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ON RINGS WHOSE ANNIHILATING-IDEAL GRAPHS ARE

BLOW-UPS OF A CLASS OF BOOLEAN GRAPHS

Jin Guo, Tongsuo Wu, and Houyi Yu

Abstract. For a finite or an infinite set X, let 2X be the power set
of X. A class of simple graph, called strong Boolean graph, is defined
on the vertex set 2X \ {X, ∅}, with M adjacent to N if M ∩ N = ∅.

In this paper, we characterize the annihilating-ideal graphs AG(R) that
are blow-ups of strong Boolean graphs, complemented graphs and pre-
atomic graphs respectively. In particular, for a commutative ring R such
that AG(R) has a maximum clique S with 3 ≤ |V (S)| ≤ ∞, we prove
that AG(R) is a blow-up of a strong Boolean graph if and only if it is
a complemented graph, if and only if R is a reduced ring. If assume
further that R is decomposable, then we prove that AG(R) is a blow-up
of a strong Boolean graph if and only if it is a blow-up of a pre-atomic
graph. We also study the clique number and chromatic number of the
graph AG(R).

1. Introduction and preliminary

Throughout this paper, all rings R are assumed to be commutative with
identity 1R. Following [10], for a ring R, let I(R) be the set of ideals of R,
A(R) the set of annihilating-ideals of R, where a nonzero ideal I of R is called
an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = {0}.
The annihilating-ideal graph AG(R) of R is a simple graph with vertex set
A(R), such that distinct vertices I and J are adjacent, denoted as I ∼ J , if
and only if IJ = {0}. Clearly, the graph AG(R) is an empty graph if and only
if R is an integral domain, and A(R) = I(R)\{{0}, R} if R is artinian. Note
that I(R) is a commutative semigroup with zero element, under the binary
operation of ideal multiplication, and AG(R) = Γ(I(R)), i.e., AG(R) is the
zero-divisor graph of the semigroup I(R). For the definition and fundamental
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properties of zero-divisor graphs, refer to [8] and the listed references; for the
recent development, one can refer to the recent comprehensive survey paper [4]
for rings, and [5] for semigroups.

Annihilating-ideal graphs of rings, first introduced and studied in [10], pro-
vide an excellent setting for studying some aspects of algebraic property of a
commutative ring, especially, the ideal structure of a ring. Some fundamental
results on the concept have been established for both rings and semigroups.
For example, AG(R) is always a simple, connected and undirected graph with
diameter less than four; if AG(R) contains a cycle, then its girth is less than
five; if R is a non-domain ring, then AG(R) is a finite graph if and only if R
has finitely many ideals, if and only if every vertex of AG(R) has finite degree.
Moreover, AG(R) has n vertices, n ≥ 1, if and only if R has only n nonzero
proper ideals. In [27, 28], the finite local rings R whose AG(R) are star graphs
(consist only of triangles, respectively) are carefully characterized. For detailed
further discussions, one can refer to, e.g., [3, 1, 9, 10, 11, 12, 27, 28].

For a simple graph G, the sets of vertices and edges of G are denoted by
V (G) and E(G) respectively. For a vertex v ∈ V (G), the neighbourhood of v,
denoted by N(v), consists of the vertices which are adjacent to v. We denote
the set of the neighbourhoods by N(G), and denote by Max(N(G)) all the
maximal neighbourhoods in N(G) (under inclusion). For a subset C of V (G),
if the subgraph induced on C is a complete graph, then C is called a clique of
the graph G. The complete subgraph induced by a clique is also called a clique
in the present paper. For a finite graph G, a maximum clique is a clique such
that there is no clique with more vertices. The clique number of a graph G,
denoted as ω(G), is the number of vertices in a maximum clique in G, while
the vertex chromatic number χ(G) of graph G is the smallest number of colors
needed to color the vertices of the graph G such that no two adjacent vertices
have the same color.

Recall that a Boolean graph is defined to be the zero-divisor graph Γ(R) of
a Boolean ring R, see [6, 7, 15, 17, 22, 23] for details. It is well-known that for
a zero-divisor graph Γ(R) with no less than 3 vertices, Γ(R) is a Boolean graph
if and only if every vertex of Γ(R) has a unique complement ([15, Theorem
2.5]). Theorem 3.8 in the present paper provides an analogue of this result for
annihilating-ideal graphs.

In this paper, we study rings R whose annihilating-ideal graphs are strong
Boolean graphs. Let X be a finite or an infinite set, and let C(X) = {{v} | v ∈
X}. A strong Boolean graph, denoted by BC(X), is a graph defined on the

vertex set 2X \ {X, ∅}, with M adjacent to N if M ∩ N = ∅. It is clear that
a strong Boolean graph is a Boolean graph, and in the finite case, a Boolean
graph is also a strong Boolean graph.

In order to consider the graph with infinite clique number, we use the defi-
nition about the maximum clique of a graph defined in [13].
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Definition 1.1 ([13, Definition 2.1]). A clique S of a graph G is called a
maximum clique of G if the following conditions are satisfied:

(1) |V (S)| is the maximal in {|V (L)| |L is a clique of G}.
(2) For any finite subset A ⊆ V (S) and subset B ⊆ V (G) \ V (S) with

|B| = |A| + 1, the subgraph induced on B ∪ (V (S) \ A) is not a clique of the
graph G.

By the above definition, it is easy to see that C(X) is the unique maximum
clique of the strong Boolean graph BC(X), no matter whether X is finite or
infinite. From this point of view, a strong Boolean graph is uniquely determined
by its maximum clique. So, if G is a strong Boolean graph with the unique
maximum clique S, we also denote the strong Boolean graph G by BS . Let
[n] = {1, 2, . . . , n}. A finite (strong) Boolean graph BC([n]) is also denoted by
Bn. Recall that in [13], an induced subgraph of the strong Boolean graph BS is
called a pre-atomic graph, denoted by AS , if AS contains the unique maximum
clique S of BS as a subgraph. Clearly, S is also the unique maximum clique
of AS . From [13], we know that the graph AS shares some common properties
with BS . When |S| = n, AS is also denoted by An.

Roughly speaking, to blow-up a graph G is to replace every vertex v of G
by a set Tx to get a possibly new and larger graph GT , where |Tx| ≥ 1. The
induced subgraph of GT on Tx is a discrete graph, while for distinct vertices
x, y of G, x is adjacent to y in G if and only if each vertex of Tx is adjacent to all
vertices of Ty in GT , see [14, 18, 20] for details. For a reduced ring, it is known
that Γ(R) is a blow-up of the compressed zero-divisor graph introduced in [19]
and later studied in more depth in [21]. In this case, blow-up is a sort of inverse
to being compressed. It is also well-known that the zero-divisor graph Γ(R) is
complemented if and only if Γ(R) is a blow-up of the zero-divisor graph of a
Boolean ring, if and only if the total quotient ring T (R) of R is von Neumann
regular ([7, Theorem 2.2, Theorem 3.5, and Proposition 4.5]). Theorem 3.5 in
the present paper provides an analogue of these results for annihilating-ideal
graphs. The previous work also shows that graph blow-up plays an essential role
in the co-maximal ideal graphs of a ring, see [25, 26] for the concise definition,
the history, the recent development, and a list of references.

This paper is organized in the following way. In Section 1, some purely
graphic characterizations for blow-ups of strong Boolean graphs are shown. In
Section 2, the properties of a ring R whose annihilating-ideal graph AG(R)
is a blow-up of a finite or an infinite strong Boolean graph are studied. The
rings R whose annihilating-ideal graphs are complemented graphs are studied
in Section 3, and the properties of a ring R whose annihilating-ideal graph is a
blow-up of a pre-atomic graph are given in Section 4. In Section 5, we consider
the clique number and the chromatic number of the annihilating-ideal graph of
a ring with some special conditions.

The following purely graph-theoretic results were established in [13]:
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Theorem 1.2 ([13, Theorem 2.2]). Let G be a connected graph with a maxi-

mum clique S. Then G is isomorphic to the strong Boolean graph BS if and

only if the following properties are satisfied:
(1) For each nontrivial subset A of V (S), there exists a vertex v ∈ V (G)

such that A = N(v) ∩ V (S);
(2) G is uniquely S ∩ N -determined (or alternatively, G is uniquely N -

determined), i.e., V (S) ∩ N(x) = V (S) ∩ N(y) (respectively, N(x) = N(y))
implies x = y for vertices x, y ∈ V (G);

(3) For vertices x, y ∈ V (G), V (S) ⊆ N(x) ∪N(y) if and only if x ∈ N(y).

Note that under the assumption (3), the equality V (S)∩N(x) = V (S)∩N(y)
is equivalent to the equality N(x) = N(y).

Theorem 1.3 ([13, Theorem 2.6]). Let G be a connected graph with a max-

imum clique S. Then G is a blow-up of the strong Boolean graph BS if and

only if the following properties are satisfied:
(1) For each nontrivial subset A ⊆ V (S), there exists a vertex v ∈ V (G)

such that N(v) ∩ V (S) = A;
(2) For vertices x, y ∈ V (G), V (S) ⊆ N(x) ∪N(y) if and only if x ∈ N(y).

Proposition 1.4 ([13, Proposition 2.8]). For a connected graph G, G is iso-

morphic to a pre-atomic graph AS if and only if in G there exists a maximum

clique K such that |V (K)| = |V (S)| and the following properties are satisfied:
(1) G is uniquely K ∩ N -determined, i.e., V (K) ∩ N(x) = V (K) ∩ N(y)

implies x = y for vertices x, y ∈ V (G);
(2) For vertices x, y ∈ V (G), V (K) ⊆ N(x) ∪N(y) if and only if x ∈ N(y).

Proposition 1.5 ([13, Proposition 2.9]). For a connected graph G, G is iso-

morphic to a blow-up of a pre-atomic graph AS if and only if in G there exists

a maximum clique K such that |V (K)| = |V (S)| and for vertices x, y ∈ V (G),
V (K) ⊆ N(x) ∪N(y) if and only if x ∈ N(y).

In this paper, we use the characterizations to study annihilating-ideal graph
of a ring.

2. AG(R) that is a blow-up of a strong Boolean graph

Note that if S is a maximum clique of G, then there is no clique properly
containing S. The following proposition follows from Definition 1.1.

Proposition 2.1. Let S be a maximum clique of a graph G. If T is a clique

of G and |V (T ) \ V (S)| = |V (S) \ V (T )| < ∞ hold, then T is also a maximum

clique of the graph G.

Proof. It follows from |V (T ) \ V (S)| = |V (S) \ V (T )| < ∞ that |V (S)| =
|V (T )|. Since S is a maximum clique of G, clearly |V (T )| is the maximal in
{|V (L)| |L is a clique of G}. Thus if T is not a maximum clique of G, then
there exist a finite subset A ⊆ V (T ) and a subset B ⊆ V (G) \ V (T ) with
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|B| = |A|+ 1, such that the subgraph L of G induced on B ∪ (V (T ) \ A) is a
clique. Denote C = V (S) \ V (T ) and D = V (T ) \ V (S), then by assumption
|C| = |D| < ∞. In the following Figure 1, let the three circles be V (S), V (T )
and V (L) respectively. Note that

|A \D|+ |C \B|+ |C ∩B| = |A \D|+ |C| = |A \D|+ |D|

= |A \D|+ |A ∩D|+ |D \A|

= |A|+ |D \A| = |B|+ |D \A| − 1

= |C ∩B|+ |B \ C|+ |D \A| − 1,

so |A\D|+|C\B| = |B\C|+|D\A|−1. It is easy to see that |(A\D)∪(C\B)| =
|A\D|+ |C \B| < ∞ and |(B \C)∪ (D \A)| = |B \C|+ |D \A|, and note that

((B \ C) ∪ (D \A)) ∪ (V (S) \ ((A \D) ∪ (C \B))) = V (L)

holds, a contradiction. This completes the proof. �

V (S) V (T )

V (L)

C \B

A \D

C ∩ B D \A

B \ C

A ∩D

Figure 1

Lemma 2.2. For a ring R, let G = AG(R) be a blow-up of a strong Boolean

graph BS, with V (S) = {Ii | i ∈ Γ}. If 3 ≤ |V (S)| ≤ ∞, then the following

statements hold:
(1) N(Ii) ∈ Max(N(G)) holds for each i ∈ Γ;
(2) For each pair of distinct i, j ∈ Γ, N(Ii) 6⊆ N(Ij) and Ij 6⊆ Ii;
(3) For each pair of distinct i, j, Ii ∩ Ij = {0} holds;
(4) If another maximum clique C (with V (C) = {Ji | i ∈ Ω}) exists, then

there is a bijection σ from Γ to Ω, such that N(Ii) = N(Jσ(i)) for each i ∈ Γ.



852 J. GUO, T. WU, AND H. YU

Proof. (1) and (4) follows directly from [13, Lemma 3.1].
(2) Let A = {Ii}. By Theorem 1.3, there exists I ∈ V (G) such that V (S) ∩

N(I) = A = {Ii}. Since Ij 6∈ N(I) ∪ N(Ij), so I ∈ N(Ii) \ N(Ij). In the
following, we will show that Ij 6⊆ Ii. If on the contrary that Ij ⊆ Ii, then
N(Ii) ⊆ N(Ij) ∪ {Ij}. From the above discussion, I ∈ N(Ii) \ N(Ij) implies
I = Ij . Hence {Ii} = V (S) ∩ N(I) = V (S) ∩ N(Ij) = V (S) \ {Ij}, thus
V (S) = {Ii, Ij}. It contradicts to |V (S)| ≥ 3.

(3) If Ii ∩ Ij 6= {0}, then by (2), since Ii ∩ Ij ⊆ Ii, Ii ∩ Ij 6∈ V (S). Clearly,
Ii ∩ Ij is adjacent to Ik for each k ∈ Γ since Ii ∩ Ij ⊆ Ii and Ii ∩ Ij ⊆ Ij . Hence
V (S) ∪ {Ii ∩ Ij} induces a clique properly containing S, a contradiction. �

Lemma 2.3. Let R =
∏

i∈∆Ri be a decomposition of a commutative ring R.

If S is a maximum clique of G = AG(R) with V (S) = {Ii | i ∈ Γ}, and Ii 6⊆ Ij
when i 6= j, then there exists a mutually disjoint decomposition of the set Γ,
denoted by Γ = ∪j∈∆Aj, such that Aj = {i | Ii ⊆ Rj}.

Proof. Let r = |∆|. If r = 1, then the result is clear. For r > 1, it suffices to
show that for every i ∈ Γ, there is only one j ∈ ∆, such that Rj∩Ii 6= {0} holds.
In fact, if there exist distinct j, k such that Rj ∩ Ii 6= {0} and Rk ∩ Ii 6= {0},
then Rj∩Ii, Rk∩Ii ∈ V (G) are adjacent since (Rj∩Ii)(Rk∩Ii) ⊆ RjRk = {0}.
Note that Ii 6⊆ Ij for each pair i, j ∈ Γ whenever i 6= j, hence neither Rj ∩ Ii
nor Rk ∩ Ii is in V (S). Hence {Rj ∩ Ii, Rk ∩ Ii} ∪ V (S) \ {Ii} induces a clique,
contradicting Definition 1.1. �

The following corollary follows directly from Lemma 2.2(2) and Lemma 2.3.

Corollary 2.4. For a ring R =
∏

i∈∆ Ri, let G = AG(R) be a blow-up of a

finite or an infinite strong Boolean graph BS, with V (S) = {Ii | i ∈ Γ}. If 3 ≤
|V (S)| ≤ ∞, then there exists a mutually disjoint decomposition Γ = ∪j∈∆Aj,

such that Aj = {i | Ii ⊆ Rj}.

Lemma 2.5. Let G = AG(R) be a blow-up of a finite strong Boolean graph

Bn (3 ≤ n < ∞). Then for each I ∈ V (G), there exists a maximum clique S
with V (S) = {I1, I2, . . . , In}, such that for each 1 ≤ i ≤ n, either Ii ⊆ I or

Ii ∈ N(I).

Proof. Let {J1, J2, . . . , Jn} induces a maximum clique in G. For a vertex I ∈ G
and each 1 ≤ i ≤ n, either IJi = {0} or I ∩ Ji ⊇ IJi 6= {0}. Let Ii = Ji while
IJi = {0}, and Ii = I ∩ Ji while IJi 6= {0}. In the following, we will show that
S, induced by {I1, I2, . . . , In}, is a maximum clique of G. Since it is clear that
Ii ∈ N(Ij) when Ii 6= Ij . It suffices to show that Ii 6= Ij when i 6= j. Assume
on the contrary that Ii = I ∩ Ji = I ∩ Jj = Ij 6= {0} for some i 6= j. Note that
Ij 6= Jk for each k ∈ [n]\{j}, so Ji ∈ N(Ij) = N(Ii). Hence {Ii, J1, J2, . . . , Jn}
induces a (n + 1)-clique, a contradiction. Clearly, for the maximum clique
induced by {I1, I2, . . . , In}, either Ii ⊆ I or Ii ∈ N(I) for each i ∈ [n]. �
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Proposition 2.6. Let G = AG(R) be the annihilating-ideal graph of a com-

mutative ring R. If G is a blow-up of a finite or an infinite strong Boolean

graph BS (3 ≤ |V (S)| ≤ ∞), then R is reduced.

Proof. Let S be a maximum clique of G with V (S) = {Ii | i ∈ Γ}. If R is not
reduced, then there is an ideal I ∈ V (G) such that I2 = {0}. Since S is a
maximum clique, there exists i ∈ Γ such that I ∩ Ii 6= {0}. It follows from
Lemma 2.2(2) that I ∩ Ii 6= Ij and (I ∩ Ii)Ij = {0} for each j ∈ Γ \ {i}. By
Proposition 2.1, {I ∩ Ii}∪ (V (S) \ {Ii}) induces a maximum clique of G. For a
fixed j ∈ Γ\{i}. It is not hard to check that {I∩Ii, I∩Ii+Ij}∪(V (S)\{Ii, Ij})
induces a maximum clique. Again by Lemma 2.2(2), it is a contradiction. �

Now we prove the main result of this section.

Proposition 2.7. Let R be a commutative ring such that the annihilating-ideal

graph G = AG(R) has a maximum clique S with 3 ≤ |V (S)| ≤ ∞. Then R is

a reduced ring if and only if G is a blow-up of the strong Boolean graph BS.

Proof. ⇐=: It follows from Proposition 2.6.
=⇒: Let S be a maximum clique of the graph G = AG(R) with V (S) =

{Ii | i ∈ Γ}. We will prove the conclusion by taking advantage of Theorem 1.3.
First, for each nontrivial subset A ⊆ V (S), let

I = {x ∈ Σ
Ii∈B

Ii |B ⊆ V (S) \A, 1 ≤ |B| < ∞}.

Since R is a reduced ring, it is clear that N(I) ∩ V (S) = A holds.
Second, we will show that V (S) ⊆ N(I) ∪ N(J) if and only if I ∈ N(J).

Assume V (S) ⊆ N(I)∪N(J). Then we claim that I∩J = {0} holds. Otherwise,
{0} 6= I ∩ J 6∈ N(I) ∪N(J) holds since R is reduced. Hence

V (S) ⊆ N(I) ∪N(J) ⊆ N(I ∩ J),

and it follows that {I ∩ J} ∪ V (S) induces a clique properly containing S, a
contradiction. So, I ∩ J = {0}, and thus I ∈ N(J). On the other hand, if
assume V (S) 6⊆ N(I) ∪N(J), then there exists an ideal Ii in V (S) such that
both IiI 6= {0} and IiJ 6= {0} hold. We claim that (IiI)(IiJ) 6= {0}, since
otherwise, {IiI, IiJ} ∪ (V (S) \ {Ii}) induces a clique, a contradiction. Since
(IiI)(IiJ) 6= {0} clearly implies IJ 6= {0}, it follows that I 6∈ N(J). This
proves that I ∈ N(J) implies V (S) ⊆ N(I) ∪N(J).

Note that since AG(R) is the zero-divisor graph of the semigroup I(R), it is
connected. Thus by Theorem 1.3, G is a blow-up of the strong Boolean graph
BS . This completes the proof. �

For a simple graphG, the greatest distance between any two vertices is called
the diameter of the graph G, denoted by diam(G). The length of a shortest
cycle contained in the graph G is called the girth of G, denoted by girth(G).
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Corollary 2.8. Let R be a commutative ring such that the annihilating-ideal

graph G = AG(R) has a maximum clique S with 3 ≤ |V (S)| ≤ ∞. If R is a

reduced ring, then diam(G) = 3 and girth(G) = 3.

Proposition 2.9. Assume 3 ≤ n < ∞. Then for a ring R, R ∼=
∏n

i=1 Fi with

every Fi being a field if and only if AG(R) is the strong Boolean graph Bn.

Proof. =⇒: It is easy to check.
⇐=: Let S be the unique maximum clique of the graph Bn with V (S) =

{I1, I2, . . . , In}. First, we will show that every vertex in S is a minimal ideal
of R. Otherwise, assume without loss of generality that {0} 6= J1 ⊂ I1, then
N(I1) ⊆ N(J1) ∪ {J1}. In view of R being a reduced ring, J1 6∈ N(I1), and
hence N(I1) ⊆ N(J1). So, N(I1) = N(J1) follows from Lemma 2.2(1). Since
Bn is neighbourhood determined, it is a contradiction.

Note that I2i 6= {0} for each minimal ideal Ii ∈ V (S), so I2i = Ii for each
i ∈ [n]. By Brauer’s Lemma (see, e.g., [16, page 172]), Ii = Rei with ei being
an idempotent element in R for each i ∈ [n]. Clearly, e1, . . . , en is a set of
orthogonal nonzero idempotent elements of R. We claim e1+ e2+ · · ·+ en = 1.
Otherwise, e1, . . . , en, en+1 is also a set of orthogonal idempotent elements of R,
where en+1 = 1−

∑n
i=1 ei. Note that Re1, . . . , Ren, Ren+1 induces an (n+ 1)-

clique, a contradiction. So R = Re1 × · · · ×Ren. Finally, for each i ∈ [n], Rei
is a field since Ii = Rei is a minimal ideal of R. �

The following is a known result, and it follows directly from [10, Theorem
2.6]. We include it here for completeness.

Proposition 2.10. G = AG(R) is a strong Boolean graph B2 if and only if R
is one of the following two classes of rings:

(1) R = F1 × F2, where both F1 and F2 are fields;
(2) (R,m) is a local principal ideal ring, with two nontrivial ideals m,m2. In

this case, m = Rα for some α ∈ m, where α2 6= 0, α3 = 0.

For G = AG(R), it is clear that G is a blow-up of the strong Boolean
graph B2 (i.e., K2) if and only if G is a complete bipartite graph. In view of
[11, Theorem 2.3] and [2, Corollary 23], we known that AG(R) is a complete
bipartite graph if and only if either AG(R) is a star graph or R is a reduced ring
with |Min(R)| = 2. By [10, Theorem 2.6] and a recent work of [28, Theorem
A], for an artinian ring R, AG(R) is a star graph if and only if R satisfies one of
the followings: (1) R ∼= F1 ×F2; (2) (R,m) is a PIR, where m 6= {0} and m has
nilpotency index less than or equal to 4; (3) char(R) = 2 or char(R) = 4, and
m has a minimal generating set {β1, β2} with β1β2 6= 0, β2

1 = β2
2 = 0; In the

case (3), m2 6= {0}, m3 = {0}. Furthermore, the structure of finite local rings
satisfying (3) were carefully characterized in [28, Theorem B]. The structure of
finite local rings satisfying (2) were carefully characterized in [24].

In the following, we will change to another idea and divide the class of rings
R, whose annihilating-ideal graphs AG(R) are blow-ups of the strong Boolean
graph B2, into the following three types:
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(1) R is a reduced ring with |Min(R)| = 2, which is called B
(1)
2 -type ring.

(2) There is a unique square-zero ideal in R. We call this kind of rings

B
(2)
2 -type rings.

(3) There are at least two square-zero ideals in R. R is called a B
(3)
2 -type

ring.

If R is a B
(2)
2 -type ring, it is not hard to see that AG(R) is a star graph, and

the unique square-zero ideal is a minimal ideal of R. Furthermore, the unique
square-zero ideal is adjacent to every other vertices in AG(R).

In the following, we provide two examples of non-artinian rings which are

B
(1)
2 and B

(2)
2 -type rings respectively.

Example 2.11. Let R1 = R[[x, y]]/(xy). It is clear that R1 is reduced, and
AG(R1) is a blow-up of B2, as is shown in the following Figure 2. Let R2 =
R[[x, y]]/(xy, y2). Clearly, (y) is the unique square-zero ideal ofR2, andAG(R2)
is a star graph, as is shown in the following Figure 3.
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Proposition 2.12. If R is a B
(3)
2 -type ring, then G = AG(R) is a star graph.

Further more, there is a smallest nonzero ideal in R, i.e., ∩I∈V (G)I ∈ V (G).

Proof. It follows from ω(G) = 2 that there exists a minimal ideal J such that
J2 = {0}. We claim that J ⊆ K holds for any square-zero ideal K 6= {0}.
In fact, assume that K is a square-zero ideal in V (G) and K 6= J . Then
J ∩ K is either J or {0} since J is a minimal ideal. If assume further that
J ∩ K = {0}, then J 6⊆ K and K 6⊆ J , and hence {J,K, J + K} induces
a 3-clique, a contradiction. So, J ∩ K = J and hence J ⊆ K holds. Fix a
square-zero ideal K (K 6= J). Clearly, for each L ∈ V (G) \ {J,K}, LK = {0}
implies LJ = {0}. Note that G is a blow-up of B2, so JL = {0} holds for each
L ∈ V (G). Hence G is a star graph. Finally, we will show that J is the smallest
ideal in V (G). It is easy to see that for each L ∈ V (G) \ {J,K}, L ∩K 6= {0}
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holds. Hence J ⊆ L∩K since L∩K is a square-zero ideal. This completes the
proof. �

Example 2.13. Let R3 = R[[x, y]]/(x2, y2). It is easy to see that (xy), (x), (y)
are square-zero ideals of R3, and AG(R3) is also a star graph, see Figure 4.

.....................................................................................................................................

(xy)

(x) (y) (x) + (y) (x+ y)

Figure 4

3. AG(R) that is a complemented graph

Recall from [7] that in a graph G, a vertex w ∈ V (G) is called a complement
of v, denoted by w⊥v, if v is adjacent to w, and no vertex is adjacent to
both v and w. A graph G is called complemented if every vertex of G has a
complement. Recall from [7] that a complemented graph G is called uniquely

complemented, if further a⊥b and a⊥c implies N(b) = N(c). In the rest part
of this paper, we call a complemented graph G to be strongly complemented,
if every vertex of G has a unique complement. It is clear that for a strongly
complemented graph G, N(a) 6= N(b) holds for each pair of distinct vertices
a, b ∈ V (G).

In the following of this section, we will study about the ring whose annihilat-
ing-ideal graph is a complemented graph.

Lemma 3.1. Let G be a complemented graph. For each pair of distinct vertices

a, b ∈ V (G), if {a} ∪N(a) ⊆ {b} ∪N(b), then N(a) = {b}.

Proof. Since G is a complemented graph, there exists a vertex c ∈ V (G) such
that c⊥a, i.e., c ∈ N(a) and there is no vertex adjacent to both c and a. Hence
N(c) ∩ N(a) = ∅. We claim that c = b. Otherwise, c 6= b and it implies
c ∈ N(a) ⊆ {b} ∪ N(b), whence c ∈ N(b). Since {a} ∪ N(a) ⊆ {b} ∪ N(b),
it follows that a ∈ N(b). So, b ∈ N(c) ∩ N(a) 6= ∅, a contradiction. The
contradiction implies that N(a) = {b}. �

Corollary 3.2. Let G be a complemented graph. If S is a clique of G with

3 ≤ |V (S)| ≤ ∞, then for each pair of distinct a, b ∈ V (S), {a} ∪ N(a) 6⊆
{b} ∪N(b).

Corollary 3.3. Let R be a commutative ring. If G = AG(R) is a complemented

graph and S is a clique of G with 3 ≤ |V (S)| ≤ ∞, then for each pair of distinct

I, J ∈ V (S), I 6⊆ J .
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Proposition 3.4. Let R be a commutative ring such that G = AG(R) is a

complemented graph. If further G has a maximum clique S with 3 ≤ |V (S)| ≤
∞, then there is no square-zero ideal in R. In this case, R is a reduced ring.

Proof. Let V (S) = {Ii | i ∈ Γ}. Assume to the contrary that there is a nonzero
ideal I such that I2 = {0}.

If I ∈ V (S), assume I = I1. In this case, fix an I2 ∈ V (S), and it follows
from Corollary 3.3 that {I1+I2} 6∈ V (S)\{I2}. By Proposition 2.1, {I1+I2}∪
(V (S) \ {I2}) induces a maximum clique of G, contradicting Corollary 3.3.

If I 6∈ V (S), then we claim that there exists an Ii ∈ V (S) such that I ∩ Ii 6=
{0}. Otherwise, if I ∩ Ii = {0} for each i ∈ Γ, then {I}∪V (S) induces a clique
of G properly containing S, a contradiction. Without loss of generality, assume
I ∩ I1 6= {0}. Then (I ∩ I1)

2 = {0} and {I ∩ I1} ∪ (V (S) \ {I1}) induces a
maximum clique of G. By a similar discussion as above, there is a contradiction
to Corollary 3.3.

In conclusion, there is no square-zero ideal in R, and hence R is a reduced
ring. �

Here is the first main result of this section, which provides an analogue to
Theorem 3.5 of [7].

Theorem 3.5. For a commutative ring R, let G = AG(R) be its annihilating-

ideal graph. If G has a maximum clique S with 3 ≤ |V (S)| ≤ ∞, then the

following statements are equivalent:
(1) R is a reduced ring.

(2) G is a blow-up of a strong Boolean graph.

(3) G is a complemented graph.

Proof. (1) ⇐⇒ (2). By Proposition 2.7.
(2) =⇒ (3). It follows from Theorem 1.3 that for each I ∈ V (G), ∅ 6=

V (S) ∩ N(I) ⊂ V (S) holds. Again by Theorem 1.3, there exists a vertex
J ∈ V (G) such that V (S) ∩N(J) = V (S) \N(I). It is not hard to check that
J⊥I.

(3) =⇒ (1). By Proposition 3.4. �

It is shown in Theorem 3.5 of [7] that, for a reduced ring R, the zero-divisor
graph Γ(R) is complemented if and only if the total quotient ring T (R) of R
is von Neumann regular. However, the following example shows that it is not
true for an annihilating-ideal graph.

Example 3.6. Let x be an indeterminate, set

R1 = {r ∈
∏

i∈Z

Z2 | r(i) = r(j) for all even integers i and j},

and define R = R1 +⊕i∈ZxZ2[x]. Then R is a reduced commutative ring with
identity. For every i ∈ Z, let Ii = {r ∈ R | r(j) = 0 for all j 6= i}. Then
S = {Ii | i ∈ Z} induces a maximum clique, so AG(R) is a blow-up of a strong
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Boolean graph BS by Theorem 3.5. However, T (R) is not von Neumann regular
by Theorem 3.5 of [7] since, for example, the element r ∈ R given by r(0) = x
and r(i) = 0 for i 6= 0 has no complement in the zero-divisor graph Γ(R), since
s ∈ R with sr = 0 implies s(i) = 0 for all but finitely many even i.

Lemma 3.7. For a commutative ring R, let G = AG(R) be its annihilating-

ideal graph. If G is strongly complemented and has a maximum clique S with

3 ≤ |V (S)| ≤ ∞, then each ideal in a maximum clique of G is a minimal ideal.

Proof. First, it follows from Proposition 3.4 that R is reduced. Assume that
V (S) = {Ii | i ∈ Γ}. Without loss of generality, it suffices to show that I1
is a minimal ideal. Assume to the contrary that I1 is not a minimal ideal.
Then there exists a nonzero ideal J1 such that J1 ⊆ I1 and I1 6= J1. Then
J1 6∈ N(I1), hence N(I1) ⊆ N(J1). If there exists an ideal K ∈ N(J1) \N(I1),
then K ∩ I1 6= {0} and J1(K ∩ I1) = {0}. Since R is reduced, K ∩ I1 6∈
{J1} ∪ (V (S) \ {I1}). Hence {J1,K ∩ I1} ∪ (V (S) \ {I1}) induces a clique, a
contradiction. Thus N(I1) = N(J1). Note that G is a strongly complemented
graph, so I1 = J1, another contradiction. This completes the proof. �

The following is the second main result of this section, which provides an
analogue to Theorem 2.5 of [15].

Theorem 3.8. Let R be a commutative ring, and let G = AG(R) be its

annihilating-ideal graph. If G has a maximum clique S with 3 ≤ |V (S)| < ∞,

then the following statements are equivalent:
(1) R is a finite direct product of fields.

(2) G is a strong Boolean graph.

(3) G is a strongly complemented graph.

Proof. (1) ⇐⇒ (2). By Proposition 2.9.
(2) =⇒ (3). If G = Bn, then for each nontrivial A ⊆ [n], it is easy to see

that [n] \A is the unique complement of A.
(3) =⇒ (1). Assume that V (S) = {I1, I2, . . . , In}. By Proposition 3.4 and

Lemma 3.7, I2i = Ii for each i ∈ [n]. Hence, as in the proof of Proposition 2.9,
Ii = Rei for each i ∈ [n] with e1, e2, . . . , en being a collection of orthogonal
idempotent elements of R with e1 + · · ·+ en = 1. So,

R = Re1 ×Re2 × · · · ×Ren.

By Lemma 3.7, each Rei is a minimal ideal in R, and hence it is a field. �

4. AG(R) that is a pre-atomic graph

Recall from [13] that a graph G is said to satisfy the N -condition, if for
each pair of nonadjacent vertices u, v ∈ V (G), there exists a vertex w such that
N(u)∪N(v) ⊆ N(w). By [13], For a graph G satisfying the N -condition, S is a
maximum clique of G if and only if N(S) = {N(I) | I ∈ V (S)} = Max(N(G)).
Recall from [13] that each connected graph satisfying the N -condition is a
blow-up of a pre-atomic graph. So, we have the following property.
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Lemma 4.1. If G is a blow-up of a pre-atomic graph, then a subgraph S with

V (S) = {Ii | i ∈ Γ} is a maximum clique of G if and only if

Max(N(G)) = N(S) = {N(I) | I ∈ V (S)}

and N(Ii) 6= N(Ij) while Ii, Ij ∈ V (S) and Ii 6= Ij.

Lemma 4.2. Let G = AG(R) be a pre-atomic graph, and let S be a maximum

clique of G with V (S) = {Ii | i ∈ Γ}. If {0} 6= J ⊂ Ii for some i ∈ Γ, then
J ∈ V (S) and J2 = {0}.

Proof. It follows from G being a pre-atomic graph that S is the unique max-
imum clique of G. Assume that {0} 6= J ⊂ Ii for some i ∈ Γ. If further
that J 6∈ V (S), then replace Ii by J get another maximum clique induced on
{J} ∪ (V (S) \ {Ii}), a contradiction. Since J, Ii ∈ V (S), J2 ⊆ JIi = {0} holds
and it completes the proof. �

Proposition 4.3. Let G = AG(R) be a pre-atomic graph, and let S be the

maximum clique of G with V (S) = {Ii | i ∈ Γ}. Then for each i ∈ Γ, either
(Ii)

3 = {0} or Ii is a minimal ideal of R.

Proof. Assume that Ii ∈ V (S) and is not a minimal ideal.
If Ii is not a principal ideal, then for each nonzero x ∈ Ii, we have Rx ⊆ Ii

and Rx 6= Ii. By Lemma 4.2, we have Rx ∈ V (S) and thus Ii · Rx = {0}.
Hence (Ii)

2 = {0} and thus I3i = {0}. In the following, we assume that Ii is a
principal ideal of R and let Ii = Rx.

If further (Ii)
2 6= {0}, then we claim that (Ii)

2 6= Ii. In fact, if Rx = Rx2,
then there exists a nonzero r ∈ R such that x = rx2. Let e = rx. Clearly,
e2 = e and Ii = Re. Since Ii is not a minimal ideal, there exists a nonzero
proper J ⊂ Ii. By Lemma 4.2, J ∈ V (S), and hence J = JRe = JIi = {0},
a contradiction. The contradiction shows {0} 6= (Ii)

2 ⊂ Ii and hence, (Ii)
2 ∈

V (S) holds. Finally, Ii(Ii)
2 = (Ii)

3 = {0} holds. This completes the proof. �

Proposition 4.4. For a ring R, let G = AG(R) be its annihilating-ideal graph

with a finite or an infinite maximum clique S. If G is a pre-atomic graph and

there exists an idempotent ideal I ∈ V (S), then R is a reduced ring.

Proof. Let V (S) = {Ii | i ∈ Γ} with I21 = I1 = I. Then by Proposition 4.3, I1
is a minimal ideal of R. By Brauer’s Lemma, I = Re, where e is an idempotent
element of R. Clearly, I = Re is a field. In the following, we will show that R is
reduced. Otherwise, if there exists a nonzero ideal J of R such that J2 = {0},
then consider the following two possible cases:

Case 1: J ∈ V (S). Clearly, J 6= I. Assume without loss of generality that
J = I2. Then V (S)∩N(I) = V (S) \ {I} = V (S)∩N(I + I2), so I = I + I2 by
Proposition 1.4, contradicting the assumption on I.

Case 2: J 6∈ V (S). It follows from I being a field that J ∩ I is I or {0}.
Note that J2 = {0}, so J ∩ I = {0}. Since S is a maximum clique of G, J is
not adjacent to every vertices of V (S). Assume without loss of generality that
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J ∩ I2 6= {0}. Then J ∩ I2 ∈ V (S) by Lemma 4.2. Hence S is a maximum
clique with a square-zero ideal J ∩ I2 and it reduces to the case 1.

In conclusion, there exists no square-zero ideal of R, and thus R is reduced.
�

Corollary 4.5. For a ring R, let G = AG(R) be its annihilating-ideal graph

with a maximum clique S. If 2 ≤ |V (S)| ≤ ∞, and there is an idempotent ideal

I ∈ V (S), then the following statements are equivalent:
(1) G is a strong Boolean graph;
(2) G is a pre-atomic graph.

Proof. Note that B2 = A2, so it suffices to consider the case when 3 ≤ |V (S)| ≤
∞. In the following, we only prove (2) =⇒ (1) since (1) =⇒ (2) is clear.

Assume that G is a pre-atomic graph. By Proposition 4.4, R is a reduced
ring. Then G is a blow-up of a strong Boolean graph by Theorem 2.7. Note
that the three conditions of Theorem 1.2 are actually Theorem 1.3(1) adding
Proposition 1.4(1)(2), so G is a strong Boolean graph. �

Proposition 4.6. For a decomposable ring R, let G = AG(R) be its annihilat-

ing-ideal graph with a finite or an infinite maximum clique. If G is a blow-up

of a pre-atomic graph, then R is a reduced ring.

Proof. Let R =
∏r

i=1 Ri (1 < r < ∞), and let S be a maximum clique of G,
with V (S) = {Ii | i ∈ Γ}. If R is not reduced, then there exists an I ∈ V (G)
such that I2 = {0}. Since S is a maximum clique, I is not adjacent to every
Ii ∈ V (S). Assume without loss of generality that I∩I1 6= {0}. In the following,
consider the following two possible cases.

Case 1: I ∩ I1 ∈ V (S). Assume without loss of generality that R1 ∩ I ∩ I1 6=
{0}. It follows from (I ∩ I1)

2 = {0} and S being a maximum clique that
R1 ∩ I ∩ I1 ∈ V (S). Otherwise, {R1 ∩ I ∩ I1} ∪ V (S) induces a clique properly
containing S, a contradiction. Furthermore, it is not hard to check

V (S) ∩N(R2) = {J | J ∈ V (S), J ∩R2 = {0}} = V (S) ∩N(R1 ∩ I ∩ I1 +R2).

By Proposition 1.5 and the description after Theorem 1.2, N(R2) = N(R1 ∩
I∩I1+R2) holds. On the other hand, R1 ∈ N(R2)\N(R1∩I∩I1+R2) holds,
a contradiction.

Case 2: I ∩ I1 6∈ V (S). Note that S is a maximum clique of G, thus
(I∩I1)I1 6= {0} holds, since otherwise {I∩I1}∪V (S) induces a clique properly
containing S, a contradiction. So, {I ∩ I1}∪ (V (S) \ {I1}) induces a maximum
clique with a square-zero ideal I ∩ I1. By a similar discussion as case 1, one
can deduce a contradiction. �

The following theorem follows directly from Proposition 3.5 and Proposition
4.6, So that the proof is omitted.
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Theorem 4.7. For a decomposable ring R, let G = AG(R) be its annihilating-

ideal graph. If G has a maximum clique S and 3 ≤ |V (S)| ≤ ∞, then the

following statements are equivalent:
(1) R is a reduced ring;
(2) G is a blow-up of a strong Boolean graph;
(3) G is a blow-up of a pre-atomic graph;
(4) G is a complemented graph.

It is worth mentioning that, for a decomposable ring R, its zero-divisor
graph Γ(R) may not be a blow-up of a strong Boolean graph even though it is
a blow-up of a pre-atomic graph, as the following example shows:

Example 4.8. Let R be the Boolean ring of finite and cofinite subsets of a
infinite set X . It is easy to see that its zero-divisor graph Γ(R) is a pre-atomic
graph with the unique maximum clique C(X). However, Γ(R) is not a blow-up
of any strong Boolean graph.

The following theorem follows from Theorem 4.7 and Proposition 2.9.

Theorem 4.9. For a decomposable ring R, let G = AG(R) be its annihilating-

ideal graph. If G has a maximum clique S and 3 ≤ |V (S)| < ∞, then the

following statements are equivalent:
(1) R is a finite product of fields;
(2) G is a finite strong Boolean graph;
(3) G is a finite pre-atomic graph;
(4) G is a strongly complemented finite graph.

Note that for a finite maximum clique S of G = AG(R), if there is an
idempotent ideal I ∈ V (S), then by Proposition 4.3, I is a minimal ideal of R.
By Brauer’s Lemma, R is decomposable. So, Corollary 4.5 follows also from
Theorem 4.9.

5. Clique number and chromatic number of AG(R)

In [11], the authors conjecture that ω(AG(R)) = χ(AG(R)) holds for every
commutative ring. In this section, we will partially consider about this problem.

Since a strong Boolean graph has an identical clique number and chromatic
number, and blow-up preserves the clique number and chromatic number re-
spectively, so a blow-up of a strong Boolean graph is a graph with the clique
number and chromatic number identical.

Proposition 5.1. For a ring R, if G = AG(R) is a pre-atomic graph or a

blow-up of a pre-atomic graph, then ω(G) = χ(G).

Proof. As an induced subgraph of Bn, χ(An) ≤ χ(Bn) clearly holds. Note that
An contains the unique maximum clique of Bn, so ω(Bn) ≤ ω(An). Hence
ω(An) ≤ χ(An) ≤ χ(Bn) = ω(Bn) ≤ ω(An). Since a blow-up of a graph does
not change the clique number and chromatic number of the graph, the proof is
completed. �
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It follows from Proposition 2.7 and its proof that if R is a reduced ring,
even if ω(AG(R)) = 2, AG(R) is a blow-up of a strong Boolean graph. So, the
following proposition is clear.

Proposition 5.2. If R is a reduced commutative ring, then AG(R) is a graph

with an identical clique number and chromatic number.

Theorem 5.3. Let R =
∏r

i=1 Ri be a decomposable ring with ω(AG(Ri)) =
χ(AG(Ri)) = ni < ∞ for each 1 ≤ i ≤ r. If for each Ri, there exists a

maximum clique containing all the square-zero ideals of Ri, then ω(AG(R)) =
χ(AG(R)).

Proof. Let Si be a maximum clique of AG(Ri) with V (Si) = {Ii1, . . . , Iini
}

containing all the square-zero ideals of Ri. Since ω(AG(Ri)) = χ(AG(Ri)),
each AG(Ri) can be divide into a mutually disjoint union of subsets C(Ii1),
C(Ii2), . . . , C(Iini

) (Iij ∈ C(Iij), 1 ≤ j ≤ ni, 1 ≤ i ≤ r), with each pair of
elements (ideals) in the same part being nonadjacent.

Let A = {I | I ∈ ∪r
i=1V (Si) and I2 = {0}}. For a subset B ⊆ A, let

IB = ΣI∈BI. It is easy to see that (∪r
i=1V (Si))∪ (∪B⊆A{IB}) induces a clique

of AG(R), and then assume it is an n-clique. For any J = J1×· · ·×Jr ∈ V (G)\
((∪r

i=1V (Si))∪(∪B⊆A{IB})) with Ji ⊆ Ri, denote in(J) = Ji if (Ji)
2 6= {0} and

(Jj)
2 = {0} for each j ∈ [i − 1]. Note that V (Si) contains all the square-zero

ideals of Ri, so such a Ji does exist.
In the following, we will define a collection of mutually disjoint subsetsD(Iij)

of V (AG(R)) such that C(Iij) ⊆ D(Iij) for each Iij ∈ ∪r
i=1V (Si). In fact, let

C(Iij) ⊆ D(Iij) hold first. Then for vertices not in ∪r
i=1∪

ni

j=1C(Iij), we choose

vertices of D(Iij) in the following way:
For each J ∈ V (G)\((∪r

i=1V (Si))∪(∪B⊆A{IB})), if in(J) ⊆ Ri holds, there
are two possible cases:

Case 1: in(J) ∈ C(Iij) holds for some j ∈ [ni]. In this case, let J ∈ D(Iij).
Case 2: in(J) 6∈ C(Iij) holds for each j ∈ [ni]. In this case, let J ∈ D(Ii1).
It is easy to check that AG(R) \ ∪r

i=1∪
ni

j=1D(Iij) ⊆ ∪B⊆A{IB}. Thus

V (AG(R)) is a mutually disjoint union of n subsets D(Iij) (Iij ∈ ∪r
i=1V (Si))

together with all singletons {IB} (B ⊆ A).
In order to complete the proof, it suffices to show that each pair of ideals in

D(Iij) is nonadjacent, i.e., for each pair J,K ∈ D(Iij), JK 6= {0}. The result
is clear for either J = Iij or K = Iij . If J 6= Iij and K 6= Iij , then no matter
in(J) = in(K) or in(J) 6= in(K), in(J)in(K) 6= {0} holds by the definition
of C(Iij) and the construction of D(Iij). So, JK 6= {0}. This completes the
proof. �

In the following, we are interested in the product of rings whose annihilating-
ideal graphs are blow-ups of strong Boolean graphs. Let R =

∏r
i=1 Ri. If for

each i ∈ [r], AG(Ri) is a blow-up of Bni
with ni ≥ 3, then Ri is a reduced

ring for each i ∈ [r]. Hence R is a reduced ring, and thus AG(R) is a blow-up
of a strong Boolean graph Bn by Proposition 2.7. It is not hard to check that
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n = Σr
i=1ni. In fact, it follows directly from the following theorem, in which,

maybe ω(AG(Ri)) = 2 hold for some i ∈ [r].

Theorem 5.4. Let R =
∏r

i=1 Ri with each AG(Ri) being a blow-up of Bni

(2 ≤ ni < ∞). If denote l = |{i |Ri is a B2
2 -type ring}| and m = |{i |Ri is a

B3
2-type ring }|, then ω(AG(R)) = χ(AG(R)) = Σr

i=1ni + 2l3m − l − 2m− 1.

Proof. LetR = R1×· · ·×Rl×Rl+1×· · ·×Rl+m×Rl+m+1×· · ·×Rr, with AG(Ri)
containing a maximum clique Si with V (Si) = {Ii1, . . . , Iini

}. Without loss of
generality, assume that Ri is a B2

2 -type ring with the unique square-zero ideal
Ii1 (1 ≤ i ≤ l), and assume that Rl+i is a B3

2 -type ring with a pair of square-
zero ideals Il+i,1 ⊆ Il+i,2 (1 ≤ i ≤ m). By Proposition 2.12, for each i ∈ [m],
AG(Rl+i) is a star graph, and Il+i,1 is the smallest nonzero ideal of Rl+i. Let

A = {I | I ∈ ∪l+m
i=1 V (Si) and I2 = {0}}. For a subset B ⊆ A, let IB = ΣI∈BI.

It is easy to see that (∪r
i=1V (Si))∪ (∪B⊆A{IB}) induces a clique of AG(R). In

fact, it is a (Σr
i=1ni + 2l3m − l − 2m− 1)-clique, since | ∪r

i=1 V (Si)| = Σr
i=1ni,

|∪B⊆A{IB}| = 2l3m−1 and |(∪r
i=1V (Si))∩(∪B⊆A{IB})| = l+2m. This shows

that ω(AG(R)) ≥ Σr
i=1ni + 2l3m − l − 2m− 1.

For each I ∈ (∪r
i=1V (Si)) ∪ (∪B⊆A{IB}), we are going to define a subset

C(I) containing I. For this purpose, for any J = J1 × · · · × Jr ∈ V (G) \
((∪r

i=1V (Si)) ∪ (∪B⊆A{IB})) with Ji ⊆ Ri, in a way similar to the above
Theorem 5.3, let in(J) = Ji whenever (Ji)

2 6= {0} and (Jj)
2 = {0} holds for

each j ∈ [i−1]; and let in(J) = {0} whenever (Ji)
2 = {0} holds for each i ∈ [r].

In the following, we will show that V (G) can be divided into mutually dis-
joint union of Σr

i=1ni + 2l3m − l − 2m− 1 subsets in the following way:
If in(J) = Ji 6= {0}, then let J ∈ C(Ii1) whenever Ji 6∈ N(Iik) holds for

each k ∈ [ni]; and let J ∈ C(Iij) whenever Ji 6∈ N(Iij) and Ji ∈ N(Iik) holds
for each k ∈ [j − 1].

If in(J) = {0}, then clearly J ⊆ R1 × · · · ×Rl+m. Let

BJ = {I ∈ A | I ∈ {J1, . . . Jl+m} or I 6∈ N(Ji) for some i ∈ [l +m]}.

Clearly, BJ ⊆ A. In this case, let J ∈ C(IBJ
).

Next, we will show that each pair of ideals J,K in the same set C(I) is
nonadjacent. If J = I or K = I, then the result is clear. If J 6= I and K 6= I,
then there are two possible cases.

Case 1: in(J) = Ji 6= {0} or in(K) = Ki 6= {0}. Assume without loss of
generality that in(J) = Ji 6= {0}. In this case, I ∈ V (Si), and clearly Ki 6= {0}
holds. Then consider further the following two subcases.

Subcase 1: Ri is reduced. Since Ji,Ki 6∈ N(I), J ∩I 6= {0} and K∩I 6= {0}.
If JK = {0}, then (J ∩ I)(K ∩ I) = {0}. So, either J ∩ I = K ∩ I, or
{J ∩ I,K ∩ I} ∪ (V (Si) \ {I}) induces a (ni + 1)-clique. Since Ri is reduced
and ω(AG(Ri)) = ni, each of them deduces a contradiction.

Subcase 2: Ri is not reduced. Then AG(Ri) is a star graph. Note that
(Ji)

2 6= {0}, no matter Ji = Ki or Ji 6= Ki, JiKi 6= {0} always holds. Hence
JK 6= {0}.
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Case 2: in(J) = in(K) = {0}. In this case, clearly J2 = K2 = I2 = {0}
hold. Hence J,K ∈ R1 × · · · × Rl+m. Note that J 6= K, by the construction
of C(I), there exists an Ii2 for some l + 1 ≤ i ≤ l +m such that Ji 6= Ki and
Ji,Ki 6∈ N(Ii2). Note that AG(Ri) is a star graph, so JiKi 6= {0} and hence,
JK 6= {0} holds.

This shows χ(AG(R)) ≤ Σr
i=1ni + 2l3m − l − 2m − 1. Since ω(AG(R)) ≤

χ(AG(R)) is a known result, the proof is completed. �

Note that even though AG(Ri) is a blow-up of a strong Boolean graph for
each i ∈ [r], AG(R) may not be a blow-up of a strong Boolean graph. In fact,
if some Ri is not reduced, then by Proposition 2.7, AG(R) is not a blow-up of
a strong Boolean graph since R is not reduced.

In fact, Theorem 5.3 and Theorem 5.4 provide two distinct ideas to consider
about the clique number and chromatic number. One is established on a perfect
“Basis”, the other one is by providing a way to well distribute all the vertices
of AG(R) to a collection of subsets. By these ideas, maybe there is a way to
deal with the conjecture given by Behboodi in [11].
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