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1. Introduction

If R is a ring and M is a right (or left) R-module, then M is called a faithful R-
module if, for some a in R, z-a=0 for all z&M then a=0. In [4], R.E. Johnson
defines that M is a prime module if every non-zero submodule of M is faithful. Let
us define that M is of prime type provided that M is faithful if and only if every
non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type
if R/I is of prime type as a R-module. This is equivalent to the condition that if
zRy< I then either z&!l or y&1 (see [5:3.1]). It is easy to see that in case R is a
commutative ring then a right or left ideal of a prime type is just a prime ideal. We
have defined in [5], that a ckain of right ideals of prime type in a ring R is a finite
strictly increasing sequence I,CI;C...C1,; the length of the chain is #n. By the right
dimension of a ring R, which is denoted by dim,R, we mean the supremum of the
length of all chains of right ideals of prime type in R. It is an integer =0 or co.
The left dimension of R, which is denoted by dim;R is similarly defined. It was
shown in [5], that dim,R=0 if and only if dim;R=0 if and only if R modulo the
prime radical is a strongly regular ring. By “a strongly regular ring”, we mean that
for every a in R there is z in R such that ara=a=a%z. It was also shown that R is
a simple ring if and only if every right ideal is of prime type if and only if every
left ideal is of prime type. In case, R is a (right or left) primitive ring then dim,R
=n if and only if dimyR=n if and only if R=Dyy;, 2+1 by »+1 matrix ring on a
division ring D. In this paper, we establish the following results:

(a) If R is a prime ring and dim,R=n then either R is a right Ore domain such
that every non-zero right ideal of a prime type contains a2 non-zero minimal
prime ideal or the classical ring of right quotients is isomorphic to mXm matrix
ring over a division ring where m<in+1.

(b) If R is a prime ring and dim,R=n then dim;R=n if dimR<eo.

(¢) Let R be a principal right and left ideal domain. If dim,R=1 then R is an
unique factorization domain.

2. To give the reader a feel for the theory, we start with the various examples
of finite dimensional prime rings.

2.1 EXAMPLE. Let Z be the ring of integers. Let R be the 2X2 matrix ring over Z.
Since R is a prime ring, by [5:2.10] every annihilator right ideal is of prime type.
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If z&R, let 27={yeR|zy=0}.
Let (? 5)€R. If (g f;)';eo then ad=bc=0. Hence <? 3>r is one of the following:

(% §>, <0Z %), { bz b y‘x, yEZ} and { dx _:Z ;!x,yEZ}. It is also easy

—azx —ay —c x
to check that if p and g are prime numbers, <%Z POZ>, (qOZ qOZ) <g§ é’%) <qZZ qZZ),

(pZZ PZZ> are ideals of prime type. In fact, any right ideal of prime type must be one

of these types. The longest chain of right ideals of prime type is 0C (pZ PZ>C<Z Z)’

00 00
C(qZZ qZZ> Therefore dim,R=3=dim,R.

2.2 EXAMPLE. Let D be the ring of real quarternions. Let R=D [X], the polynomials
over D where dX=2Xd for all d€D Then right and left division algorithm holds.
Hence R is a right and left principal ideal ring. Now it is easy to see that if SR, for
some fER, is a two sided ideal then f is in the center of R. Hence if fR is a prime
ideal then f(X) is an irreducible real polynomial. It is not difficult to show that if f
is an irreducible element in R then SR is a maximal right idieal and fR contains a
non-zero two sided ideal. Hence R is not a primitive ring. Therefore fROPD (0)
where P is the primitive ideal which is contained in fR, is the longest possible chain
of right ideals of a prime type. Hence dim,R=2=dim;R. It is interesting to note that
for an arbitrary division ring D, dim,D[X]=1 if and only if D is a field.

2.3 ExampLE. Let C be the field of complex numbers. There is a monomorphism 6
of C into C which is not an epimorphism. Let R=C[X, 0] denote the set of all formal
polynomials in the indeterminate X with coefficients in C written on the right of
power of X. Define equality and addition in C[X, 6] as usual but define a multiplica-
tion by assuming the distributive laws and the rule

a-X=X-0(a) for each acC.

The division algorithm holds on the right side. So R is a principal right ideal
domain. However, if a€C\@(C) then R(X—a)NRX%=(0). So it is not a left Ore
domain, Consider a maximal right ideal (X—=1R. Let ge(X—1)R such that fge
(X—1R for all feR. If g#0 then g= (X—1) (X*+a4X*1+...4a,) for some non-—
negative integer » and ¢; in C. If b is a complex number bg=(X0(b) —b) (Xh+a, X!
+...4+a,). Hence unless 6(6)=b, bgd(X—1)R. This means that g must be 0.
Therefore, R/(X—1)R is a faithful irreducible R-module and R is a primitive ring.
If dim,R<{cc then either R is a division ring or # X7 matrix ring over a division ring
with #>2, in view of [5:4.3] this is not possible. Thus dim,R=cc. For more
interesting examples of this type we refer the readers to [3].

3. Recall that a ring R is called a prime ring if zero ideal is of a prime type

For each right (left) ideal I, let s(I) denote the largest two sided ideal of R which
is contained in I. In [5], it was shown that s(I) is a prime ideal if I is a right ideal
of a prime type. Furthermore, if {I},c  is a family of right ideals prime type in a
prime ring such that each s(I,) =0 than .QA I, is also a right ideal of a prime type. A
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non-zero right (left) ideal of R is called essential if it has a non-zero intersection with
each non-zero right (left) ideal (Refer [1]). A right ideal I of R is relatively
<omplemented if I+0 and if there exists a non—zero right ideal J of R with In J=0.
The set of right ideals which contains J and have zero intersection with I, has
maximal elements by Zorn’s lemma. These maximal elements are the relative comple-
ments of I. A right ideal of R which is a relative complement of a non-zero right
ideal is called a complement right ideal (See [1]). In the sequel, unless otherwise
stated, all rings are prime.

3.1. LEMMA. Assume dim, R<co. If I is an essential right ideal of a prime type
in R then s(I) +#0. Conversely, if s(I)#0 then I is essential.

Proof. Let M=R/I. Suppose that s(I)=0. Then M is a faithful right R-module.
For each me&M, let m'={xcR|mx=0}. If m+0, then s(m*)=0. By [5:2.10], m*
is a right ideal of a prime type. Hence for any non-zero family {m,}.cs in M,
ﬂA mg* is a right ideal of a prime type by [5 : 3.2]. Since dim,R< oo, there is a positive
integer » and a finite number of elements my, m,...,m, in M such that h mt Nmt=

i=1
» n n
Nm;~ for all meM. Since each m;* is essential, 01 m+#0 and s(I) contains 'QI m-

=1 i=
#0. Thus s(J) #0 and M is not faithful. This is a contradiction. In a prime ring,
non-zero ideal is essential. Hence if s(Z) #0 then I is essential.

3.2. LEMMA. If dim,R<{co, R is a right Goldie ring.

Proof. Recall that R is a right Goldie ring if it satisfies the maximum condition on
annihilator right ideals and complement right ideals (Refer [1]).

Since annihilator right ideals and complement right ideals are of prime type by [5:
2.10] and by [5:3.5], a finite dimensionality of R implies that R is a right Goldie
ring,

3.3. LEMMA. Suppose that dim,R<oco, If I is a right ideal of a prime type which is
not essential then I is a complement right ideal.

Proof. Since [ is not essential, there is a non-zero right ideal J which is a relative
complement of I. Let I be a relative complement of J which contains I. If <],
then for each z€i\I, (J:z)= {rER|zrel} is an essential and it is a right ideal of
a prime type by ([ :2.10]). Since dim,R<co, there exist a finite number of elements

X1, T, oo, Ty in I\ such that [rjl (I: :r,-)]ﬂ (I: .7c)=[_rjl (I: x,&} for all zel. Since for

each z;, s((I:x))+#0 by 3.1 and s(é(l : x,-))=J¢0, IJcI. Now Iis a right ideal

of a prime type and I¢ I, Therefore, JSI. This means that s(I)+#0 and I is essential.
This is impossible. Thus I=1 and I is a complement right ideal.

3.4. LEMMA. Assume that dim,R<{co, Let 0CL;CI,C...C Iy be the longest chain of
right ideals of a prime type, which are not essential. Then if J is an essential right
ideal which contains a mazimal complement right ideal then the length of the longest
chain of the non-essential right ideals of prime type in J is k+1.
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Proof. We note that R is a right Goldie prime ring. Observe that I, is a minimal
complement and I; is a maximal complement. Since the Goldie dimension of R is
equal to the Goldie dimension of J as R-module, the assertion is true (Refer [1 2]).

3.5. THEOREM. Let dim,R=n for some positive integer n.
Then dimyR=n if dim;R< oco.

Proof. By 3.2, R is a right and left Goldie ring since dim,R<ec and dim;R<co.
Therefore, the right Goldie dimension of R is equal to the left Goldie dimension of
R. Hence if J is an essential right ideal of a prime type and L is an essential left
ideal of a prime type then by 3.4, the length of the longest chain of essential right
ideals of prime type which is contained in J is precisely equal to the length of the
longest chain of essential left ideals of a prime type in L. Let 0cl,cl,c...C I, be
the longest chain of right ideals of a prime type in R. If »=0 then dim,R=dim;R by
[5:2.9]. Let I be the first essential right ideal of a prime type in the chain. Then
Iy=s(Iy by 3.1 and R/s(I;) is a prime ring such that dim,R/s(J;)=n—1 and dim;R/
s(Iy)<co. Hence by the inductive assumption, dim;R/s(fy)==n—1. Thus dim,R=n=
dlmlR

3.6. THEOREM. If dim,R=n for some positive integer n, then either R is a right Ore
domain such that every non-zero right ideal of a prime type contains a non—zero minimal
prime ideal or the classical ring of right quotions in isomorphic to m<m matrix ring
over a division ring where m<n-+1.

Proof. R is a right Goldie ring. Let U be a uniform right ideal of R. Then there
exist uy, g, ..., 4, in U such that
N :u)=0 but N :u)#0 for each j. If m=1,
i=1 i=1
iFj
then R is a right Ore domain in which every non-zero right ideal is essential. Hence
by 3.3, every non-zero right ideal of a prime type contains a non-zero prime ideal,
hence it contains a non-zero minimal prime ideal. Since N (0: u;) is a right ideal of
J
a prime type, m<n+1. The rest of the theorem follows from Goldie’s theorems in

[2:37] and [2:4].

4. If R is a right or left noetherian domain then every non-unit has an
irreducible factor.

For if a in R does not have an irreducible factor, we may form a strictly ascending
chain of right ideals:
aRCaRCa,RC..., where
a=a1by=(ash,) b= ((asb3) by) b;=... for some a;, b; in R.
R is called a principal right (left) ideal ring if every right (left) ideal is generated
by one element. (See [3]).

4.1. THEOREM. Let R be a principal right and left ideal domain. If dim,R=1 then
R is an unique factorization domain and for any z,v in R, x-y=ey-z for some unit
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Proof Since R is a principal right and left ideal domain, every maximal right or
left ideal is generated by an irreducible element. Let I be a maximal right ideal of
R. Since I is essential, s(J)+#0 by 3.1. Since dim,R=1, s(I)=1I.

Let I=pR for some irreducible element p in R. Then Rp is a maximal left ideal
which is contained in I. Hence pR=Rp. Therefore for any z and y, px=x'p for
some x’ in R and yp=py for some y in R.

Now we claim that every non-unit a in R is a product of a finite number of irredu-
cible elements. Certainly, a=p;6; for some irreducible p; and an element 4, in R. &,=
pabs for some irreducible p, and an element &, in R unless 4; is an unit. Now a=
P1P2br=p7 p1bs=p2'by p1=... and we have a strictly ascending chain of right ideals aRC
P26’ RC..., unless &, is a finite product of irreducible elements. Now let p be an
irreduciblie element and «,5 in R such that a-b=pc¢ for some ¢ in R. If p does not
factor a then there exist z and y in R, such that ra+yp=1 and zab+ypb=b=2zab+
yb'p=5 for some & in R. Hence p divides 5.
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