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NEGACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm

Chakkrid Klin-eam and Jirayu Phuto

Abstract. Let p be an odd prime. The algebraic structure of all nega-

cyclic codes of length 8ps over the finite commutative chain ring Fpm +

uFpm where u2 = 0 is studied in this paper. Moreover, we classify all
negacyclic codes of length 8ps over Fpm + uFpm into 5 cases, i.e., pm ≡
1 (mod 16), pm ≡ 3, 11 (mod 16), pm ≡ 5, 13 (mod 16), pm ≡ 7, 15
(mod 16) and pm ≡ 9 (mod 16). From that, the structures of dual and

some self-dual negacyclic codes and number of codewords of negacyclic

codes are obtained.

1. Introduction

The class of constacyclic codes is an important class of linear codes in coding
theory. Many optimal linear codes are directly derived from constacyclic codes.
It includes a subclass of two classes, i.e., cyclic codes and negacyclic codes.
Constacyclic codes have practical application as they can improve efficiency
for encoding with shift registers. Moreover, in negacyclic codes, the dual code
of each negacyclic code is a negacyclic code. This is the reason why negacyclic
codes are interesting.

The negacyclic codes of length n over a finite field F are classified as poly-

nomial generators 〈g(x)〉 of the ambient ring F[x]
〈xn+1〉 where g(x) is a divisor

of xn + 1. When the code-length n is relatively prime to the characteristic of
the finite field F, the code to be simple root code. Otherwise, it is called a
repeated-root code which was first studied since the 1970’s and 1980’s by sev-
eral authors such as Massey et al. [2], Falkner et al. [15], Roth and Seroussi
[19]. Nonetheless, the repeated-root codes over finite fields were researched in
the more general properties in the 1990’s by Castagnoli et al. [2] and van Lint
[17] where they showed that repeated-root cyclic codes have a concatenated
construction, and asymptotically bad. Therefore, the repeated-root codes are
interesting because they have rich algebraic structures.

The constacyclic codes over F2 +uF2 are very interesting because the struc-
ture of F2 + uF2 is lying between F22 and Z4 in the sense that it is additively
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analogous to F22 and multiplication analogous to Z4 (see [1,5]). Moreover, the
cyclic codes over F2 +uF2 can construct to be DNA codes for computing which
is important for biology (see [16]). So, many mathematicians are interested in
cyclic codes over F2 + uF2 and study the codes which are more general than
cyclic codes over F2 +uF2, i.e., constacyclic codes of length n over Fpm +uFpm .
The classification of codes is important in studying their structures but it is
hard to classify them. In studying the repeated-root constacyclic codes over
Fpm + uFpm , it is difficult to study the codes of length n. In number the-
ory, we see that any integer n can be expressed as n = ps11 p

s2
2 · · · p

sk
k where

i, k, si are positive integers and pi is a distinct prime, 1 ≤ i ≤ k. Therefore,
we first study the codes of length ps and generalize to qps where p and q are
relatively primes. Dinh et al. got the results of classifying constacyclic codes
of certain lengths over certain finite fields or finite chain rings. Furthermore,
they established the structures of constacyclic codes of length 2ps and 3ps over
Fpm (see [7, 8]). In 2004, cyclic and negacyclic codes over finite chain rings
are studied by Dinh and López-Permouth (see [11]). They have obtained the
algebraic structure of negacyclic codes and self-dual negacyclic codes of length
2t over Z2m . In 2005, Dihn [4] determine the algebraic structure of negacyclic
codes of length 2s over Galois rings. However, they obtain that Hamming dis-
tance and the weight distribitions of such negacyclic codes. In 2009, Dihn [5]
investigated all constacyclic codes of length 2s over the Galois ring F2 + uF2

where u2 = 0. They first obtain the structure of (1 + uγ)-constacyclic codes
of length 2s over GR(F2 + uF2,m) for any nonzero element γ ∈ F2m . Using
the structure, they derive the Hamming distances of all codes. In addition,
they get the structure of cyclic codes of length 2s over GR(F2 + uF2,m) and
the number of codewords. After that, they define one-to-one correspondence
between cyclic and α-constacyclic codes, including (1 + uγ)-constacyclic and
(α+uβ)-constacyclic codes where nonzero elements α, β ∈ F2m . In 2010, Dihn
[6] determined in the algebraic structures of constacyclic codes of length ps

over Fpm + uFpm and their dual codes. He obtained that the all ideals of a

local ring
(Fpm+uFpm )[x]

〈xps−λ〉 when λ ∈ Fpm\{0} but it is not a chain ring. For

λ = α + uβ where α, β ∈ Fpm\{0}, he got
(Fpm+uFpm )[x]

〈xps−λ〉 is a chain ring. In

2014, X. Liu and X. Xu [18] obtained that the algebraic structure of cyclic and
negacyclic codes of length 2ps over Fpm + uFpm . Using Chinese Remainder
Theorem, they obtain that the structure of such cyclic and negacyclic codes
for p ≡ 1 (mod 4), or p ≡ 3 (mod 3) and m is even. For p ≡ 3 (mod 4) and m

is odd, they derive the algebraic structure of the quotient ring
(Fpm+uFpm )[x]

〈x2ps+1〉 is

a local ring with the maximal ideal 〈u, x2 + 1〉. In 2015, Dinh et al. [14] got
the algebraic structures of negacyclic codes of length 2ps over Fpm +uFpm and
their dual codes. They divide the structures of such negacyclic codes into 2
cases: pm ≡ 1 (mod 4) and pm ≡ 3 (mod 4). When pm ≡ 1 (mod 4), each
negacyclic code is represented as a direct sum of a −α-constacyclic code and
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an α-constacyclic code of length ps. For pm ≡ 3 (mod 4), each negacyclic code
is classified into 4 distinct types of ideals. Moreover, they get the algebraic
structures of constacyclic codes of same length over same ring (see [3]). For
such λ-constacyclic codes, they divide the structures into 2 cases: λ = α+ uβ
or λ ∈ Fpm . When λ is a square, by Chinese Remainder Theorem, they obtain
the structure of such constacyclic codes. For λ is not a square and λ = α+uβ,

they get that
(Fpm+uFpm )[x]

〈x2ps−(α+uβ)〉 is a chain ring. The remaining case, λ is not a

square and λ ∈ Fpm , such constacyclic codes are classified into 4 distinct types
of ideals. In 2018, Dinh et al. [12] determined the algebraic structures of ne-
gacyclic codes of length 4ps over Fpm + uFpm and their dual codes. Moreover,

they determined the ideals of the rings
(Fpm+uFpm )[x]

〈(x2+µνx+1)ps 〉 and
(Fpm+uFpm )[x]

〈(x2+µδx−1)ps 〉 where

δ2 = −2 or ν2 = 2 and µ ∈ {−1, 1}. Thus, we focus on the negacyclic codes
of length 8ps over Fpm + uFpm to determine the structures of such negacyclic
codes and their dual codes.

The aim of this paper is to determine structures of negacyclic codes of length
8ps over Fpm +uFpm(u2 = 0) where p is an odd prime. We divide the structures
of such negacyclic codes into 5 cases: pm ≡ 1 (mod 16), pm ≡ 3, 11 (mod 16),
pm ≡ 5, 13 (mod 16), pm ≡ 7, 15 (mod 16) or pm ≡ 9 (mod 16). Moreover,
we obtained that the number of codewords for each negacyclic codes and the
algebraic structures of dual codes of such negacyclic codes. However, we use
the technique in the paper [12] to investigate our aim. The remainder of this
paper is organized as follows. Preliminary concepts is shown in Section 2.
In Sections 3, 4, 5, 6 and 7; we give the structures of negacyclic codes of
length 8ps over Fpm +uFpm . When pm ≡ 1 (mod 16) (Section 3) or pm ≡ 5, 13
(mod 16) (Section 5) or pm ≡ 9 (mod 16) (Section 7), using Chinese Remainder
Theorem, we obtained the structures of such negacyclic codes. For pm ≡ 3, 11
(mod 16) (Section 4) or pm ≡ 7, 15 (mod 16) (Section 6), we use some square
elements to obtain that the structures of such negacyclic codes.

2. Preliminaries

All rings are commutative rings with identity. An ideal I of a ring is called
a principal ideal if it is generated by a single element. A ring R is said to be
a principal ideal ring if its ideals are principal ideals. R is called a local ring
if R has a unique maximal right (left) ideal. Furthermore, a ring R is called
a chain ring if the set of all right (left) ideals of R is linearly ordered under
set-theoretic inclusion. The following equivalent conditions are known for the
class of finite commutative rings with identity.

Proposition 2.1 ([14]). Let R be a finite commutative ring with identity. Then
the following conditions are equivalent:

(i) R is a local ring and the maximal ideal M of R is principal, i.e., M =
〈r〉 for some r ∈ R,

(ii) R is a local principal ideal ring,
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(iii) R is a chain ring with ideals 〈ri〉, 0 6 i 6 N(r), where N(r) is the
nilpotency index of r.

Let R be a finite commutative ring with identity and λ be a unit of R. A
code C of length n over a ring R is a nonempty subset of Rn, and the element
of the ring R is referred to as the alphabet of the code. If this subset is also
an R-submodule of Rn, then C is called a linear code. The λ-constacyclic shift
τλ(λ-twisted) on Rn is the shift

τλ(c0, c1, . . . , cn−1) = (λcn−1, c0, c1, . . . , cn−2).

A linear code C is called a λ-constacyclic code if τλ(C) = C, i.e., if C is closed
under the λ-constacyclic shift τλ. If λ = −1, this code is called a negacyclic
code and if λ = 1, it is called a cyclic code.

Each codeword c = (c0, c1, . . . , cn−1) is identified with its polynomial rep-
resentation as c(x) = c0 + c1x + · · · + cn−1x

n−1 and the code C is identified
with the set of all polynomial representations of its codewords. So, in the quo-

tient ring R[x]
〈xn−λ〉 , xc(x) corresponds to the λ-constacyclic shift of c. Thus, the

following fact is well known and straightforward:

Proposition 2.2 ([14]). A linear code C of length n over a ring R is a λ-

constacyclic code if and only if C is an ideal of the quotient ring R[x]
〈xn−λ〉 .

Given n-tuples x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn, their
inner product is defined as usual

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1,

evaluated in R. Two n-tuples x, y are called orthogonal if x ·y = 0. For a linear
code C over R, its dual code C⊥ is the set of n-tuples over R that codewords
in C⊥ are orthogonal to all codewords in C, i.e.,

C⊥ = {x : x · y = 0,∀y ∈ C}.

A code C is called self-orthogonal if C ⊆ C⊥ and it is called self-dual if C = C⊥.
Moreover, C is called isodual if C permutationally and monomially is equivalent
to C⊥ (that is, C⊥ can be obtained from C by permuting the coordinates and
multiplying certain coordinates by certain constants). The following result is
well known.

Proposition 2.3 ([14]). Let p be a prime and R be a finite chain ring of size
pm. The number of codewords in each linear code C of length n over R is pk for
some integer k ∈ {0, 1, . . . ,mn}. Moreover, the dual code C⊥ has pl codewords,
where k + l = mn, i.e., |C| · |C⊥| = |R|n.

In general, we have the following implication of the dual of a λ-constacyclic
code.

Proposition 2.4 ([14]). The dual of each λ-constacyclic code is a λ−1-const-
acyclic code.
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In this paper, we determine of the algebraic structure of all negacyclic codes

of length 8ps over the ring R =
Fpm [u]
〈u2〉 . The ring R consists of all pm-ary

polynomials of degree 0 and 1 in indeterminate u, it is closed under pm-ary

polynomial addition and multiplication modulo u2. Thus, R =
Fpm [u]
〈u2〉 = {a +

ub : a, b ∈ Fpm} is a local ring with the maximal ideal 〈u〉, and then, it is a
chain ring.

Let ξ be a primitive (pm − 1)th root of identity in Fpm . Then

Fpm = {0, ξ, ξ2, . . . , ξp
m−1 = 1}.

Moreover, we denote the order of element a by ord(a). Hereafter, we denote
the quotient ring of negacyclic codes of length 8ps over R as

R =
R[x]

〈x8ps + 1〉
.

From Proposition 2.2, each negacyclic code of length 8ps over R is an ideal
of R. Moreover, by Proposition 2.4, the dual code of each negacyclic code of
length 8ps over R is a negacyclic code.

Definition 2.5 ([14]). If f(x) = a0 + a1x + · · · + arx
r, then the reciprocal of

f(x) is the polynomial f∗(x) = ar + ar−1x+ ar−2x
2 + · · ·+ a0x

r.

By above definition, f∗(x) can be expressed by f∗(x) = xrf( 1
x ). If I is an

ideal of R, then I∗ = {f∗(x) : f(x) ∈ I} is also an ideal of R.

Definition 2.6 ([14]). Let I be an ideal of R. We define A(I) = {g(x) :
f(x)g(x) = 0,∀f(x) ∈ I}. Then A(I) is called the annihilator of I, which is
also an ideal of R.

From the above definition, we see that if C is a constacyclic code of length n
over R with the associated ideal I (which is an ideal of R), then the associated
ideal of C⊥ is A(I)∗.

Lemma 2.7 ([14]).

(i) (f(x)g(x))∗ = f∗(x)g∗(x).
(ii) If deg f ≥ deg g, then (f(x) + g(x))∗ = f∗(x) + xdeg f−deg gg∗(x).
(iii) Let I = 〈f(x), ug(x)〉 be an ideal of R. Then I∗ = 〈f∗(x), ug∗(x)〉.

For each code C of length n over R, their torsion and residue codes are codes
over Fpm , defined as follows:

Tor(C) = {a ∈ Fnpm : ua ∈ C},
Res(C) = {a ∈ Fnpm : a + ub ∈ C}.

The reduction modulo u from C to Res(C) is given by

φ : C → Res(C), φ(a + ub) = a.

Obviously, φ is well-defined and onto, with Kerφ ∼= Tor(C), and φ(C) =

Res(C). Therefore, |Res(C)| = |C|
|Tor(C)| . Thus, we have following proposition.
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Proposition 2.8 ([14]). Let C be a code of length n over R whose torsion and
residue codes are Tor(C) and Res(C), respectively. Then

|C| = |Tor(C)| · |Res(C)|.

To study the structure of all negacyclic codes of length 8ps over R, we
need to separate such negacyclic codes into 5 cases, that is, pm ≡ 1 (mod 16),
pm ≡ 3, 11 (mod 16), pm ≡ 5, 13 (mod 16), pm ≡ 7, 15 (mod 16) and pm ≡ 9
(mod 16). Firstly, we determine the algebraic structure and number of code-
words of negacyclic codes of length 8ps over R with pm ≡ 1 (mod 16) in Section
3.

3. The case pm ≡ 1 (mod 16)

In this section, we always assume that pm ≡ 1 (mod 16). By Proposition
2.2, we have that each negacyclic code of length 8ps over R is an ideal of the

quotient ring R[x]
〈x8ps+1〉 . Since ξ is a primitive (pm−1)th root of identity in Fpm ,

the polynomial x8p
s

+ 1 can be expressed as

x8p
s

+ 1 = (x8 + 1)p
s

= (x− γ)p
s

(x− γ3)p
s

(x− γ5)p
s

(x− γ7)p
s

(x− γ9)p
s

(x− γ11)p
s

(x− γ13)p
s

(x− γ15)p
s

= (xp
s

− γp
s

)(xp
s

− γ3p
s

)(xp
s

− γ5p
s

)(xp
s

− γ7p
s

)(xp
s

− γ9p
s

)

(xp
s

− γ11p
s

)(xp
s

− γ13p
s

)(xp
s

− γ15p
s

),

where γ = ξ(p
m−1)/16.

Remark 3.1. γip
s

γjp
s

= 1 where i, j = 1, 3, 5, 7, 9, 11, 13, 15 and i+ j = 16.

By using Chinese Remainder Theorem, we obtain that the algebraic struc-
ture of each negacyclic code of length 8ps over R in the following theorem.

Theorem 3.2. Each negacyclic code of length 8ps over R is a direct sum of
γp

s

, γ3p
s

, γ5p
s

, γ7p
s

, γ9p
s

, γ11p
s

, γ13p
s

and γ15p
s

-constacyclic codes of length
ps over R. Moreover, |C| = |C1||C3||C5||C7||C9||C11||C13||C15| where C is a
negacyclic code of length 8ps over R and Ci is a γip

s

-constacyclic code of length
ps over R where i = 1, 3, 5, 7, 9, 11, 13, 15.

Proof. Clearly, for each i, j = 1, 3, 5, 7, 9, 11, 13, 15 with i 6= j, 〈xps − γips〉 and
〈xps − γjps〉 are pairwise coprime. By Chinese Remainder Theorem, we have

R[x]

〈x8ps + 1〉
∼=

R[x]

〈xps − γps〉
⊕ R[x]

〈xps − γ3ps〉
⊕ R[x]

〈xps − γ5ps〉
⊕ R[x]

〈xps − γ7ps〉

⊕ R[x]

〈xps − γ9ps〉
⊕ R[x]

〈xps − γ11ps〉
⊕ R[x]

〈xps − γ15ps〉
.

Let C be a negacyclic code of length 8ps over R. In light of Proposition 2.2,

C is an ideal of R[x]
〈x8ps+1〉 . So, C = C1 ⊕ C3 ⊕ C5 ⊕ C7 ⊕ C9 ⊕ C11 ⊕ C13 ⊕ C15
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where Ci is an ideal of R[x]
〈xps−γips 〉 where i = 1, 3, 5, 7, 9, 11, 13, 15. This means

that Ci is an γip
s

-constacyclic code of length ps over R. �

Thus, the negacyclic codes C of length 8ps over R can be represented as
a direct sum of γp

s

, γ3p
s

, γ5p
s

, γ7p
s

, γ9p
s

, γ11p
s

, γ13p
s

and γ15p
s

-constacyclic
codes of length ps over R. Note that the algebraic structures of all constacyclic
codes of length ps over R have been studied in [6]. Furthermore, by Proposition
2.4, the algebraic structures of dual codes of such negacyclic codes are obtained
as the following theorem.

Theorem 3.3. Let C = C1⊕C3⊕C5⊕C7⊕C9⊕C11⊕C13⊕C15 be a negacyclic
code of length 8ps over R where Ci is a γip

s

-constacyclic code of length ps over R
for i = 1, 3, 5, 7, 9, 11, 13, 15. Then C⊥ = C15⊕C13⊕C11⊕C9⊕C7⊕C5⊕C3⊕C1.
In particular, |C⊥| = |C1||C3||C5||C7||C9||C11||C11||C13||C15|.

Proof. It is obvious that

C⊥1 ⊕ C⊥3 ⊕ C⊥5 ⊕ C⊥7 ⊕ C⊥9 ⊕ C⊥11 ⊕ C⊥11 ⊕ C⊥13 ⊕ C⊥15 ⊆ C⊥.

We consider that

|C⊥1 ||C⊥3 ||C⊥5 ||C⊥7 ||C⊥9 ||C⊥11||C⊥11||C⊥13||C⊥15|

=
|R|ps

|C1|
|R|ps

|C3|
|R|ps

|C5|
|R|ps

|C7|
|R|ps

|C9|
|R|ps

|C11|
|R|ps

|C13|
|R|ps

|C15|

=
|R|8ps

|C1||C3||C5||C7||C9||C11||C13||C15|

=
|R|8ps

|C|
= |C⊥|.

Hence, C⊥ = C⊥1 ⊕C⊥3 ⊕C⊥5 ⊕C⊥7 ⊕C⊥9 ⊕C⊥11⊕C⊥13⊕C⊥15. Using Proposition 2.4,
the dual code C⊥i is a γjp

s

-constacyclic code of length ps overR where i+j = 16.
Therefore, the dual code C⊥ = C15⊕C13⊕C11⊕C9⊕C7⊕C5⊕C3⊕C1. �

From Theorem 3.3, we see that the dual code of negacyclic codes of length
8ps over R is an isodual code.

The following result can be found in [10, Section 5], and will apply to deter-
mine self-dual of negacyclic codes of length 8ps over R:

Let λ be a unit of Fpm . If λ 6= λ−1, a λ-constacyclic code C of length ps

over R is self-dual if and only if it is the ideal 〈u〉 of the quotient ring R[x]
〈xps−λ〉 .

Hence, 〈u〉 is the unique self-dual λ-cosntacyclic code of length ps over R.
Thus, 〈u〉 is the unique self-dual γip

s

-constacyclic codes of length ps over R

because γip
s 6= γjp

s

=
(
γip

s)−1
for each i = 1, 3, 5, 7, 9, 11, 13, 15 and i+j = 16.

Now, we obtain that the following result for self-dual negacyclic codes of length
8ps over R as follows:
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Corollary 3.4. Let C = C1 ⊕ C3 ⊕ C5 ⊕ C7 ⊕ C9 ⊕ C11 ⊕ C13 ⊕ C15 be a
negacyclic code of length 8ps over R where Ci is a γip

s

-constacyclic code of
length ps over R for i = 1, 3, 5, 7, 9, 11, 13, 15. Then C = 〈u〉 is the unique
self-dual negacyclic codes of length 8ps over R.

4. The cases pm ≡ 3 (mod 16) or pm ≡ 11 (mod 16)

In this section, we assume that pm ≡ 3 (mod 16) or pm ≡ 11 (mod 16), and
then pm ≡ 3 (mod 8). This implies that p ≡ 3 (mod 8). Thus, −2 is a square
element in Fpm , i.e., there exists δ ∈ Fpm such that δ2 = −2. We now consider

x8p
s

+ 1 = (x8 + 1)p
s

= (x8 − 2x4 + 1 + 2x4)p
s

= ((x4 − 1)2 − δ2x4)p
s

= (x4 − δx2 − 1)p
s

(x4 + δx2 − 1)p
s

.

Next, we give the properties for investigating the algebraic structures of such
negacyclic codes as the following lemma.

Lemma 4.1.

(i) The polynomial x2 + 1 is irreducible over Fpm .
(ii) The polynomial x2 + 1 is irreducible over R.

(iii) The polynomials x2 + aδx− a2 and x2 − aδx− a2 are irreducible over
Fpm where a ∈ Fpm \ {0} .

(iv) The polynomials x4−δx2−1 and x4 +δx2−1 are irreducible over Fpm .
(v) The polynomials x4 − δx2 − 1 and x4 + δx2 − 1 are irreducible over R.
(vi) x4 − δx2 − 1 and x4 + δx2 − 1 are coprimes in R[x].

Proof. (i) Suppose that x2+1 is reducible over Fpm . There exists β ∈ Fpm such
that β2+1 = 0, implying that β4 = 1. If ord(β) = 1 or 2, then β2+1 = 1+1 6= 0.
It is a contradiction. Thus, ord(β) = 4. This implies that 4 | (pm − 1) and,
then pm ≡ 1 (mod 4). It is a contradiction. Hence, x2 + 1 is irreducible over
Fpm .

(ii) Suppose that x2 + 1 is reducible over R. There exists β0 +uβ1 ∈ R such
that (β0 + uβ1)2 + 1 = 0. We consider that

0 = (β0 + uβ1)2 + 1

= β2
0 + u(2β0β1) + 1.

This implies that 0 = β2
0 + 1 and 0 = 2β0β1. It is a contradiction by Lemma

4.1(i).
(iii) We will show that x2 + aδx− a2 is irreducible over Fpm . Suppose that

x2 +aδx−a2 is reducible over Fpm . There exists β ∈ Fpm such that β2 +aδβ−
a2 = 0. So, β is a root of x4+a4 because x4+a4 = (x2+aδx−a2)(x2−aδx−a2).
Thus, β4 + a4 = 0, implying (βa−1)4 = −1. This means that (βa−1)8 = 1.
So, ord(βa−1) | 8, i.e., ord(βa−1) = 1 or 2 or 4 or 8. If ord(βa−1) = 1 or 2
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or 4, then 0 = β4 + a4 = 1 + a4, and thus a4 = −1 = ξ
pm−1

2 . Now, we have

a = ξ
pm−1

8 . Thus, pm ≡ 1 (mod 8). It is a contraction. Hence, ord(βa−1) = 8.
This implies that 8 | (pm− 1), and then pm ≡ 1 (mod 8). It is a contradiction.
Therefore, x2 + aδx − a2 is irreducible over Fpm . Similarly, x2 − aδx − a2 is
irreducible over Fpm .

(iv) We will show that x4 − δx2 − 1 is irreducible over Fpm . Suppose that
x4 − δx2 − 1 is reducible over Fpm . There exist f(x), g(x) ∈ Fpm [x] such that
x4 − δx2 − 1 = f(x)g(x).

If deg f(x) = 1, then deg g(x) = 3. So, there exists β ∈ Fpm such that
f(β) = 0. Since

x8 + 1 = (x4 − δx2 − 1)(x4 + δx2 − 1)

= f(x)g(x)(x4 + δx2 − 1),

we have β is a root of x8 + 1, implying that β16 = 1. Thus, ord(β) | 16. If
ord(β) = 1 or 2 or 4 or 8, then β8+1 = 1+1 6= 0. This means that ord(β) = 16.
So, 16 | (pm − 1), i.e., pm ≡ 1 (mod 16). It is a contradiction.

If deg f(x) = 2, then deg g(x) = 2. Let f(x) = x2 + ax + b and g(x) =
x2 + cx+ d for some a, b, c, d ∈ Fpm . Then

x4 − δx2 − 1 = f(x)g(x)

= (x2 + ax+ b)(x2 + cx+ d)

= x4 + (c+ a)x3 + (d+ ac+ b)x2 + (ad+ bc)x+ bd.

Thus,

c+ a = 0,(4.1)

d+ ac+ b = −δ,(4.2)

ad+ bc = 0,(4.3)

bd = −1.(4.4)

From (4.1) and (4.4), we get that c = −a and b = −d−1. This implies that
0 = ad+ bc = ad+ d−1a = a(d+ d−1). So, a = 0 or d+ d−1 = 0. If a = 0, then
c = 0. Thus, −δ = d+ ac+ b = d− d−1. We consider that

−2 = (−δ)2

= (d− d−1)2

= d2 − 2 + d−2.

This means that d2 = −d−2, implying d4 = −1. So, d8 = 1. Now, we see that
ord(d) = 8. Thus, 8 | (pm − 1). That is pm ≡ 1 (mod 8). It is a contradiction.
If d+d−1 = 0, then d4 = 1. So, 4 | (pm−1). Now, we see that pm ≡ 1 (mod 4).
It is a contradiction. Similarly, x4 + δx2 − 1 is irreducible over Fpm .

(v) Suppose that x4 − δx2 − 1 is reducible over R. Then x4 − δx2 − 1 =
f(x)g(x) for some f(x), g(x) ∈ R[x].
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If deg f(x) = 1, then deg g(x) = 3. There exists β0 + uβ1 ∈ R such that
f(β0 + uβ1) = 0. Since x8 + 1 = (x4 − δx2 − 1)(x4 + δx2 − 1), β0 + uβ1 is a
root of x8 + 1. Thus, −1 = (β0 + uβ1)8 = β8

0 + 8uβ7
0β1, implying −1 = β8

0 and
8β7

0β1 = 0. Now, we have β16
0 = 1. So, ord(β0) | 16, i.e., ord(β0) = 1 or 2 or

4 or 8 or 16. If ord(β0) = 1 or 2 or 4 or 8, then β8
0 + 1 = 1 + 1 6= 0. It is a

contradiction. Thus, ord(β0) = 16. This implies that 16 | (pm−1), i.e., pm ≡ 1
(mod 16). It is a contradiction.

If deg f(x) = 2, then deg g(x) = 2. Let f(x) = x2 + (a0 + ua1)x+ (b0 + ub1)
and g(x) = x2 +(c0 +uc1)x+(d0 +ud1) where a0, a1, b0, b1, c0, c1, d0, d1 ∈ Fpm .
We consider

x4 − δx2 − 1

= f(x)g(x)

= (x2 + (a0 + ua1)x+ (b0 + ub1))(x2 + (c0 + uc1)x+ (d0 + ud1))

= x4 + (c0+a0+u(c1+a1))x3 + (d0+a0c0+b0+u(d1+a1c0+a0c1+b1))x2

+ (a0d0 + b0c0 + u(a1d0 + a0d1 + b1c0 + c1b0))x+ b0d0 + u(b1d0 + b0d1).

Thus, we have

c0 + a0 + u(c1 + a1) = 0,

d0 + a0c0 + b0 + u(d1 + a1c0 + a0c1 + b1) = −δ,
a0d0 + b0c0 + u(a1d0 + a0d1 + b1c0 + c1b0) = 0,

b0d0 + u(b1d0 + b0d1) = −1.

This implies that

c0 + a0 = 0,(4.5)

c1 + a1 = 0,(4.6)

d0 + a0c0 + b0 = −δ,(4.7)

d1 + a1c0 + a0c1 + b1 = 0,(4.8)

a0d0 + b0c0 = 0,(4.9)

a1d0 + a0d1 + b1c0 + c1b0 = 0,(4.10)

b0d0 = −1,(4.11)

b1d0 + b0d1 = 0.(4.12)

By Lemma 4.1(iv) and equations (4.5), (4.7), (4.9) and (4.11), it is impossible
to find a0, b0, c0, d0. So, it is a contradiction. Hence, x4− δx2− 1 is irreducible
over R.

(vi) Suppose that x4− δx2−1 and x4 + δx2−1 are not coprime. By Lemma
4.1(v), gcd(x4 − δx2 − 1, x4 + δx2 − 1) = x4 − δx2 − 1 or x4 + δx2 − 1. This
means that −δ = δ. It is a contradiction. Hence, x4− δx2− 1 and x4 + δx2− 1
are coprimes. �
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Using Chinese Remainder Theorem, we obtain that the algebraic structures
of negacyclic codes of length 8ps over R as follows:

Theorem 4.2. Let C be a negacyclic code of length 8ps over R. Then

(i) C = I−δ⊕Iδ where I−δ and Iδ are ideals of R[x]
〈(x4−δx2−1)ps 〉 ,

R[x]
(x4+δx2−1)ps 〉 ,

respectively.
(ii) |C| = |I−δ||Iδ|.
(iii) The dual code C⊥ of C is given by C⊥ = A(I−δ)

∗ ⊕A(Iδ)
∗.

(iv) |C⊥| = |A(I−δ)
∗||A(Iδ)

∗|.

Now, we determine the ideals of the quotient ring R[x]
〈(x4+ηδx2−1)ps 〉 where

η ∈ {−1, 1}.
Proposition 4.3. Each nonzero polynomial f(x) = ax3 + bx2 + cx + d is

invertible in R[x]
〈(x4+ηδx2−1)ps 〉 where a, b, c, d ∈ Fpm .

Proof. If a = b = c = 0, then f(x) = d 6= 0 is invetible.
If a = b = 0 and c 6= 0, then f(x) = cx+ d.

f(x)−1 = (cx+ d)−1

= c−1(x+ c−1d)−1

= c−1(x+ c−1d)p
s−1(x+ c−1d)−p

s

(x3 − c−1dx2 + ((c−1d)2 + ηδ)x

− (c−1d)((c−1d)2 + ηδ))−p
s

(x3 − c−1dx2 + ((c1d)2 + ηδ)x− (c−1d)((c−1d)2 + ηδ))p
s

= c−1(x+ c−1d)p
s−1(x3 − c−1dx2 + ((c1d)2 + ηδ)x

− (c−1d)((c−1d)2 + ηδ))p
s

(x4 + ηδx2 − (c−1d)2((c−1d)2 + ηδ))−p
s

= c−1(x+ c−1d)p
s−1(x3 − c−1dx2 + ((c−1d)2 + ηδ)x

− (c−1d)((c−1d)2 + ηδ))p
s

((x4 + ηδx2)p
s

− ((c−1d)2((c−1d)2 + ηδ))p
s

)−1

= c−1(x+ c−1d)p
s−1(x3 − c−1dx2 + ((c−1d)2 + ηδ)x

− (c−1d)((c−1d)2 + ηδ))p
s

((1)p
s

− (c−1d)2((c−1d)2 + ηδ))p
s

)−1

= − c−1(x+ c−1d)p
s−1(x3 − c−1dx2 + ((c−1d)2 + ηδ)x

− (c−1d)((c1d)2 + ηδ))p
s

((c−1d)4 + ηδ(c−1d)2 − 1)−p
s

.

Thus, f(x) is invertible if and only if (c−1d)4 + ηδ(c−1d)2 − 1 6= 0. By Lemma
4.1(iv), we get that (c−1d)4 + ηδ(c−1d)2 − 1 6= 0. Hence, f(x) is invertible.

If a = 0 and b 6= 0, then f(x) = bx2 + cx+ d. First of all, we will show that

x2 + e is invertible over R[x]
(x4+ηδx2−1)ps 〉 where e ∈ Fpm . We consider that

(x2 + e)−1 = (x2 + e)p
s−1(x2 − e+ ηδ)p

s

(x2 + e)−p
s

(x2 − e+ ηδ)−p
s
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= (x2 + e)p
s−1(x2 − e+ ηδ)p

s

(x4 + ηδx2 − e2 + ηδe)−p
s

= (x2 + e)p
s−1(x2 − e+ ηδ)p

s

((x4 + ηδx2)p
s

− (e2 + ηδe)−p
s

)−1

= (x2 + e)p
s−1(x2 − e+ ηδ)p

s

((1)p
s

− (e2 + ηδe)−p
s

)−1

= −(x2 + e)p
s−1(x2 − e+ ηδ)p

s

(e2 + ηδe− 1)−p
s

.

Thus, x2 + e is invertible if and only if e2 + ηδe− 1 6= 0. By Lemma 4.1(iv), we
have e2 + ηδe− 1 6= 0. This implies that x2 + e is invertible. Now, we consider
that

f(x)−1 = b−1(x2 + b−1cx+ b−1d)−1

= b−1(x2 + b−1cx+ b−1d)p
s−1(x2 − b−1cx+ b−1d)p

s

(x2 + b−1cx+ b−1d)−p
s

(x2 − b−1cx+ b−1d)−p
s

= b−1(x2 + b−1cx+ b−1d)p
s−1(x2 − b−1cx+ b−1d)p

s

(x4 + (2b−1d− (b−1c)2)x2 + (b−1d)2)−p
s

= b−1(x2 + b−1cx+ b−1d)p
s−1(x2 − b−1cx+ b−1d)p

s

(x4p
s

+ ((2b−1d− (b−1c)2)x2 + (b−1d)2)p
s

)−1

= b−1(x2 + b−1cx+ b−1d)p
s−1(x2 − b−1cx+ b−1d)p

s

((−ηδx2 + 1)p
s

+ ((2b−1d− (b−1c)2)x2 + (b−1d)2)p
s

)−1

= b−1(x2 + b−1cx+ b−1d)p
s−1(x2 − b−1cx+ b−1d)p

s

((2b−1d− (b−1c)2 − ηδ)x2 + (b−1d)2 + 1)−p
s

.

Thus, f(x) is invertible if and only if (2b−1d−(b−1c)2−ηδ)x2+(b−1d)2+1 6= 0.
If (2b−1d− (b−1c)2− ηδ) = 0, then (2b−1d− (b−1c)2− ηδ)x2 + (b−1c)2 + 1 =

(b−1d)2 + 1. By Lemma 4.1(i), (2b−1d− (b−1c)2 − ηδ)x2 + (b−1d)2 + 1 6= 0.
If (2b−1d − (b−1c)2 − ηδ) 6= 0, then (2b−1d − (b−1c)2 − ηδ)x2 + (b−1c)2 +

1 = (2b−1d − (b−1c)2 − ηδ)(x2 + ((b−1d)2 + 1)(2b−1d − (b−1c)2 − ηδ)−1). So,
(2b−1d − (b−1c)2 − ηδ)x2 + (b−1c)2 + 1 is invertible because x2 + ((b−1d)2 +
1)(2b−1d− (b−1c)2 − ηδ)−1 is invertible.

If a 6= 0, then f(x) = ax3 + bx2 + cx+ d. We now consider

f(x)−1 = a−1(x3 + a−1bx2 + a−1cx+ a−1d)−1

= a−1(x3 + a−1bx2 + a−1cx+ a−1d)p
s−1(x− a−1b)p

s

× (x3 + a−1bx2 + a−1cx+ a−1d)−p
s

(x− a−1b)−p
s

= a−1(x3 + a−1bx2 + a−1cx+ a−1d)p
s−1(x− a−1b)p

s

× (x4 + (a−1c− (a−1b)2)x2 + (a−1d− a−2bc)x− a−2bd)−p
s

= a−1(x3 + a−1bx2 + a−1cx+ a−1d)p
s−1(x− a−1b)p

s

× (x4p
s

+ ((a−1c− (a−1b)2)x2 + (a−1d− a−2bc)x− a−2bd)p
s

)−1
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= a−1(x3 + a−1bx2 + a−1cx+ a−1d)p
s−1(x− a−1b)p

s

× ((−ηδx2 + 1)p
s

+ (((a−1c− (a−1b)2)x2 + (a−1d− a−2bc)x

− a−2bd)p
s

)−1

= a−1(x3 + a−1bx2 + a−1cx+ a−1d)p
s−1(x− a−1b)p

s

× ((a−1c− (a−1b)2 − ηδ)x2 + (a−1d− a−2bc)x− a−2bd+ 1)−p
s

.

Thus, f(x) is invertible if and only if (a−1c−(a−1b)2−ηδ)x2+(a−1d−a−2bc)x−
a−2bd+1 6= 0. Assume that (a−1c−(a−1b)2−ηδ)x2+(a−1d−a−2bc)x−a−2bd+
1 = 0. So,

a−1c− (a−1b)2 − ηδ = 0,(4.13)

a−1d− a−2bc = 0,(4.14)

−a−2bd+ 1 = 0.(4.15)

By (4.13), (4.14) and (4.15), we have c− aηδ = a−1b2, d = a−1bc and bd = a2,
respectively. This implies that

a2 = bd = ba−1bc = a−1b2c = (c− aηδ)c = c2 − aηδc.

So, a2 + aηδc − c2 = 0. By Lemma 4.1(iii), a2 + aηδc − c2 6= 0. It is a
contradiction. Thus, (a−1c−(a−1b)2−ηδ)x2+(a−1d−a−2bc)x−a−2bd+1 6= 0.
This implies that f(x) is invertible. �

Lemma 4.4. Let f(x) ∈ R[x]
〈(x4+ηδx2−1)ps 〉 . Then f(x) can be unique expressed

as

f(x) =

ps−1∑
i=0

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i

+ u

ps−1∑
i=0

(a1ix
3 + b1ix

2 + c1ix+ d1i)(x
4 + ηδx2 − 1)i

= a00x
3 + b00x

2 + c00x+ d00

+

ps−1∑
i=1

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i

+ u

ps−1∑
i=0

(a1ix
3 + b1ix

2 + c1ix+ d1i)(x
4 + ηδx2 − 1)i,

where a0i, a1i, b0i, b1i, c0i, c1i, d0i, d1i ∈ Fpm for 0 ≤ i ≤ ps − 1. Moreover, f(x)
is non-invertible if and only if a00 = b00 = c00 = d00 = 0.

Proof. Let f(x) ∈ R[x]
〈(x4+ηδx2−1)ps 〉 . Then f(x) can be viewed as a polynomial of

degree up to 4ps − 1 of R[x], and so f(x) = f1(x) + uf2(x), where f1(x), f2(x)
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are polynomials of degrees up to 4ps−1 of Fpm [x]. Thus, f(x) can be uniquely
expressed as

f(x) =

ps−1∑
i=0

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i

+ u

ps−1∑
i=0

(a1ix
3 + b1ix

2 + c1ix+ d1i)(x
4 + ηδx2 − 1)i

= a00x
3 + b00x

2 + c00x+ d00

+ (x4 + ηδx2 − 1)

ps−1∑
i=1

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i−1

+ u

ps−1∑
i=0

(a1ix
3 + b1ix

2 + c1ix+ d1i)(x
4 + ηδx2 − 1)i,

where a0i, a1i, b0i, b1i, c0i, c1i, d0i, d1i ∈ Fpm for 0 ≤ i ≤ ps − 1. Since x4 +

ηδx2− 1 and u are nilpotent elements in R[x]
〈(x4+ηδx2−1)ps 〉 , f(x) is non-invertible

if and only if a00 = b00 = c00 = d00 = 0. �

Theorem 4.5. The ring R[x]
〈(x4+ηδx2−1)ps 〉 is a local ring with the maximal ideal

〈u, x4 + ηδx2 − 1〉, and it is not a chain ring.

Proof. By Proposition 4.4, we have the set of all non-invertible elements of
R[x]

〈(x4+ηδx2−1)ps 〉 forms as 〈u, x4 +ηδx2−1〉. Thus, R[x]
〈(x4+ηδx2−1)ps 〉 is a local ring

with the maximal ideal 〈u, x4 + ηδx2− 1〉. Next, we will show that a local ring
R[x]

〈(x4+ηδx2−1)ps 〉 is not a chain ring. If u ∈ 〈x4 + ηδx2 − 1〉, then

u = (x4 + ηδx2 − 1)(

ps−1∑
i=0

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i

+ u

ps−1∑
i=0

(a1ix
3 + b1ix

2 + c1ix+ d1i)(x
4 + ηδx2 − 1)i)

=

ps−1∑
i=0

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i+1

+ u

ps−1∑
i=0

(a1ix
3 + b1ix

2 + c1ix+ d1i)(x
4 + ηδx2 − 1)i+1,

where a0i, a1i, b0i, b1i, c0i, c1i, d0i, d1i ∈ Fpm for 0 ≤ i ≤ ps − 1. This implies

that
∑ps−1
i=0 (a0ix

3 + b0ix
2 + c0ix+ d0i)(x

4 + ηδx2− 1)i+1 = 0 and (x4 + ηδx2−
1)(
∑ps−1
i=0 (a1ix

3 + b1ix
2 + c1ix+ d1i)(x

4 + ηδx2− 1)i) =
∑ps−1
i=0 (a1ix

3 + b1ix
2 +

c1ix + d1i)(x
4 + ηδx2 − 1)i+1 = 1. Thus, x4 + ηδx2 − 1 is invertible. It is
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a contradiction. Clearly, x4 + ηδx2 − 1 6∈ 〈u〉 because u and x4 + ηδx2 − 1
are nilpotent elements with nilpotent index 2 and ps, respectively. Thus, the

quotient ring R[x]
〈(x4+ηδx2−1)ps 〉 is not a chain ring. �

Proposition 4.6.

(i) Each nonzero polynomial f(x) = ax3 + bx2 + cx + d is invertible in
Fpm [x]

〈(x4+ηδx2−1)ps 〉 where a, b, c, d ∈ Fpm .

(ii) The ring
Fpm [x]

〈(x4+ηδx2−1)ps 〉 is a finite chain ring whose each ideal forms

as 〈(x4 + ηδx2 − 1)i〉 for 0 ≤ i ≤ ps and

〈0〉=〈(x4 + ηδx2 − 1)p
s

〉 ( · · · ( 〈(x4 + ηδx2 − 1)i〉 ( · · · ( 〈(x4 + ηδx2 − 1)0〉
=〈1〉.

Proof. (i) It follows from Theorem 4.3.

(ii) Let f(x) ∈ Fpm [x]

〈(x4+ηδx2−1)ps 〉 . Then f(x) is a polynomial degree up 4ps

and thus, f(x) can be expressed as

f(x) =

ps−1∑
i=0

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i,

where a0i, b0i, c0i, d0i ∈ Fpm . We now consider that

f(x) =

ps−1∑
i=0

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i

= a00x
3 + b00x

2 + c00x+ d00

+

ps−1∑
i=1

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i

= a00x
3 + b00x

2 + c00x+ d00

+ (x4 + ηδx2 − 1)

ps−1∑
i=1

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i−1.

This implies that f(x) is non-invertible if and only if a00 = b00 = c00 = d00 = 0.

Moreover, the set of all non-invertible elements of
Fpm [x]

〈(x4+ηδx2−1)ps 〉 forms as

〈x4 +ηδx2−1〉. By Proposition 2.1, the quotient ring
Fpm [x]

〈(x4+ηδx2−1)ps 〉 is a chain

ring with each ideal forms as 〈(x4 + ηδx2 − 1)i〉 for 0 ≤ i ≤ ps.
The proof is complete. �

Thus, we characterize all ideals of R[x]
〈(x4+ηδx2−1)ps 〉 as the following theorem.

Theorem 4.7. All ideals of R[x]
〈(x4+ηδx2−1)ps 〉 are
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• Type 1: (trivial ideals)

〈0〉 and 〈1〉.

• Type 2: (principal ideals with nonmonic polynomial generators)

〈u(x4 + ηδx2 − 1)i〉,

where 0 < i ≤ ps − 1.
• Type 3: (principal ideals with monic polynomial generators)

〈(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)〉,

where 1 ≤ i ≤ ps−1, 0 ≤ t < i, and either h(x) is 0 or a unit which can
be represented as h(x) =

∑
j(h3jx

3+h2jx
2+h1jx+h0j)(x

4+ηδx2−1)j

with h0j , h1j , h2j , h3j ∈ Fpm and h30x
3 + h20x

2 + h10x+ h00 6= 0.
• Type 4: (non-principal ideals)

〈(x4+ηδx2 − 1)i+u
ω−1∑
j=0

(a0jx
3+b0jx

2+c0jx+d0j)(x
4+ηδx2−1)j , u(x4+ηδx2−1)ω〉

for 1 ≤ i ≤ ps − 1, a0j , b0j , c0j , d0j ∈ Fpm , and ω < T where T is the
smallest integers such that u(x4 + ηδx2 − 1)T ∈ 〈(x4 + ηδx2 − 1)i +

u
∑ω−1
j=0 (a0jx

3 + b0jx
2 + c0jx+ d0j)(x

4 + ηδx2 − 1)j〉 or equivalently,

〈(x4 + ηδx2− 1)i +u(x4 + ηδx2− 1)th(x), u(x4 + ηδx2− 1)ω〉 with h(x)
as in Type 3, and deg h(x) ≤ ω − t− 1.

Proof. First of all, it is easy to see that ideals of Type 1 are trivial ideals. Let I

be an arbitrary nontrivial ideal of R[x]
〈(x4+ηδx2−1)ps 〉 . We processed by establishing

all possible forms that this nontrivial ideal I can have.

Case 1. I ⊆ 〈u〉: Then any element of I must be of the form u
∑ps−1
i=0 (a0ix

3+
b0ix

2 + c0ix + d0i)(x
4 + ηδx2 − 1)i where a0i, b0i, c0i, d0i ∈ Fpm . This implies

that there exists an element a(x) ∈ I that has the smallest k such that a0kx
3 +

b0kx
2 + c0kx + d0k 6= 0. Hence each element c(x) ∈ I have the form c(x) =

u(x4 +ηδx2−1)k
∑ps−1
i=k (e0ix

3 +f0ix
2 +g0ix+h0i)(x

4 +ηδx2−1)i−k, implying
that I ⊆ 〈u(x4 + ηδx2 − 1)k〉. However, we have a(x) ∈ I with

a(x) = u(x4 + ηδx2 − 1)k
ps−1∑
i=k

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i−k

= u(x4 + ηδx2 − 1)k

(
a0kx

3 + b0kx
2 + c0kx+ d0k

+

ps−1∑
i=k+1

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 + ηδx2 − 1)i−k

)
.

From a0kx
3 + b0kx

2 + c0kx+ d0k 6= 0, we can see that a0kx
3 + b0kx

2 + c0kx+

d0k +
∑ps−1
i=k+1(a0ix

2 + b0ix+ c0i)(x
4 + ηδx2 − 1)i−k is invertible, proving that
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u(x4 + ηδx2 − 1)k ∈ I. Therefore, I = 〈u(x4 + ηδx2 − 1)k〉, which means that

the nontrivial ideals of R[x]
〈(x4+ηδx2−1)ps 〉 contained in 〈u〉 are 〈u(x4 +ηδx2−1)k〉,

0 ≤ k ≤ ps − 1, which are ideals of Type 2.
Case 2. I * 〈u〉: Let Iu denote the set of elements in I which are reduced

modulo u. Note that Iu is a nonzero ideal of the ring
Fpm [x]

〈(x4+ηδx2−1)ps 〉 , which is a

finite chain ring with ideals 〈(x4+ηδx2−1)j〉 where 0 ≤ j ≤ ps. Then there is an

integer i ∈ {0, 1, . . . , ps−1} such that Iu = 〈(x4+ηδx2−1)i〉 ⊆ Fpm [x]

〈(x4+ηδx2−1)ps 〉 .

This follows that there exists an element

c(x) =

ps−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

+ u

ps−1∑
j=0

(a1jx
3 + b1jx

2 + c1jx+ d1j)(x
4 + ηδx2 − 1)j

∈ R[x]

〈(x4 + ηδx2 − 1)ps〉
,

where a0j , a1j , b0j , b1j , c0j , c1j , d0j , d1j ∈ Fpm such that (x4+ηδx2−1)i+uc(x) ∈
I. Since

(x4 + ηδx2 − 1)i + uc(x)

= (x4 + ηδx2 − 1)i + u

ps−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j ∈ I,

and u(x4 + ηδx2 − 1)k = u
(
(x4 + ηδx2 − 1)i + uc(x)

)
(x4 + ηδx2 − 1)k−i ∈ I

with i ≤ k ≤ ps− 1, we have (x4 + ηδx2− 1)i + u
∑i−1
j=0(a0jx

3 + b0jx
2 + c0jx+

d0j)(x
4 + ηδx2 − 1)j ∈ I. We now consider two subcases.

Case 2a. I = 〈(x4 + ηδx2 − 1)i + u
∑i−1
j=0(a0jx

3 + b0jx
2 + c0jx + d0j)(x

4 +

ηδx2 − 1)j〉, then I can be expressed as

I = 〈(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)〉,

where h(x) is 0 or a unit. If h(x) is a unit, then h(x) can be represented as

h(x) =
∑i−t−1
j=0 (h3jx

3+h2jx
2+h1jx+h0j)(x

4+ηδx2−1)j with h0j , h1j , h2j , h3j
∈ Fpm and h20x

2 + h10x+ h00 6= 0. it follows that I is of Type 3.

Case 2b. 〈(x4 + ηδx2− 1)i +u
∑i−1
j=0(a0jx

3 + b0jx
2 + c0jx+d0j)(x

4 + ηδx2−
1)j〉 ( I. Then, there exists f(x) ∈ I\〈(x4+ηδx2−1)i+u

∑i−1
j=0(a0jx

3+b0jx
2+

c0jx + d0j)(x
4 + ηδx2 − 1)j〉. By Division Algorithm, there exist polynomials

r(x), q(x) ∈ R[x]
〈(x4+ηδx2−1)ps 〉 such that

0 6= r(x) = f(x)− q(x)

(
(x4 + ηδx2 − 1)i
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+ u

i−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

)
∈ I,

where deg r(x) < deg((x4+ηδx2−1)i+u
∑i−1
j=0(a0jx

3+b0jx
2+c0jx+d0j)(x

4+

ηδx2 − 1)j). This implies that r(x) can be expressed as

r(x) =

i−1∑
j=0

(r3jx
3 + r2jx

2 + r1jx+ r0j)(x
4 + ηδx2 − 1)j

+ u

i−1∑
j=0

(r′3jx
3 + r′2jx

2 + r′1jx+ r′0j)(x
4 + ηδx2 − 1)j ,

where r0j , r1j , r2j , r3j , r
′
0j , r

′
1j , r

′
2j , r

′
3j ∈ Fpm . Hence, r(x) reduced modulo u

is in Iu = 〈(x4 + ηδx2 − 1)i〉, and thus, r3j = r2j = r1j = r0j = 0 for all

0 ≤ j ≤ i− 1, i.e., r(x) = u
∑i−1
j=0(r′3jx

3 + r′2jx
2 + r′1jx+ r′0j)(x

4 + ηδx2 − 1)j .

Since r(x) 6= 0, there exists the smallest integer k, 0 ≤ k ≤ i − 1, such that
r′3kx

3 + r′2kx
2 + r′1kx+ r′0k 6= 0. Then

r(x) = u

i−1∑
j=k

(r′3jx
3 + r′2jx

2 + r′1jx+ r′0j)(x
4 + ηδx2 − 1)j

= u(x4 + ηδx2 − 1)k

(
r′3kx

3 + r′2kx
2 + r′1kx+ r′0k

+

i−1∑
j=k+1

(r′3jx
3 + r′2jx

2 + r′1jx+ r′0j)(x
4 + ηδx2 − 1)j−k

)
.

As r′3kx
3 +r′2kx

2 +r′1kx+r′0k 6= 0, r′3kx
3 +r′2kx

2 +r′1kx+r′0k+
∑i−1
j=k+1(r′3jx

3 +

r′2jx
2 +r′1jx+r′0j)(x

4 +ηδx2−1)j−k is an invertible element in R[x]
〈(x4+ηδx2−1)ps 〉 .

Hence,

u(x4 + ηδx2 − 1)k

= (r′3kx
3 + r′2kx

2 + r′1kx+ r′0k

+

i−1∑
j=k+1

(r′3jx
3 + r′2jx

2 + r′1jx+ h′0j)(x
4 + ηδx2 − 1)j−k)−1r(x) ∈ I.

It has been shown that for any f(x) ∈ I\〈(x4 + ηδx2 − 1)i + u
∑i−1
j=0(a0jx

3 +

b0jx
2 + c0jx+ d0j)(x

4 + ηδx2 − 1)j〉, there is an integer kf with 0 ≤ kf ≤ i− 1
such that u(x4+ηδx2−1)kf ∈ I. Let ω = min{kf : f(x) ∈ I\〈(x4+ηδx2−1)i+

u
∑i−1
j=0(a0jx

3 + b0jx
2 + c0jx+d0j)(x

4 +ηδx2−1)j〉}. Then 〈(x4 +ηδx2−1)i+

u
∑i−1
j=0(a0jx

3 + b0jx
2 + c0jx+ d0j)(x

4 + ηδx2− 1)j , u(x4 + ηδx2− 1)ω〉 ⊆ I. In

addition, by the above construction, for any f(x) ∈ I, there exists a polynomial
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q(x) ∈ R[x]
〈x4+ηδx2−1〉 satisfying

f(x)− q(x)[(x4 + ηδx2 − 1)i

+ u

i−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j ]

∈ 〈u(x4 + ηδx2 − 1)ω〉,

implying that

f(x) ∈ 〈(x4 + ηδx2 − 1)i + u

i−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j ,

u(x4 + ηδx2 − 1)ω〉.

Thus,

I = 〈(x4 + ηδx2 − 1)i + u

i−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j ,

u(x4 + ηδx2 − 1)ω〉

= 〈(x4 + ηδx2 − 1)i + u

ω−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j ,

u(x4 + ηδx2 − 1)ω〉.

Let T be the smallest integer such that u(x4 + ηδx2 − 1)T ∈ 〈(x4 + ηδx2 − 1)i

+ u
∑i−1
j=0(a0jx

3 + b0jx
2 + c0jx+ d)(x4 + ηδx2 − 1)j〉. If ω ≥ T , then

I = 〈(x4 + ηδx2 − 1)i + u

ω−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j ,

u(x4 + ηδx2 − 1)ω〉

= 〈(x4 + ηδx2 − 1)i + u

i−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j〉.

It is a contradiction with the assumption of this case. This implies that ω < T ,
proving that I is of Type 4. �

Next, we obtain that the properties of the integer T in Type 4 as following
proposition.

Proposition 4.8. Let T be the smallest integer such that u(x4 + ηδx2− 1)T ∈
I = 〈(x4 +ηδx2−1)i+u(x4 +ηδx2−1)th(x)〉, where h(x) is 0 or a unit. Then

T =

{
i, if h(x) = 0,

min{i, ps − i+ t}, if h(x) is a unit.
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Proof. First of all, we see that T ≤ i because u(x4+ηδx2−1)i = u
(
(x4+ηδx2−

1)i + u(x4 + ηδx2 − 1)th(x)
)
∈ I. If h(x) = 0, then I = 〈(x4 + ηδx2 − 1)i〉,

implying that T = i. Now we consider that the case h(x) is a unit. Since
u(x4 + ηδx2 − 1)T ∈ 〈(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)〉, there is a

polynomial f(x) ∈ R[x]
〈(x4+ηδx2−1)ps 〉 satisfying u(x4 + ηδx2 − 1)T = f(x)

(
(x4 +

ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)
)
. So, f(x) can be written as

f(x) =

ps−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

+ u

ps−1∑
j=0

(a1jx
3 + b1jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j ,

where a0j , a1j , b0j , b1j , c0j , c1j , d0j , d1j ∈ Fpm . Then u(x4 + ηδx2 − 1)T can be
expressed as follows:

(
ps−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

+ u

ps−1∑
j=0

(a1jx
3 + b1jx

2 + c1jx+ d1j)(x
4 + ηδx2 − 1)j

)
×
(
(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)

)
= (x4 + ηδx2 − 1)i

ps−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

+ u(x4 + ηδx2 − 1)i
ps−1∑
j=0

(a1jx
3 + b1jx

2 + c1jx+ d1j)(x
4 + ηδx2 − 1)j

+ u(x4 + ηδx2 − 1)th(x)

ps−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

= (x4 + ηδx2 − 1)i
ps−i−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

+ (x4+ηδx2−1)p
s
ps−1∑
j=ps−i

(a0jx
3+ b0jx

2+ c0jx+ d0j)(x
4+ ηδx2− 1)i+j−p

s

+ u(x4 + ηδx2 − 1)i
ps−i−1∑
j=0

(a1jx
3 + b1jx

2 + c1jx+ d1j)(x
4 + ηδx2 − 1)j



NEGACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm 1405

+ u(x4+ηδx2−1)p
s
ps−1∑
j=ps−i

(a1jx
3+ b1jx

2+ c1jx+ d1j)(x
4+ ηδx2− 1)i+j−p

s

+ u(x4+ηδx2−1)th(x)

ps−i−1∑
j=0

(a0jx
3+ b0jx

2+ c0jx+ d0j)(x
4+ ηδx2− 1)j

+ u(x4+ηδx2−1)th(x)

ps−1∑
j=ps−i

(a0jx
3+ b0jx

2+ c0jx+ d0j)(x
4+ ηδx2− 1)j

= (x4 + ηδx2 − 1)i
ps−i−1∑
j=0

(a0jx
3 + b0jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

+ u(x4 + ηδx2 − 1)i
ps−i−1∑
j=0

(a1jx
3 + b1jx

2 + c1jx+ d1j)(x
4 + ηδx2 − 1)j

+ u(x4+ηδx2−1)th(x)

ps−i−1∑
j=0

(a0jx
3+ b0jx

2+ c0jx+ d0j)(x
4+ ηδx2− 1)j

+ u(x4+ηδx2−1)th(x)

ps−1∑
j=ps−i

(a0jx
3+ b0jx

2+ c0jx+ d0j)(x
4+ ηδx2− 1)j .

We see that (x4+ηδx2−1)i
∑ps−i−1
j=0 (a0jx

3+b0jx
2+c0jx+d0j)(x

4+ηδx2−1)j =
0, implying that a0j = b0j = c0j = d0j = 0 for all j = 0, 1, 2, . . . , ps − i − 1.
Thus,

u(x4 + ηδx2 − 1)T

= u(x4 + ηδx2 − 1)i
ps−i−1∑
j=0

(a1jx
3 + b1jx

2 + c0jx+ d0j)(x
4 + ηδx2 − 1)j

+ u(x4 + ηδx2 − 1)p
s−i+th(x)

×
i−1∑
j=0

(a0,ps−i+jx
3 + b0,ps−i+jx

2 + c0,ps−i+jx+ d0,ps−i+j)

× (x4 + ηδx2 − 1)j .

Therefore, T ≥ min{i, ps − i+ t}. Moreover,

[(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)](x4 + ηδx2 − 1)p
s−1

= u(x4 + ηδx2 − 1)p
s−i+th(x).

Hence,

u(x4 + ηδx2 − 1)p
s−i+t

= [(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)](x4 + ηδx2 − 1)p
s−ih(x)−1 ∈ I.
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Thus, T ≤ ps − i+ t, concluding that T = min{i, ps − i+ t}. �

Now, we determine the number of codewords of ideals of R[x]
〈(x4+ηδx2−1)ps 〉 as

following theorem.

Theorem 4.9. Let I be an ideal of the ring R[x]
〈(x4+ηδx2−1)ps 〉 . Then the number

of elements of I, denoted by nI is determined as follows.

• If I = 〈0〉 and I = 〈1〉, then nI = 1 and nI = p8mp
s

, respectively.
• If I = 〈u(x4 + ηδx2 − 1)i〉 where 0 ≤ i ≤ ps − 1, then nI = p4m(ps−i).
• If I = 〈(x4+ηδx2−1)i+u(x4+ηδx2−1)th(x)〉 where 1 ≤ i ≤ ps−1, 0 ≤
t < i, and h(x) is 0 or a unit, then

nI =

{
p8m(ps−i), if h(x) is 0, 1 ≤ i ≤ ps − 1 or h(x) is a unit, 1≤ i≤ ps+t

2 ,

p4m(ps−t), if h(x) is a unit, p
s+t
2 < i ≤ ps − 1.

• If I = 〈(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x), u(x4 + ηδx2 − 1)ω〉,
where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, either h(x) is 0 or h(x) is a unit, and

ω < T =

{
i, if h(x) = 0,

min{i, ps − i+ t}, if h(x) is a unit,

then nI = p4m(2ps−i−ω).

Proof. We apply Proposition 2.8 for computing the number of elements of I
and separate this proof into following types in Theorem 4.7.

(i) Type 1:

• If I = 〈0〉, then Res(I) = Tor(I) = 〈0〉. Thus, nI = |Res(I)||Tor(I)| =
1 · 1 = 1.
• If I = 〈1〉, then Res(I) = Tor(I) = 〈1〉, implying that

nI = |Res(I)||Tor(I)| = p4mp
s

· p4mp
s

= p8mp
s

.

(ii) Type 2: I = 〈u(x4 + ηδx2− 1)i〉 where 0 < i ≤ ps− 1, then Res(I) = 〈0〉
and Tor(I) = 〈(x4 + ηδx2 − 1)i〉. Hence, we get that nI = |Res(I)||Tor(I)| =
1 · p4m(ps−i) = p4m(ps−i).

(iii) Type 3: I = 〈(x4+ηδx2−1)i+u(x4+ηδx2−1)th(x)〉 where 0 ≤ i ≤ ps−1,
0 ≤ t < i, and h(x) is 0 or a unit. If h(x) = 0, then Res(I) = 〈(x4 + ηδx2 −
1)i〉 and Tor(I) = 〈(x4 + ηδx2 − 1)i〉, implying that nI = |Res(I)||Tor(I)| =
p4m(ps−i) · p4m(ps−i) = p8m(ps−i).

If h(x) is a unit, then Res(I) = 〈(x4+ηδx2−1)i〉 and Tor(I) = 〈(x4+ηδx2−
1)T 〉, where T is the smallest integer such that

T =

{
i, if h(x) = 0,

min{i, ps − i+ t}, if h(x) is a unit.

For 1 ≤ i ≤ ps+t
2 , we see that Tor(I) = 〈(x4 + ηδx2 − 1)i〉, implying that

nI = |Res(I)||Tor(I)| = p4m(ps−i) · p4m(ps−i) = p8m(ps−i). Moreover, Tor(I) =
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〈(x4 + ηδx2 − 1)p
s−i+t〉 for ps+t

2 < i ≤ ps − 1. Thus, nI = |Res(I)||Tor(I)| =
p4m(ps−i) · p4m(i−t) = p4m(ps−t).

(iv) Type 4: If I = 〈(x4+ηδx2−1)i+u(x4+ηδx2−1)th(x), u(x4+ηδx2−1)ω〉,
where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, either h(x) is 0 or h(x) is a unit, and ω < T ,
then Res(I) = 〈(x4 + ηδx2 − 1)i〉 and Tor(I) = 〈(x4 + ηδx2 − 1)ω〉. Thus,
nI = |Res(I)||Tor(I)| = p4m(ps−i) · p4m(ps−ω) = p4m(2ps−i−ω).

The proof is complete. �

We now investigate the dual codes and determine the annihilator of I where

I is an ideal of the ring R[x]
〈(x4+ηδx2−1)ps 〉 . We need to give the following lemma.

Lemma 4.10. Let I be an ideal of the ring R[x]
〈(x4+ηδx2−1)ps 〉 . If I = 〈(x4 +

ηδx2−1)i+u(x4 +ηδx2−1)th(x), u(x4 +ηδx2−1)ω〉 where h(x) is 0 or a unit,
then ps− i is the smallest positive integer r such that u(x4 +ηδx2−1)r ∈ A(I).

Proof. Since (x4+ηδx2−1)i+u(x4+ηδx2−1)th(x) ∈ I and u(x4+ηδx2−1)r ∈
A(I), we have

0 =
(
(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)

)
u(x4 + ηδx2 − 1)r

= u(x4 + ηδx2 − 1)i+r.

We see that i + r ≥ ps. So, we have the smallest value of r is ps − i. Hence,
u(x4 + ηδx2 − 1)p

s−i ∈ A(I). �

Lemma 4.11. Let f(x) = (x4 + ηδx2 − 1)i − u
∑t
j=0(ajx

3 + bjx
2 + cjx +

dj)(x
4 + ηδx2− 1)j be a polynomial over R where aj , bj , cj , dj ∈ Fpm and t < i.

Then

f∗(x) = (−1)i(x4 − ηδx2 − 1)i

− u
t∑

j=0

(djx
3 + cjx

2 + bjx+ aj)(−1)j(x4 − ηδx2 − 1)x4i−4j−3.

Proof. By Lemma 2.7, we see that(
(x4 + ηδx2 − 1)k

)∗
=
(
(x4 + ηδx2 − 1)∗

)k
= (−x4 + ηδx2 + 1)k

= (−1)k(x4 − ηδx2 − 1)k.

Applying Lemma 2.7 again, we have

f∗(x) = (−1)i(x4 − ηδx2 − 1)i

− u
t∑

j=0

(ajx
3 + bjx

2 + cjx+ dj)
∗(−1)j(x4 − ηδx2 − 1)jx4i−4j−3

= (−1)i(x4 − ηδx2 − 1)i
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− u
t∑

j=0

(djx
3 + cjx

2 + bjx+ aj)(−1)j(x4 − ηδx2 − 1)jx4i−4j−3.

Now, we obtain that the form of f∗(x). �

Theorem 4.12. Let I = 〈u(x4 + ηδx2 − 1)i〉 be an ideal of the ring

R[x]

〈(x4 + ηδx2 − 1)ps〉
.

Then A(I)∗ = 〈(x4 − ηδx2 − 1)p
s−i, u〉.

Proof. Since I ⊆ 〈u〉 and I ⊆ 〈(x4 + ηδx2 − 1)i〉, we have 〈(x4 + ηδx2 −
1)p

s−i〉 = A(〈(x4 + ηδx2 − 1)i〉) ⊆ A(I) and 〈u〉 = A(〈u〉) ⊆ A(I). This
implies that 〈(x4 + ηδx2 − 1)p

s−i, u〉 ⊆ A(I). The other inclusion follows from
the fact that the coefficient vector of (x4 + ηδx2 − 1)p

s−i is orthogonal to the
coefficient vector of u(x4 + ηδx2 − 1)i and all its constacyclic shift. Thus,
A(I) = 〈(x4 + ηδx2 − 1)p

s−i, u〉. By Lemma 2.7, we have

A(I)∗ = 〈(x4 − ηδx2 − 1)p
s−i, u〉. �

Theorem 4.13. Let I = 〈(x4 +ηδx2−1)i+u(x4 +ηδx2−1)th(x)〉 where h(x)
is 0 or a unit. Then

(i) If h(x) = 0, then A(I)∗ = 〈(x4 − ηδx2 − 1)p
s−i〉.

(ii) If h(x) is a unit and 1 ≤ i ≤ ps+t
2 , then

A(I)∗ = 〈(−1)i−t(x4 − ηδx2 − 1)p
s−i

− u(x4 − ηδx2 − 1)p
s−2i+t

i−t−1∑
j=0

(djx
3 + cjx

2 + bjx+ aj)

× (−1)j(x4 − ηδx2 − 1)j〉.

(iii) If h(x) is a unit and ps+t
2 < i ≤ ps − 1, then

A(I)∗ = 〈(−1)i−t(x4 − ηδx2 − 1)i−t

− u
ps−i−1∑
j=0

(djx
3+cjx

2+bjx+aj)(−1)j(x4−ηδx2−1)jx4i−4t−4j−3,

u(x4 − ηδx2 − 1)p
s−i〉.

Proof. (i) Suppose that h(x) = 0. So, we have I = 〈(x4 + ηδx2 − 1)i〉. Now, it
is obvious to see that A(I) = 〈(x4 + ηδx2 − 1)p

s−i〉. Since(
(x4 + ηδx2 − 1)p

s−i)∗ = [(x4 + ηδx2 − 1)∗]p
s−i

= (−x4 + ηδx2 + 1)p
s−i

= (−1)p
s−i(x4 − ηδx2 − 1)p

s−i,

we have A(I)∗ = 〈(x4 − ηδx2 − 1)p
s−i〉.
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(ii) Suppose that h(x) is a unit and 1 ≤ i ≤ ps+t
2 . Since

0 =
(

(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)
)

(
(x4 + ηδx2 − 1)p

s−i − u(x4 + ηδx2 − 1)p
s−2i+th(x)

)
,

we have

(x4 + ηδx2 − 1)p
s−i − u(x4 + ηδx2 − 1)p

s−2i+th(x) ∈ A(I).

Note that 0 =
(

(x4 +ηδx2−1)i+u(x4 +ηδx2−1)th(x)
)(
u(x4 +ηδx2−1)p

s−i
)

and, thus u(x4 + ηδx2 − 1)p
s−i ∈ A(I). This implies that

〈(x4 + ηδx2 − 1)p
s−i − u(x4 + ηδx2 − 1)p

s−2i+th(x), u(x4 + ηδx2 − 1)p
s−i〉

⊆ A(I).

Writing,

A(I) = 〈(x4 + ηδx2 − 1)a + u(x4 + ηδx2 − 1)bg(x), u(x4 + ηδx2 − 1)c〉

and by Lemma 4.10, we have ps − i is the smallest positive integer such that
u(x4 + ηδx2 − 1)p

s−i ∈ A(I). Thus, c = ps − i. Now, we consider that

0 =
(

(x4 + ηδx2 − 1)a + u(x4 + ηδx2 − 1)bg(x)
)

(
(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)

)
= (x4 + ηδx2 − 1)a+i + u(x4 + ηδx2 − 1)b+ig(x) + u(x4 + ηδx2 − 1)a+th(x).

This means that a + i ≥ ps, i.e., a ≥ ps − i. Since a ≥ ps − i, we can choose
a = ps − i. Then, we can set b = ps − 2i+ t and g(x) = −h(x). Therefore,

A(I) = 〈(x4 + ηδx2 − 1)p
s−i − u(x4 + ηδx2 − 1)p

s−2i+th(x),

u(x4 + ηδx2 − 1)p
s−i〉.

Noting that

u(x4 + ηδx2 − 1)p
s−i = u

(
(x4 + ηδx2 − 1)p

s−i − u(x4 + ηδx2 − 1)th(x)
)

∈ 〈(x4 + ηδx2 − 1)p
s−i − u(x4 + ηδx2 − 1)th(x)〉,

we have A(I) = 〈(x4 + ηδx2 − 1)p
s−i − u(x4 + ηδx2 − 1)th(x)〉. Let h(x) =∑

j(ajx
3+bjx

2+cjx+dj)(x
4+ηδx2−1)j where a0x

3+b0x
2+c0x+d0 6= 0 and

aj , bj , cj , dj ∈ Fpm . Since 1 ≤ i ≤ ps+t
2 , we have t+ j < T = min{i, ps − i+ t}

= i. So, j ≤ i− t− 1. Thus,

h(x) =
∑
j

(ajx
3 + bjx

2 + cjx+ dj)(x
4 + ηδx2 − 1)j .

Hence,

A(I)∗ = 〈(−1)i−t(x4 − ηδx2 − 1)p
s−i
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− u(x4 − ηδx2 − 1)t
i−t−1∑
j=0

(djx
3 + cjx

2 + bjx+ aj)(−1)j

× (x4 − ηδx2 − 1)jx4i−4j−3〉
because

[(x4 + ηδx2 − 1)p
s−i

− u(x4 + ηδx2 − 1)t
i−t−1∑
j=0

(ajx
3 + bjx

2 + cjx+ dj)(x
4 + ηδx2 − 1)j ]∗

= (−1)p
s−i(x4 − ηδx2 − 1)p

s−i

− u(−1)p
s−2i+t(x4 − ηδx2 − 1)t

i−t−1∑
j=0

(djx
3 + cjx

2 + bjx+ aj)(−1)j

× (x4 − ηδx2 − 1)jx4i−4j−3.

(iii) Suppose that h(x) is a unit and ps+t
2 < i ≤ ps−i. By the above process,

we have

A(I) = 〈(x4 + ηδx2 − 1)a + u(x4 + ηδx2 − 1)bg(x), u(x4 + ηδx2 − 1)p
s−i〉.

Since

0 =
(

(x4 + ηδx2 − 1)a + u(x4 + ηδx2 − 1)bg(x)
)

(
(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)

)
= (x4 + ηδx2 − 1)a+i + u(x4 + ηδx2 − 1)b+ig(x) + u(x4 + ηδx2 − 1)a+th(x),

we have a+ i ≥ ps, i.e., a ≥ ps − i. Since ps+t
2 < i, we have ps − i < i− t and

choose a = i− t. Thus, b = 0 and g(x) = −h(x). This implies that

A(I) = 〈(x4 + ηδx2 − 1)i−t − uh(x), u(x4 + ηδx2 − 1)p
s−i〉.

Let h(x) =
∑
j(ajx

3+bjx
2+cjx+dj)(x

4+ηδx2−1)j where a0x
3+b0x

2+c0x+

d0 6= 0 and aj , bj , cj , dj ∈ Fpm . By assumption and t+ j < T = min{i, ps − i+
t} = ps − i+ t, we have j ≤ ps − i− 1. Thus,

h(x) =

ps−i−1∑
j=0

(ajx
3 + bjx

2 + cjx+ dj)(x
4 + ηδx2 − 1)j .

By Lemma 4.11, we get that

A(I)∗= 〈(−1)i−t(x4 − ηδx2 − 1)i−t

− u
ps−i−1∑
j=0

(djx
3+ cjx

2+ bjx+ aj)(−1)j(x4− ηδx2− 1)jx4i−4t−4j−3,

u(x4 − ηδx2 − 1)p
s−i〉.
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This completes the proof of (i)-(iii). �

Theorem 4.14. Let I = 〈(x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x), u(x4 +
ηδx2 − 1)ω〉, where h(x) is 0 or a unit.

(i) If h(x) = 0, then

A(I)∗ = 〈(x4 − ηδx2 − 1)p
s−ω, u(x4 − ηδx2 − 1)p

s−i〉.

(ii) If h(x) is a unit, then

A(I)∗ = 〈(−1)i−t(x4 − ηδx2 − 1)p
s−ω − u(x4 − ηδx2 − 1)p

s−i−ω+t

×
ω−t−1∑
j=0

(djx
3 + cjx

2 + bjx+ aj)(−1)j(x4 − ηδx2 − 1)j ,

u(x4 − ηδx2 − 1)p
s−i〉.

Proof. (i) Suppose that h(x) = 0. So, I = 〈(x4 +ηδx2−1)i, u(x4 +ηδx2−1)ω〉.
It is obvious to see that

A(I) = 〈(x4 + ηδx2 − 1)p
s−ω, u(x4 + ηδx2 − 1)p

s−i〉.
This implies that

A(I)∗ = 〈(x4 − ηδx2 − 1)p
s−ω, u(x4 − ηδx2 − 1)p

s−i〉.

(ii) Suppose that h(x) is a unit. We consider that

0 = u(x4 + ηδx2 − 1)p
s−i

×
(

((x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)) + u(x4 + ηδx2 − 1)ω
)

and

0 =
(

(x4 + ηδx2 − 1)p
s−ω − u(x4 + ηδx2 − 1)p

s−i−ω+th(x)
)

×
(

((x4 + ηδx2 − 1)i + u(x4 + ηδx2 − 1)th(x)) + u(x4 + ηδx2 − 1)ω
)
.

Thus,

D = 〈(x4+ηδx2−1)p
s−ω−u(x4+ηδx2−1)p

s−i−ω+th(x), u(x4+ηδx2−1)p
s−i〉

⊆ A(I),

and |D| = p4m(i+ω). Then, we have

p4m(i+ω) = |D| ≤ |A(I)| = |A(I)∗|

≤ |I⊥| = p8mp
s

|I|
=

p8mp
s

p4m(2ps−i−ω) = p4m(i+ω).

Therefore,

〈(x4 + ηδx2 − 1)p
s−ω−u(x4+ηδx2 − 1)p

s−i−ω+th(x), u(x4 + ηδx2 − 1)p
s−i〉

= A(I).
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Let h(x) =
∑ω−t−1
j=0 (ajx

3 + bjx
2 + cjx + dj)(x

4 + ηδx2 − 1)j , where a0x
3 +

b0x
2 + c0x+ d0 6= 0 and aj , bj , cj , dj ∈ Fpm . By Lemma 4.11, we obtain that

A(I)∗ = 〈(−1)i−t(x4 − ηδx2 − 1)p
s−ω − u(x4 − ηδx2 − 1)p

s−i−ω+t

×
ω−t−1∑
j=0

(djx
3 + cjx

2 + bjx+ aj)(−1)j(x4 − ηδx2 − 1)j ,

u(x4 − ηδx2 − 1)p
s−i〉.

This completes the proof of (i) and (ii). �

5. The case pm ≡ 5 (mod 16) or pm ≡ 13 (mod 16)

In this section, using Chinese Remainder Theorem, we obtain the algebraic
structures of the negacyclic codes of length 8ps over R with pm ≡ 5 (mod 16)
or pm ≡ 13 (mod 16). Since pm ≡ 5, 13 (mod 16), we have pm ≡ 1 (mod 4).

Then x2 + 1 = (x− γ)(x− γ3) where γ = ξ
pm−1

4 . So,

x8p
s

+ 1 = (x8 + 1)p
s

= (x4 − γ)p
s

(x4 − γ3)p
s

= (x4p
s

− γp
s

)(x4p
s

− γ3p
s

).

Remark 5.1. γγ3 = 1.

Next, we give the properties about the polynomials x4 − γ and x4 − γ3.

Lemma 5.2.

(i) The polynomials x4 − γ and x4 − γ3 are irreducible over Fpm .
(ii) The polynomials x4 − γ and x4 − γ3 are irreducible over R.
(iii) x4 − γ and x4 − γ3 are coprimes of R[x].

Proof. (i) We will show that x4−γ is irreducible over Fpm . Suppose that x4−γ
is reducible over Fpm . There exist f(x), g(x) ∈ Fpm [x] such that x4 − γ =
f(x)g(x).

If deg f(x) = 1, then deg g(x) = 3. So, there exists β ∈ Fpm such that
f(β) = 0. Since x8 + 1 = (x4 − γ)(x4 − γ3) = f(x)g(x)(x4 − γ3), we have
β is a root of x8 + 1, i.e., β8 + 1 = 0. This implies that β16 = 1. Thus,
ord(β) | 16, i.e., ord(β) = 1 or 2 or 4 or 8 or 16. If ord(β) = 1 or 2 or 4 or
8, then β8 + 1 = 1 + 1 = 2 6= 0. It is a contradiction. So, ord(β) = 16. This
means that 16 | (pm − 1), i.e., pm ≡ 1 (mod 16). It is a contradiction. Hence,
x4 − γ is irreducible over Fpm .

If f(x) = 2, then g(x) = 2. Let f(x) = x2 + ax+ b and g(x) = x2 + cx+ d
for some a, b, c, d ∈ Fpm . Then

x4 − γ = f(x)g(x) = (x2 + ax+ b)(x2 + cx+ d)

= x4 + (c+ a)x3 + (d+ ac+ b)x2 + (ad+ bc)x+ bd.
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This means that

c+ a = 0,(5.1)

d+ ac+ b = 0,(5.2)

ad+ bc = 0,(5.3)

bd = −γ.(5.4)

From equations (5.1), we have a = −c and, implying 0 = ad+bc = (−c)d+bc =
c(b− d). So, c = 0 or b− d = 0.

If c = 0, then a = 0 and d = −b. This implies that −ξ
pm−1

4 = −γ = bd =

−b2. Thus, b = ξ
pm−1

8 . That is pm ≡ 1 (mod 8). It is a contradiction.

If, b − d = 0, i.e., b = d, then ξ
3(pm−1)

4 = −ξ
(pm−1)

4 = −γ = bd = b2.

This implies that b = ξ
3(pm−1)

8 . So, 8 | (pm − 1), i.e., pm ≡ 1 (mod 8). It is
a contradiction. Hence, x4 − γ is irreducible over Fpm . Similarly, x4 − γ3 is
irreducible over Fpm .

(ii) We will show that x4 − γ is irreducible over R. Suppose that x4 − γ is
reducible over R. There exist f(x), g(x) ∈ R[x] such that x4 − γ = f(x)g(x).

If deg f(x) = 1, then deg g(x) = 3. So, there exists β0 + uβ1 ∈ R such that
f(β0 + uβ1) = 0. Thus,

0 = f(β0 + uβ1)g(β0 + uβ1)

= (β0 + uβ1)4 − γ
= β4

0 − γ + (22β3
0β1)u.

This implies that β4
0 − γ = 0 and 22β3

0β1 = 0. By Lemma 5.2(i), we have
β4
0 − γ 6= 0 for any α ∈ Fpm . It is a contradiction. Thus, x4 − γ is irreducible

over R.
If deg f(x) = 2, then deg g(x) = 2. Let f(x) = x2 + (a0 + a1u)x+ (b0 + b1u)

and g(x) = x2+(c0+c1u)x+(d0+ud1) for some a0, a1, b0, b1, c0, c1, d0, d1 ∈ Fpm .
Then

x4 − γ = f(x)g(x)

=
(
x2 + (a0 + a1u)x+ (b0 + b1u)

)(
x2 + (c0 + c1u)x+ (d0 + ud1)

)
= x4 +

(
c0 + a0 + (c1 + a1)u

)
x3

+
(
(d0 + a0b0 + b0) + (d1 + 2a1b1 + b1)u

)
x2

+
(
a0d0 + b0c0 + 2(a1d1 + b1c1)u

)
x+ b0d0 + 2b1d1u.

This implies that

c0 + a0 + (c1 + a1)u = 0,

(d0 + a0b0 + b0) + (d1 + 2a1b1 + b1)u = 0,

a0d0 + b0c0 + 2(a1d1 + b1c1)u = 0,

b0d0 + 2b1d1u = γ,
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and thus,

c0 + a0 = 0,(5.5)

c1 + a1 = 0,(5.6)

d0 + a0b0 + b0 = 0,(5.7)

d1 + 2a1b1 + b1 = 0,(5.8)

a0d0 + b0c0 = 0,(5.9)

a1d1 + b1c1 = 0,(5.10)

b0d0 = γ,(5.11)

2b1d1 = 0.(5.12)

From equations (5.5), (5.7), (5.9) and (5.11), it is a contradiction. (It is similar
to Lemma 5.2(i).) Hence x4 − γ is irreducible over R. Similarly, x4 − γ3 is
irreducible over R.

(iii) Suppose that x4 − γ and x4 − γ3 are not coprimes of R[x]. By Lemma
5.2(ii), we have x4− γ and x4− γ3 are irreducible over R. So, gcd(x4− γ, x4−
γ3) = x4− γ or x4− γ3. This means that γ = γ3. It is a contradiction. Hence,
x4 − γ and x4 − γ3 are coprimes of R[x]. �

By Lemma 5.2, we have the algebraic structures of negacyclic codes of length
8ps over R as following theorem.

Theorem 5.3. Let C be a negacyclic code of length 8ps over R. Then C =
C1 ⊕ C3 where Ci is a γip

s

-constacyclic code of length 4ps over R for i = 1, 3.
In particular, |C| = |C1||C3|.

Thus, every negacyclic codes C of length 8ps over R can be represented as
direct sum of Ci, which are a γip

s

-constacyclic codes of length 4ps over R for
i = 1, 3. Moreover, the algebraic structures of all constacyclic codes of length
4ps over R have been determined in [9] and [13].

Next, the dual code of a negacyclic code of length 8ps over R is also a direct
sum of the dual codes of the direct summands C⊥i where i = 1, 3 as following
theorem.

Theorem 5.4. Let C = C1 ⊕ C3 be a negacyclic code of length 8ps over R
where Ci is a γip

s

-constacyclic code of length 4ps over R for i = 1, 3. Then
C⊥ = C3 ⊕ C1. In particular, |C⊥| = |C1||C3|.

From Theorem 5.4, we see that the dual of negacyclic codes of length 8ps

over R is isodual. Moreover, we obtain property for self-dual negacyclic codes
of length 8ps over R.

Proposition 5.5. Let C = C1 ⊕ C3 be a negacyclic code of length 8ps over R
where Ci is a γip

s

-constacyclic code of length 4ps over R for i = 1, 3. Then the
following hold:
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(i) Ci = 〈u〉 is a self-dual γip
s

-constacyclic code of length 4ps over R for
i = 1, 3.

(ii) C = 〈u〉 is a self-dual negacyclic code of length 8ps over R.

Proof. (i) By [13, Theorem 3.7], we can see that Ci = 〈u〉 is a self-dual γip
s

-
constacyclic code of length 4ps over R for i = 1, 3.

(ii) By Theorem 5.4, we have C⊥ = C3 ⊕ C1. Form Proposition 5.5(ii), we
obtain C = 〈u〉 = C⊥. Thus, C = 〈u〉 is a self-dual negacyclic code of length
8ps over R. �

6. The cases pm ≡ 7 (mod 16) or pm ≡ 15 (mod 16)

In this case that pm ≡ 7 (mod 16) or pm ≡ 15 (mod 16), we have pm ≡ 7
(mod 8), implying p ≡ 7 (mod 8). Thus, 2 is a square element under modulo
p. This means that, there exists ν ∈ Fpm such that ν2 = 2. First of all, we give
the properties as follows:

Proposition 6.1. Let ν2 = 2. Then either 2− ν, 2 + ν or ν − 2, −ν − 2 are
square elements in Fpm .

Proof. Let 2− ν = ξk for some k ∈ {1, 2, . . . , pm − 2}.
Case 1: k is even. So, 2− ν is a square element. Note that (2− ν)(2 + ν) =

2 = ν2. This implies that

2 + ν =
ν2

2− ν
.

Thus, 2 + ν is also a square element.
Case 2: k is odd. Clearly, −1 = ξl for some l is odd. So, ν − 2 = ξk+l. This

means that ν − 2 is a square element. Note that (ν − 2)(−ν − 2) = 2 = ν2. We
consider that

−ν − 2 =
ν2

ν − 2
.

Thus, −ν − 2 is also a square element. �

We now consider

x8p
s

+ 1 = (x8 + 1)p
s

= (x8 + 2x4 + 1− 2x4)p
s

= (x4 + 1)2 − ν2x4)p
s

= (x4 + νx2 + 1)p
s

(x4 − νx2 + 1)p
s

.

Case 1: 2− ν and 2 + ν are square elements, i.e., δ21 = 2− ν and δ22 = 2 + ν
for some δ1, δ2 ∈ Fpm . So,

x8p
s

+ 1 = (x4 + νx2 + 1)p
s

(x4 − νx2 + 1)p
s

= (x4 + 2x2 + 1 + νx2 − 2x2)p
s

(x4 + 2x2 + 1− νx2 − 2x2)p
s

= ((x2 + 1)2 − (2− ν)x2)p
s

((x2 + 1)2 − (2 + ν)x2)p
s
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= ((x2 + 1)2 − δ21x2)p
s

((x2 + 1)2 − δ22x2)p
s

= (x2 + δ1x+ 1)p
s

(x2 − δ1x+ 1)p
s

(x2 + δ2x+ 1)p
s

(x2 − δ2x+ 1)p
s

.

Case 2: ν−2 and −ν−2 are square elements, i.e., δ21 = ν−2 and δ22 = −ν−2
for some δ1, δ2 ∈ Fpm . So,

x8p
s

+ 1 = (x4 + νx2 + 1)p
s

(x4 − νx2 + 1)p
s

= (x4 − 2x2 + 1 + νx2 + 2x2)p
s

(x4 − 2x2 + 1− νx2 + 2x2)p
s

= ((x2 − 1)2 − (−ν − 2)x2)p
s

((x2 − 1)2 − (ν − 2)x2)p
s

= ((x2 − 1)2 − δ21x2)p
s

((x2 − 1)2 − δ22x2)p
s

= (x2 + δ1x− 1)p
s

(x2 − δ1x− 1)p
s

(x2 + δ2x− 1)p
s

(x2 − δ2x− 1)p
s

.

Remark 6.2. The polynomial x8p
s

+ 1 can be expressed as

x8p
s

+ 1 = (x2 + δ1x+ η)p
s

(x2 − δ1x+ η)p
s

(x2 + δ2x+ η)p
s

(x2 − δ2x+ η)p
s

,

where η ∈ {−1, 1} such that

δ21 =

{
2− ν, if η = 1

ν − 2, if η = −1

and

δ22 =

{
2 + ν, if η = 1

−ν − 2, if η = −1.

Let the notation be as in Remark 6.2, the properties of x2 + µδix+ η where
i ∈ {1, 2} and µ ∈ {−1, 1} are obtained as following lemma.

Lemma 6.3.

(i) The polynomial x2 + 1 is irreducible over Fpm .
(ii) The polynomial x2 + µδix+ η is irreducible over Fpm .

(iii) The polynomial x2 + µδix+ η is irreducible over R.
(iv) x2 + δ1x+ η, x2 − δ1x+ η, x2 + δ2x+ η and x2 − δ2x+ η are coprimes

in R[x].

Proof. Proofs of (i), (ii) and (iv), they follow from Lemma 4.1. Suppose that
x2 + µδix+ η is reducible over Fpm . There exists β ∈ Fpm such that

β2 + µδiβ + η = 0.

Since x2 + µδix + η is a factor of x8 + 1, we have β is a root of x8 + 1. This
implies that β8 = −1. Thus, ord(β) | 16 because β16 = 1. If ord(β) = 1, 2, 4
and 8, we have

0 = β8 + 1 = 1 + 1 = 2.

It is a contradiction. Thus, ord(β) = 16. This means that 16 | (pm − 1) and
then, pm ≡ 1 (mod 8). It is a contradiction. Hence, x2 +µδix+η is irreducible
over Fpm . �
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By Chinese Remainder Theorem, we investigate the algebraic structure of
negacyclic codes of length 8ps over R.

Theorem 6.4. Let C be a negacyclic code of length 8ps over R. Then

(i) C = Iδ1 ⊕ I−δ1 ⊕ Iδ2 ⊕ I−δ2 where Iδ1 , I−δ1 , Iδ2 and I−δ2 are ideals

of R[x]
〈(x2+δ1x+η)p

s 〉 ,
R[x]

〈(x2−δ1x+η)ps , R[x]
〈(x2+δ2x+η)p

s 〉 and R[x]
〈(x2−δ2x+η)ps 〉 , re-

spectively.
(ii) |C| = |Iδ1 ||I−δ1 ||Iδ2 ||I−δ2 |.
(iii) The dual code C⊥ of C is given by C⊥ = A(Iδ1)∗⊕A(I−δ1)∗⊕A(Iδ2)∗⊕

A(I−δ2)∗.
(iv) |C⊥| = |A(Iδ1)∗||A(I−δ1)∗||A(Iδ2)∗||A(I−δ2)∗|.

From Remark 6.2, we can determine the algebraic structure of ideals of the

quotient ring R[x]
〈(x2+µδix+η)p

s 〉 where i ∈ {1, 2} and µ ∈ {−1, 1}. Moreover, we

obtain that the number of elements of each ideal of R[x]
〈(x2+µδix+η)p

s 〉 as in Section

5.

Proposition 6.5. Each nonzero polynomial f(x) = ax + b is invertible in
R[x]

〈(x2+µδix+η)p
s 〉 where a, b ∈ Fpm .

Theorem 6.6. The ring R[x]
〈(x2+µδix+η)p

s 〉 is a local ring with the maximal ideal

〈u, x2 + µδix+ η〉, and it is not a chain ring.

Furthermore, we obtain that all forms of all ideals of R[x]
〈(x2+µδix+η)p

s 〉 as

following theorem.

Theorem 6.7. All ideals of R[x]
〈(x2+µδix+η)p

s 〉 are

• Type 1: (trivial ideals)

〈0〉 and 〈1〉.

• Type 2: (principal ideals with nonmonic polynomial generators)

〈u(x2 + µδix+ η)i〉,

where 0 < i ≤ ps − 1.
• Type 3: (principal ideals with monic polynomial generators)

〈(x2 + µδix+ η)i + u(x2 + µδix+ η)th(x)〉,

where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and either h(x) is 0 or a unit which
can be represented as h(x) =

∑
j(h1jx + h0j)(x

2 + µδix + η)j with
h0j , h1j ∈ Fpm and h10x+ h00 6= 0.

• Type 4: (non-principal ideals)

〈(x2 + µδix+ η)i + u

ω−1∑
j=0

(a0jx+ b0j)(x
2 + µδix+ η)j , u(x2 + µδix+ η)ω〉
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for 1 ≤ i ≤ ps − 1, a0j , b0j ∈ Fpm , and ω < T where T is the smallest

integer such that u(x2+µδix+η)T ∈ 〈(x2+µδix+η)i+u
∑ω−1
j=0 (a0jx+

b0j)(x
2 + µδix+ η)j〉 or equivalently,

〈(x2 +µδix+ η)i + u(x2 +µδix+ η)th(x), u(x2 +µδix+ η)ω〉 with h(x)
as in Type 3, and deg h(x) ≤ ω − t− 1.

Next, we compute the number of elements of each type of ideals of the

quotient ring R[x]
〈(x2+µδix+η)p

s 〉 .

Theorem 6.8. Let I be an ideal of the ring R[x]
〈(x2+µδix+η)p

s 〉 . Then the number

of elements of I, denoted by nI , is determined as follows.

• If I = 〈0〉 and I = 〈1〉, then nI = 1 and nI = p4mp
s

, respectively.
• If I = 〈u(x2 + µδix+ η)i〉 where 0 ≤ i ≤ ps − 1, then nI = p2m(ps−i).
• If I = 〈(x2 + µδix+ η)i + u(x2 + µδix+ η)th(x)〉 where 1 ≤ i ≤ ps− 1,

0 ≤ t < i, and h(x) is 0 or a unit, then

nI =

{
p4m(ps−i), if h(x) is 0, 1 ≤ i ≤ ps−1 or h(x) is a unit, 1 ≤ i ≤ ps+t

2 ,

p2m(ps−t), if h(x) is a unit, ps+t
2 < i ≤ ps − 1.

• If I = 〈(x2 + µδix + η)i + u(x2 + µδix + η)th(x), u(x2 + µδix + η)ω〉,
where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, either h(x) is 0 or h(x) is a unit, and

ω < T =

{
i, if h(x) = 0,

min{i, ps − i+ t}, if h(x) is a unit,

then nI = p2m(2ps−i−ω).

Finally, we get that the dual code of such ideal of R[x]
〈(x2+µδix+η)p

s 〉 as follows:

Theorem 6.9. Let I=〈u(x2+µδix+η)i〉 be an ideal of the ring R[x]
〈(x2+µδix+η)p

s 〉 .

Then A(I)∗ = 〈(x2 + µδix+ η)p
s−i, u〉.

Theorem 6.10. Let I = 〈(x2 +µδix+η)i+u(x2 +µδix+η)th(x)〉 where h(x)
is 0 or a unit. Then

(i) If h(x) = 0, then A(I)∗ = 〈(x2 + µδix+ η)p
s−i〉.

(ii) If h(x) is a unit and 1 ≤ i ≤ ps+t
2 , then

A(I)∗= 〈(−1)i−t(x2 + µδix+ η)p
s−i − u(x2 + µδix+ η)p

s−2i+t
i−t−1∑
j=0

(bjx+ aj)

× (−1)j(x2 + µδix+ η)j〉.

(iii) If h(x) is a unit and ps+t
2 < i ≤ ps − 1, then

A(I)∗ = 〈(−1)i−t(x2 + µδix+ η)i−t
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− u
ps−i−1∑
j=0

(bjx+ aj)(−1)j(x2 + µδix+ η)jx2i−2t−2j−1,

u(x2 + µδix+ η)p
s−i〉.

Theorem 6.11. Let I = 〈(x2 + µδix + η)i + u(x2 + µδix + η)th(x), u(x2 +
µδix+ η)ω〉, where h(x) is 0 or a unit.

(i) If h(x) = 0, then

A(I)∗ = 〈(x2 + µδix+ η)p
s−ω, u(x2 + µδix+ η)p

s−i〉.

(ii) If h(x) is a unit, then

A(I)∗ = 〈(−1)i−t(x2 + µδix+ η)p
s−ω − u(x2 + µδix+ η)p

s−i−ω+t

×
ω−t−1∑
j=0

(bjx+ aj)(−1)j(x2 + µδix+ η)j , u(x2 + µδix+ η)p
s−i〉.

7. The case pm ≡ 9 (mod 16)

In this section, we focus on the algebraic structures of the negacyclic codes
of length 8ps over R with pm ≡ 9 (mod 16). Since pm ≡ 9 (mod 16), we
have pm ≡ 1 (mod 8). Then x4 + 1 = (x − γ)(x − γ3)(x − γ5)(x − γ7) where

γ = ξ
pm−1

8 . So,

x8p
s

+ 1 = (x8 + 1)p
s

= (x2 − γ)p
s

(x2 − γ3)p
s

(x2 − γ5)p
s

(x2 − γ7)p
s

= (x2p
s

− γp
s

)(x2p
s

− γ3p
s

)(x2p
s

− γ5p
s

)(x2p
s

− γ7p
s

).

Remark 7.1. γiγj = 1 with i+ j = 8.

Lemma 7.2.

(i) The polynomial x2 − γi is irreducible over Fpm where i = 1, 3, 5, 7.
(ii) The polynomial x2 − γi is irreducible over R where i = 1, 3, 5, 7.
(iii) x2−γi and x2−γj are coprimes of R[x] where i, j = 1, 3, 5, 7 and i 6= j.

Proof. (i) Suppose that x2−γi is reducible over Fpm for all i = 1, 3, 5, 7. There
exists β ∈ Fpm such that β2 − γi = 0. Since x8 + 1 = (x2 − γ)(x2 − γ3)(x2 −
γ5)(x2 − γ7), we have β is a root of x8 + 1 over Fpm . So, β8 + 1 = 0, implying
β16 = 1. This means that ord(β) | 16, i.e., ord(β) = 1 or 2 or 8 or 16. If
ord(β) = 1 or 2 or 8, then β8 + 1 = 1 + 1 6= 0. It is a contraction. Thus
ord(β) = 16. This implies that 16 | (pm − 1). That is pm ≡ 1 (mod 16). It is
a contradiction. Hence, x2 − γi is irreducible over Fpm for all i = 1, 3, 5, 7.

(ii) Suppose that x2 − γi is reducible over R for each i = 1, 3, 5, 7. There
exists β0 + uβ1 ∈ R such that (β0 + uβ1)2 − γi = 0. So,

0 = (β0 + uβ1)2 − γi = β2
0 + (2β0β1)u− γi.
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This implies that β2
0 − γi = 0 and 2β0β1 = 0. By Lemma 7.2(i), β2

0 − γi 6= 0.
It is a contradiction. Hence, x2 − γi is irreducible over R for all i = 1, 3, 5, 7.

(iii) Suppose that x2 − γi and x2 − γj are not coprimes of R[x] with i 6= j.
By Lemma Lemma 7.2(ii), gcd(x2 − γi, x2 − γj) = x2 − γi or x2 − γj . This
means that γi = γj , implying that i = j. It is a contradiction. Hence, x2 − γi
and x2 − γj are coprimes of R[x]. �

Similarly, by Chinese Remainder Theorem, we obtain that algebraic struc-
tures of such negacyclic code as follow:

Theorem 7.3. Let C be a negacyclic code of length 8ps over R. Then C =
C1 ⊕ C3 ⊕ C5 ⊕ C7 where Ci is a γip

s

-constacyclic code of length 2ps over R
for i = 1, 3, 5, 7. In particular, |C| = |C1||C3||C5||C7|.

Theorem 7.4. Let C = C1⊕C3⊕C5⊕C7 be a negacyclic code of length 8ps over
R where Ci is a γip

s

-constacyclic code of length 2ps over R for all i = 1, 3, 5, 7.
Then C⊥ = C7 ⊕ C5 ⊕ C3 ⊕ C1. In particular, |C⊥| = |C1||C3||C5||C7|.

From above theorem, we see that the dual code of negacyclic codes of length
8ps over R is a isodual code.

Finally, we determine the self-dual negacyclic codes of length 8ps over R.

Proposition 7.5. Let C = C1⊕C3⊕C5⊕C7 be a negacyclic code of length 8ps

over R where Ci is a γip
s

-constacyclic code of length 4ps over R for i = 1, 3, 5, 7.
Then the following hold

(i) Ci = 〈u〉 is a self-dual γip
s

-constacyclic code of length 4ps over R for
i = 1, 3.

(ii) C = 〈u〉 is a self-dual negacyclic code of length 8ps over R.

8. Conclusions

We obtain that the algebraic structures of the negacyclic codes of length 8ps

over R in the below table.
Furthermore, we characterize the ideals of the quotient rings R[x]

〈(x4+µδx2−1)ps 〉
into 4 types; trivial ideals, principal ideals with nonmonic polynomial gen-
erators, principal ideals with monic polynomial generators and non-principal
ideals; in Theorem 4.7 where µ ∈ {−1, 1}. Next, the number of elements for

each ideals of R[x]
〈(x4+µδx2−1)ps 〉 is mentioned in Theorem 4.9. In addition, the

structures of dual codes are determined in Theorem 4.12, Theorem 4.13 and

Theorem 4.14. For the quotient rings R[x]
〈(x2+µδix+η)p

s 〉 where i ∈ {1, 2} and

µ ∈ {−1, 1}, it follows from the quotient ring R[x]
〈(x4+µδx2−1)ps 〉 . Finally, we

summarize some self-dual negacyclic code of length 8ps over R in Table 2.
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Table 1. The algebraic structures of each negacyclic code C
of length 8ps over R

Cases Algebraic structures
pm ≡ 1 (mod 16) C = C1 ⊕C3 ⊕C5 ⊕C7 ⊕C9 ⊕C11 ⊕C13 ⊕C15,

where Ci is a ξ
i(pm−1)

16 -constacyclic code of length
ps overR for all i = 1, 3, 5, 7, 9, 11, 13, 15 (see The-
orem 3.2).

pm ≡ 3, 11 (mod 16) C = Iδ ⊕ I−δ,
where Iδ and I−δ are ideals of R[x]

〈(x4+δx2−1)ps 〉 and
R[x]

〈(x4−δx2−1)ps 〉 , respectively (see Theorem 4.2).

pm ≡ 5, 13 (mod 16) C = C1 ⊕ C3,

where Ci is a ξ
i(pm−1)

4 -constacyclic code of length
4ps over R for all i = 1, 3 (see Theorem 5.3).

pm ≡ 7, 15 (mod 16) C = Iδ1 ⊕ I−δ1 ⊕ Iδ2 ⊕ I−δ2
where Iδ1 , I−δ1 , Iδ2 and I−δ2 are ideals of

R[x]
〈(x2+δ1x+η)p

s 〉 ,
R[x]

〈(x2−δ1x+η)ps , R[x]
〈(x2+δ2x+η)p

s 〉 and
R[x]

〈(x2−δ2x+η)ps 〉 ,

respectively (see Theorem 6.4).
pm ≡ 9 (mod 16) C = C1 ⊕ C3 ⊕ C5 ⊕ C7,

where Ci is a ξ
i(pm−1)

8 -constacyclic code of length
2ps over R for all i = 1, 3, 5, 7 (see Theorem 7.3)

Table 2. Some self-dual negacyclic codes of length 8ps over R

Cases Self-dual negacyclic codes of length 8ps over R
pm ≡ 1 (mod 16) 〈u〉 is the unique self-dual negacyclic codes of

length 8ps over R (see Corollary 3.4).
pm ≡ 5, 9, 13 (mod 16) 〈u〉 (see Proposition 5.5 and Proposition 7.5).
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