N)/AnnR(N)).)

Now, the exact sequence

0 −→ N −→ M −→ xM −→ 0

induces an exact sequence

0 −→ HomR(R/I,N) −→ HomR(R/I,M) −→ HomR(R/I, xM)

−→ Ext1R(R/I,N) −→ Ext1R(R/I,M),

which implies the R-modules HomR(R/I,N) and Ext1R(R/I,N) are minimax.
Consequently, by the inductive hypothesis, the R-module N is I-cominimax.
Now, the exact sequence

0 −→ N −→ M −→ xM −→ 0

induces an exact sequence

Ext1R(R/I,M) −→ Ext1R(R/I, xM) −→ Ext2R(R/I,N),

which implies that the R-module Ext1R(R/I, xM) is minimax.
Now, from the exact sequence

0 −→ xM −→ M −→ M/xM −→ 0

we get an exact sequence

HomR(R/I,M) −→ HomR(R/I,M/xM) −→ Ext1R(R/I, xM)

which implies that the R-module HomR(R/I,M/xM) is minimax.
Now, from [4, Lemma 2.4], it is easy to see that (M/xM)pj

is of finite length
for all j = 1, . . . , n. Therefore there exists a finitely generated submodule Lj

of M/xM such that (M/xM)pj
= (Lj)pj

. Let L := L1 + · · ·+Ln. Then L is a
finitely generated submodule of M/xM such that

SuppR(M/xM)/L ⊆ Supp(M) \ {p1, . . . , pn} ⊆ MaxR.

Now, from the sequence

0 −→ L −→ M/xM −→ (M/xM)/L −→ 0,

we get the following exact sequence:

HomR(R/I,M/xM) −→ HomR(R/I, (M/xM)/L) −→ Ext1R(R/I, L),

which implies that the R-module HomR(R/I, (M/xM)/L) is minimax. We
show thatM/xM is a minimax R-module. To do this, since Supp(M/xM)/L ⊆



COMINIMAXNESS WITH RESPECT TO IDEALS OF DIMENSION ONE 295

MaxR and (M/xM)/L is I-torsion, so that, according to Melkersson [13, The-
orem 1.3] (M/xM)/L is an Artinian R-module. That is M/xM is a minimax
R-module. SoM/xM is I-cominimax. Now, since the R-modules N = (0 :M x)
and M/xM are I-cominimax, it follows from [14, Corollary 3.4] and [3, Lemma
2.1] thatM is I-cominimax. This completes the inductive step, as required. �

The following result is the third main result of this section.

Theorem 2.5. Let I be an ideal of Noetherian ring R and let C1
com(I) denote

the set of all I-cominimax R-modules M , with dimSupp(M) ≤ 1. Then C1
com(I)

forms an Abelian subcategory of the category of all R-modules.

Proof. Let M,N ∈ C1
com(I) and f : M → N be an R-homomorphism. It is

enough to prove that the R-modules ker(f) and coker(f) are I-cominimax.
Now, the exact sequence

0 −→ ker(f) −→ M −→ im(f) −→ 0,

induces an exact sequence

0 −→ HomR(R/I, ker(f)) −→ HomR(R/I,M) −→ HomR(R/I, im(f))

−→ Ext1R(R/I, ker(f)) −→ Ext1R(R/I,M),

that implies theR-modules HomR(R/I, ker(f)) and Ext1R(R/I, ker(f)) are min-
imax. Therefore it follows from Proposition 2.4 that ker(f) is I-cominimax.
Now the reminder part of the proof follows from the exact sequences

0 −→ ker(f) −→ M −→ im(f) −→ 0,

and

0 −→ im(f) −→ N −→ coker(f) −→ 0,

as required. �

The following result is an immediate consequence of Theorem 2.5.

Theorem 2.6. Let I be an ideal of a commutative Noetherian ring R of di-

mension one. Let M (R, I)com denote the category of I-cominimax modules

over R. Then M (R, I)com forms an Abelian subcategory of the category of all

R-modules.

Proof. Since for each M ∈ M (R, I)com, by the definition we have Supp(M) ⊆
V (I) it follows that dim(M) ≤ 1. Therefore, the assertion follows from Theo-
rem 2.5. �

The following results are some applications of Theorem 2.6.

Corollary 2.7. Let I be an ideal of a commutative Noetherian ring R of di-

mension one. Let M (R, I)com denote the category of I-cominimax modules

over R. Let

X• : · · · −→ X i fi

−→ X i+1 fi+1

−→ X i+2 −→ · · · ,
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be a complex such that X i ∈ M (R, I)com for all i ∈ Z. Then the ith homology

module Hi(X•) is in M (R, I)com.

Proof. The assertion follows immediately from Theorem 2.6. �

Corollary 2.8. Let I be an ideal of a commutative Noetherian ring R of dimen-

sion one. Let M ∈ M (R, I)com. Then for each finitely generated R-module

N , the R-modules ExtjR(N,M) and TorRj (N,M) are in M (R, I)com, for all

integers j ≥ 0.

Proof. Since N is finitely generated, there is a free resolution

· · · −→ F2 −→ F1 −→ F0 −→ N −→ 0,

for N , such that the free R-modules Fi are finitely generated, for all i ≥ 0.
Therefore the assertion easily follows from the definition of the R-modules
ExtjR(N,A) and TorRj (N,M), j = 0, 1, 2, . . . and Corollary 2.7. �

3. Local cohomology modules and cominimaxness

In this section we apply the main results of previous section to local coho-
mology modules. But, first we need the following well known results.

Lemma 3.1. Let R be a Noetherian ring and I be an ideal of R. Let s be a

non-negative integer and M be an R-module. Then for any Serre subcategory

of the category of all R-modules as S the following statements hold:

(i) If ExtjR(R/I,Hi
I(M)) ∈ S for all i ≤ s and all j ≥ 0 and

ExtsR(R/I,M) ∈ S , then HomR(R/I,Hs
I (M)) ∈ S .

(ii) If ExtjR(R/I,Hi
I(M)) ∈ S for all i < s and all j ≥ 0 and

Exts+1
R (R/I,M) ∈ S , then Ext1R(R/I,Hs

I (M)) ∈ S .

Proof. See [1, Lemma 2.3]. �

Lemma 3.2. Let (R,m) be a local (Noetherian) ring and I be an ideal of R

such that dimR/I = 1. Suppose that M is an R-module and n ≥ 0 an integer.

Then the following conditions are equivalent:
(i) µi(p,M) is finite for all p ∈ V (I) and for all i ≤ n.

(ii) ExtiR(R/I,M) is minimax for all i ≤ n.

Proof. See [6, Theorem 2.3]. �

Recall that, for an R-module N , the cohomological dimension of N with

respect to an ideal a of R, denoted by cd(a, N), is defined as

cd(a, N) := sup{i ∈ N0 | Hi
a(N) 6= 0}.

Now we are ready to state and prove the main result of this section.
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Theorem 3.3. Let (R,m) be a Noetherian local ring and let I be an ideal of

R with dimR/I = 1. Then for any R-module M , the following conditions are

equivalent:
(a) ExtiR(R/I,M) is minimax for all i < cd(I,M) + 2.
(b) Hi

I(M) is I-cominimax for all i.

(c) ExtiR(R/I,M) is minimax for all i.

(d) ExtiR(N,M) is minimax for all i < cd(I,M) + 2 and for any finitely

generated R-module N with SuppN ⊆ V (I).

(e) ExtiR(N,M) is minimax for all i < cd(I,M) + 2 and for some finitely

generated R-module N with SuppN = V (I).
(f) ExtiR(N,M) is minimax for all i and for any finitely generated R-module

N with SuppN ⊆ V (I).

(g) ExtiR(N,M) is minimax for all i and for some finitely generated R-

module N with SuppN = V (I).
(h) µi(p,M) is finite for all p ∈ V (I) and for all i < cd(I,M) + 2.
(i) µi(p,M) is finite for all p ∈ V (I) and for all i.

Proof. (a) ⇒ (b) Since in view of [3, Lemma 2.2], the category of minimax
modules forms a Serre subcategory of the category of all R-modules, the as-
sertion follows using an induction argument on i and applying Lemma 3.1 and
Proposition 2.4.

(b) ⇒ (c) follows from [14, Proposition 3.9].
(c) ⇒ (a) is clear.
(c) ⇒ (f) follows from Lemma 2.3.
(f) ⇒ (g) and (g) ⇒ (e) are trivial.
(e) ⇒ (a) We argue by induction on i. Since SuppN = V (I) = SuppR/I,

it follows from Gruson’s theorem [16, Theorem 4.1], that there is a chain

0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nk = R/I,

such that the factors Nj/Nj−1 are homomorphic images of a direct sum of
finitely many copies of N . Using this it is easy to see that the R-module
HomR(R/I,M) is minimax. Now let 0 < i < cd(I,M) + 2 and suppose that
the result has been proved all smaller values of i. Since by inductive hypothesis
the R-modules ExtjR(R/I,M) are minimax for j = 0, 1, . . . , i−1 it follows from
Lemma 2.3 that for any finitely generated R-module K with SuppK ⊆ V (I)

the R-modules ExtjR(K,M) are minimax for j = 0, 1, . . . , i− 1. Now using this

it follows that ExtiR(Nj ,M) is minimax for all 0 < j ≤ k and consequently the

R-module ExtiR(R/I,M) is minimax. This completes the inductive step.
(a) ⇒ (d) follows from Lemma 2.3.
(d) ⇒ (e) is clear.
(i) ⇔ (c) and (h) ⇔ (a) follow from Lemma 3.2. �
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