Bull. Korean Math. Soc. Vol. 20, No. 1, 1983

THE FINITE DIMENSIONAL PRIME RINGS

Dedicated to the memory of my friend and teacher Dock S. Rim

KWANGIL KOH

1. Introduction

If R is a ring and M is a right (or left) R-module, then M is called a faithful Rmodule if, for some a in R, $x \cdot a = 0$ for all $x \in M$ then a = 0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if $xRy\subseteq I$ then either $x\in I$ or $y\in I$ (see [5:3.1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence $I_0 \subset I_1 \subset ... \subset I_n$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer ≥ 0 or ∞ . The left dimension of R, which is denoted by $\dim_{I}R$ is similarly defined. It was shown in [5], that $\dim_r R=0$ if and only if $\dim_l R=0$ if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that $axa=a=a^2x$. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim, R =n if and only if $\dim_l R=n$ if and only if $R\cong D_{n+1}$, n+1 by n+1 matrix ring on a division ring D. In this paper, we establish the following results:

- (a) If R is a prime ring and $\dim_r R = n$ then either R is a right Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of right quotients is isomorphic to $m \times m$ matrix ring over a division ring where $m \le n+1$.
- (b) If R is a prime ring and $\dim_r R = n$ then $\dim_l R = n$ if $\dim_l R < \infty$.
- (c) Let R be a principal right and left ideal domain. If $\dim_r R = 1$ then R is an unique factorization domain.

2. To give the reader a feel for the theory, we start with the various examples of finite dimensional prime rings.

2.1 EXAMPLE. Let Z be the ring of integers. Let R be the 2×2 matrix ring over Z. Since R is a prime ring, by [5:2.10] every annihilator right ideal is of prime type.

If $x \in R$, let $x^r = \{y \in R \mid xy = 0\}$.

Let $\binom{a}{c} \stackrel{b}{d} \in R$. If $\binom{a}{c} \stackrel{b}{d} \stackrel{r}{} \neq 0$ then ad = bc = 0. Hence $\binom{a}{c} \stackrel{b}{d} \stackrel{r}{}$ is one of the following: $\binom{0}{C} \stackrel{0}{Z} \stackrel{l}{} \stackrel{l$

- 2.2 EXAMPLE. Let D be the ring of real quarternions. Let R=D[X], the polynomials over D where dX=Xd for all $d\in D$ Then right and left division algorithm holds. Hence R is a right and left principal ideal ring. Now it is easy to see that if fR, for some $f\in R$, is a two sided ideal then f is in the center of R. Hence if fR is a prime ideal then f(X) is an irreducible real polynomial. It is not difficult to show that if f is an irreducible element in R then fR is a maximal right ideal and fR contains a non-zero two sided ideal. Hence R is not a primitive ring. Therefore $fR \supset P \supset (0)$ where P is the primitive ideal which is contained in fR, is the longest possible chain of right ideals of a prime type. Hence $\dim_{r}R=2=\dim_{l}R$. It is interesting to note that for an arbitrary division ring D, $\dim_{r}D[X]=1$ if and only if D is a field.
- 2.3 EXAMPLE. Let C be the field of complex numbers. There is a monomorphism θ of C into C which is not an epimorphism. Let $R = C[X, \theta]$ denote the set of all formal polynomials in the indeterminate X with coefficients in C written on the right of power of X. Define equality and addition in $C[X, \theta]$ as usual but define a multiplication by assuming the distributive laws and the rule

$$a \cdot X = X \cdot \theta(a)$$
 for each $a \in C$.

The division algorithm holds on the right side. So R is a principal right ideal domain. However, if $\alpha \in C \setminus \theta(C)$ then $R(X-\alpha) \cap RX^2 = (0)$. So it is not a left Ore domain. Consider a maximal right ideal (X-1)R. Let $g \in (X-1)R$ such that $fg \in (X-1)R$ for all $f \in R$. If $g \neq 0$ then g = (X-1) $(X^h + a_1X^{h-1} + \ldots + a_n)$ for some nonnegative integer n and a_i in C. If b is a complex number $bg = (X\theta(b) - b)$ $(X^h + a_1X^{h-1} + \ldots + a_n)$. Hence unless $\theta(b) = b$, $bg \in (X-1)R$. This means that g must be 0. Therefore, R/(X-1)R is a faithful irreducible R-module and R is a primitive ring. If $\dim_r R < \infty$ then either R is a division ring or $n \times n$ matrix ring over a division ring with $n \geq 2$, in view of [5:4.3] this is not possible. Thus $\dim_r R = \infty$. For more interesting examples of this type we refer the readers to [3].

3. Recall that a ring R is called a prime ring if zero ideal is of a prime type

For each right (left) ideal I, let s(I) denote the largest two sided ideal of R which is contained in I. In [5], it was shown that s(I) is a prime ideal if I is a right ideal of a prime type. Furthermore, if $\{I_{\alpha}\}_{{\alpha}\in A}$ is a family of right ideals prime type in a prime ring such that each $s(I_{\alpha})=0$ than $\bigcap_{{\alpha}\in A}I_{\alpha}$ is also a right ideal of a prime type. A

non-zero right (left) ideal of R is called essential if it has a non-zero intersection with each non-zero right (left) ideal (Refer [1]). A right ideal I of R is relatively complemented if $I \neq 0$ and if there exists a non-zero right ideal J of R with $I \cap J = 0$. The set of right ideals which contains J and have zero intersection with I, has maximal elements by Zorn's lemma. These maximal elements are the relative complements of I. A right ideal of R which is a relative complement of a non-zero right ideal is called a complement right ideal (See [1]). In the sequel, unless otherwise stated, all rings are prime.

3.1. LEMMA. Assume dim, $R < \infty$. If I is an essential right ideal of a prime type in R then $s(I) \neq 0$. Conversely, if $s(I) \neq 0$ then I is essential.

Proof. Let M=R/I. Suppose that s(I)=0. Then M is a faithful right R-module. For each $m \in M$, let $m^{\perp} = \{x \in R \mid mx = 0\}$. If $m \neq 0$, then $s(m^{\perp}) = 0$. By [5:2.10], m^{\perp} is a right ideal of a prime type. Hence for any non-zero family $\{m_{\alpha}\}_{\alpha \in A}$ in M, $\bigcap_{\alpha \in A} m_{\alpha}^{\perp}$ is a right ideal of a prime type by [5:3.2]. Since $\dim_r R < \infty$, there is a positive integer n and a finite number of elements m_1, m_2, \ldots, m_n in M such that $\bigcap_{i=1}^n m_i^{\perp} \cap m^{\perp} = \bigcap_{i=1}^n m_i^{\perp}$ for all $m \in M$. Since each m_i^{\perp} is essential, $\bigcap_{i=1}^n m_i^{\perp} \neq 0$ and s(I) contains $\bigcap_{i=1}^n m_i^{\perp} \neq 0$. Thus $s(I) \neq 0$ and M is not faithful. This is a contradiction. In a prime ring, non-zero ideal is essential. Hence if $s(I) \neq 0$ then I is essential.

3.2. LEMMA. If $\dim_r R < \infty$, R is a right Goldie ring.

Proof. Recall that R is a right Goldie ring if it satisfies the maximum condition on annihilator right ideals and complement right ideals (Refer [1]).

Since annihilator right ideals and complement right ideals are of prime type by [5:2.10] and by [5:3.5], a finite dimensionality of R implies that R is a right Goldie ring.

3.3. Lemma. Suppose that $\dim_r R < \infty$. If I is a right ideal of a prime type which is not essential then I is a complement right ideal.

Proof. Since I is not essential, there is a non-zero right ideal J which is a relative complement of I. Let \overline{I} be a relative complement of J which contains I. If $I \subseteq \overline{I}$, then for each $x \in \overline{I} \setminus I$, $(I:x) = \{r \in R \mid xr \in I\}$ is an essential and it is a right ideal of a prime type by ([:2.10]). Since $\dim_r R < \infty$, there exist a finite number of elements $x_1, x_2, ..., x_n$ in $\overline{I} \setminus I$ such that $\begin{bmatrix} n \\ i=1 \end{bmatrix} (I:x_i) \cap (I:x) = \begin{bmatrix} n \\ i=1 \end{bmatrix} (I:x_i) \cap (I:x_i)$ for all $x \in \overline{I}$. Since for each x_i , $s((I:x)) \neq 0$ by 3.1 and $s(\bigcap_{i=1}^n (I:x_i)) = J \neq 0$, $\overline{I}J \subseteq I$. Now I is a right ideal of a prime type and $\overline{I} \subset I$. Therefore, $J \subseteq I$. This means that $s(I) \neq 0$ and I is essential. This is impossible. Thus $I = \overline{I}$ and I is a complement right ideal.

3.4. LEMMA. Assume that $\dim_r R < \infty$. Let $0 \subset I_1 \subset I_2 \subset ... \subset I_k$ be the longest chain of right ideals of a prime type, which are not essential. Then if J is an essential right ideal which contains a maximal complement right ideal then the length of the longest chain of the non-essential right ideals of prime type in J is k+1.

- *Proof.* We note that R is a right Goldie prime ring. Observe that I, is a minimal complement and I_k is a maximal complement. Since the Goldie dimension of R is equal to the Goldie dimension of J as R-module, the assertion is true (Refer $[1 \ 2]$).
 - 3.5. THEOREM. Let $\dim_r R = n$ for some positive integer n.

 Then $\dim_l R = n$ if $\dim_l R < \infty$.
- Proof. By 3.2, R is a right and left Goldie ring since $\dim_r R < \infty$ and $\dim_l R < \infty$. Therefore, the right Goldie dimension of R is equal to the left Goldie dimension of R. Hence if J is an essential right ideal of a prime type and L is an essential left ideal of a prime type then by 3.4, the length of the longest chain of essential right ideals of prime type which is contained in J is precisely equal to the length of the longest chain of essential left ideals of a prime type in L. Let $0 \subset I_1 \subset I_2 \subset ... \subset I_n$ be the longest chain of right ideals of a prime type in R. If n=0 then $\dim_r R = \dim_l R$ by [5:2.9]. Let I_k be the first essential right ideal of a prime type in the chain. Then $I_k = s(I_k)$ by 3.1 and $R/s(I_k)$ is a prime ring such that $\dim_r R/s(I_k) = n-1$ and $\dim_l R/s(I_k) < \infty$. Hence by the inductive assumption, $\dim_l R/s(I_k) = n-1$. Thus $\dim_r R = n = \dim_l R$.
- 3.6. THEOREM. If $\dim_r R = n$ for some positive integer n, then either R is a right Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of right quotions in isomorphic to $m \times m$ matrix ring over a division ring where $m \le n+1$.
- *Proof.* R is a right Goldie ring. Let U be a uniform right ideal of R. Then there exist $u_1, u_2, ..., u_m$ in U such that

$$\bigcap_{i=1}^{m} (0: u_i) = 0 \text{ but } \bigcap_{\substack{i=1 \ i \neq j}}^{m} (0: u_i) \neq 0 \text{ for each } j. \text{ If } m = 1,$$

then R is a right Ore domain in which every non-zero right ideal is essential. Hence by 3.3, every non-zero right ideal of a prime type contains a non-zero prime ideal, hence it contains a non-zero minimal prime ideal. Since $\bigcap_{j} (0:u_{j})$ is a right ideal of a prime type, $m \le n+1$. The rest of the theorem follows from Goldie's theorems in [2:37] and [2:4].

If R is a right or left noetherian domain then every non-unit has an irreducible factor.

For if a in R does not have an irreducible factor, we may form a strictly ascending chain of right ideals:

$$aR \subset a_1R \subset a_2R \subset ...$$
, where $a=a_1b_1=(a_2b_2)b_1=((a_3b_3)b_2)b_1=...$ for some a_i,b_i in R .

R is called a principal right (left) ideal ring if every right (left) ideal is generated by one element. (See [3]).

4.1. THEOREM. Let R be a principal right and left ideal domain. If $\dim_r R = 1$ then R is an unique factorization domain and for any x, y in R, $x \cdot y = \varepsilon y \cdot x$ for some unit

ε.

Proof Since R is a principal right and left ideal domain, every maximal right or left ideal is generated by an irreducible element. Let I be a maximal right ideal of R. Since I is essential, $s(I) \neq 0$ by 3.1. Since $\dim_r R = 1$, s(I) = I.

Let I=pR for some irreducible element p in R. Then Rp is a maximal left ideal which is contained in I. Hence pR=Rp. Therefore for any x and y, px=x'p for some x' in R and yp=py' for some y' in R.

Now we claim that every non-unit a in R is a product of a finite number of irreducible elements. Certainly, $a=p_1b_1$ for some irreducible p_1 and an element b_1 in R. $b_1=p_2b_2$ for some irreducible p_2 and an element b_2 in R unless b_1 is an unit. Now $a=p_1p_2b_2=p_2'p_1b_2=p_2'b_2'p_1=...$ and we have a strictly ascending chain of right ideals $aR \subset p_2'b_2'R \subset ...$, unless b_2 is a finite product of irreducible elements. Now let p be an irreducible element and p, p in p such that p is for some p in p. If p does not factor a then there exist p and p in p, such that p in p and p and p and p and p are p and p and p and p and p and p and p are p and p and p and p are p and p are p and p and p are p and p are p and p and p are p are p and p are p are p are p and p are p are p are p are p are p are p and p are p are

References

- 1. A.W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. (3) 8 (1958) 589-608.
- 2. _____, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960).
- 3. A.V. Jategaonkar, Left principal ideal rings, Springer-Verlag, Lecture Notes in Mathematics 123, 1970.
- 4. R.E. Johnson, Prime rings, Duke Math. J. 18 (1951).
- 5. K. Koh, On one sided ideals of a prime type, Proc. Amer. Math. Soc. 28, (1971).

North Carolina State University, Raleigh, North Carolina 27650 U. S. A.