• Title/Summary/Keyword: finFET

Search Result 96, Processing Time 0.023 seconds

Potential Distribution Model for FinFET using Three Dimensional Poisson's Equation (3차원 포아송방정식을 이용한 FinFET의 포텐셜분포 모델)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.747-752
    • /
    • 2009
  • Three dimensional(3D) Poisson's equation is used to calculate the potential variation for FinFET in the channel to analyze subthreshold current and short channel effect(SCE). The analytical model has been presented to lessen calculating time and understand the relationship of parameters. The accuracy of this model has been verified by the data from 3D numerical device simulator and variation for dimension parameters has been explained. The model has been developed to obtain channel potential of FinFET according to channel doping and to calculate subthreshold current and threshold voltage.

Impact of Fin Aspect Ratio on Short-Channel Control and Drivability of Multiple-Gate SOI MOSFET's

  • Omura, Yasuhisa;Konishi, Hideki;Yoshimoto, Kazuhisa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.302-310
    • /
    • 2008
  • This paper puts forward an advanced consideration on the design of scaled multiple-gate FET (MuGFET); the aspect ratio ($R_{h/w}$) of the fin height (h) to fin width (w) of MuGFET is considered with the aid of 3-D device simulations. Since any change in the aspect ratio must consider the trade-off between drivability and short-channel effects, it is shown that optimization of the aspect ratio is essential in designing MuGFET's. It is clearly seen that the triple-gate (TG) FET is superior to the conventional FinFET from the viewpoints of drivability and short-channel effects as was to be expected. It can be concluded that the guideline of w < L/3, where L is the channel length, is essential to suppress the short-channel effects of TG-FET.

Fabrication of SOI FinFET devices using Aresnic solid-phase-diffusion (비소 고상확산방법을 이용한 MOSFET SOI FinFET 소자 제작)

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.133-134
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the n-type fin field-effect-transistor (FinFET) with a 20 nm gate length by solid-phase-diffusion (SPD) process is presented. Using As-doped spin-on-glass as a diffusion source of arsenic and the rapid thermal annealing, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. Single channel and multi-channel n-type FinFET devices with a gate length of 20-100 nm was fabricated by As-SPD and revealed superior device scalability.

  • PDF

Analysis of Subthreshold Behavior of FinFET using Taurus

  • Murugan, Balasubramanian;Saha, Samar K.;Venkat, Rama
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • This paper investigates the subthreshold behavior of Fin Field Effect Transistor (FinFET). The FinFET is considered to be an alternate MOSFET structure for the deep sub-micron regime, having excellent device characteristics. As the channel length decreases, the study of subthreshold behavior of the device becomes critically important for successful design and implementation of digital circuits. An accurate analysis of subthreshold behavior of FinFET was done by simulating the device in a 3D process and device simulator, Taurus. The subthreshold behavior of FinFET, was measured using a parameter called S-factor which was obtained from the $In(I_{DS})\;-\;V_{GS}$ characteristics. The value of S-factor of devices of various fin dimensions with channel length $L_g$ in the range of 20 nm - 50 nm and with the fin width $T_{fin}$ in the range of 10 nm - 40 nm was calculated. It was observed that for devices with longer channel lengths, the value of S-factor was close to the ideal value of 60 m V/dec. The S-factor increases exponentially for channel lengths, $L_g\;<\;1.5\;T_{fin}$. Further, for a constant $L_g$, the S factor was observed to increase with $T_{fin}$. An empirical relationship between S, $L_g$ and $T_{fin}$ was developed based on the simulation results, which could be used as a rule of thumb for determining the S-factor of devices.

Design and Analysis of Sub-10 nm Junctionless Fin-Shaped Field-Effect Transistors

  • Kim, Sung Yoon;Seo, Jae Hwa;Yoon, Young Jun;Yoo, Gwan Min;Kim, Young Jae;Eun, Hye Rim;Kang, Hye Su;Kim, Jungjoon;Cho, Seongjae;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.508-517
    • /
    • 2014
  • We design and analyze the n-channel junctionless fin-shaped field-effect transistor (JL FinFET) with 10-nm gate length and compare its performances with those of the conventional bulk-type fin-shaped FET (conventional bulk FinFET). A three-dimensional (3-D) device simulations were performed to optimize the device design parameters including the width ($W_{fin}$) and height ($H_{fin}$) of the fin as well as the channel doping concentration ($N_{ch}$). Based on the design optimization, the two devices were compared in terms of direct-current (DC) and radio-frequency (RF) characteristics. The results reveal that the JL FinFET has better subthreshold swing, and more effectively suppresses short-channel effects (SCEs) than the conventional bulk FinFET.

Analysis of Tunneling Transition by Characteristics of Gate Oxide for Nano Structure FinFET (나노구조 FinFET에서 게이트산화막의 특성에 따른 터널링의 변화분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1599-1604
    • /
    • 2008
  • In this paper, it has been analyzed how transport characteristics is influenced on gate oxide properties in the subthreshold region as nano structure FinFET is fabricated. The analytical model is used to derive transport model, and Possion equation is used to obtain analytical model. The thermionic emission and tunneling current to have an influence on subthreshold current conduction are analyzed for nano-structure FinFET, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. As a result, transport model presented in this paper is good agreement with two dimensional simulation model, and this study shows that the transport characteristics have been changed by gate oxide properties. As gate length becomes smaller, funneling characteristics, one of the most important transport mechanism, have been analyzed.

Gate Oxide Thickness Dependent Threshold Voltage Characteristics for FinFET (FinFET의 게이트산화막 두께에 따른 문턱전압특성)

  • Han, Jihyung;Jung, Hakkee;Lee, Jaehyung;Jeong, Dongsoo;Lee, Jongin;Kwon, Ohshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.907-909
    • /
    • 2009
  • In this paper, the dependence of threshold voltage on the gate oxide thickness, which it mostly influenced on short channel effects in fabrication of FinFET, has been investigated. The transport model based on three dimensional Possion's equation has been used to analyze influence on gate oxide thickness. The gate oxide thickness is the most important factor to influence on the threshold voltage in nano structure FinFET. The potential distributions of this model are compared with those of three dimensional numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with hree dimensional numerical model, the threshold voltage characteristics have been considered according to the gate oxide thickness of FinFET.

  • PDF

Complementary FET-The Future of the Semiconductor Transistor (Complementary FET로 열어가는 반도체 미래 기술)

  • S.H. Kim;S.H. Lee;W.J. Lee;J.W. Park;D.W. Suh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.52-61
    • /
    • 2023
  • With semiconductor scaling approaching the physical limits, devices including CMOS (complementary metal-oxide-semiconductor) components have managed to overcome yet are currently struggling with several technical issues like short-channel effects. Evolving from the process node of 22 nm with FinFET (fin field effect transistor), state-of-the-art semiconductor technology has reached the 3 nm node with the GAA-FET (gate-all-around FET), which appropriately addresses the main issues of power, performance, and cost. Technical problems remain regarding the foundry of GAA-FET, and next-generation devices called post-GAA transistors have not yet been devised, except for the CFET (complementary FET). We introduce a CFET that spatially stacks p- and n-channel FETs on the same footprint and describe its structure and fabrication. Technical details like stacking of nanosheets, special spacers, hetero-epitaxy, and selective recess are more thoroughly reviewed than in similar articles on CFET fabrication.

Modeling of Parasitic Source/Drain Resistance in FinFET Considering 3D Current Flow (3차원적 전류 흐름을 고려한 FinFET의 기생 Source/Drain 저항 모델링)

  • An, TaeYoon;Kwon, Kee-Won;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.67-75
    • /
    • 2013
  • In this paper, an analytical model is presented for the source/drain parasitic resistance of FinFET. The parasitic resistance is a important part of a total resistance in FinFET because of current flow through the narrow fin. The model incorporates the contribution of contact and spreading resistances considering three-dimensional current flow. The contact resistance is modeled taking into account the current flow and parallel connection of dividing parts. The spreading resistance is modeled by difference between wide and narrow and using integral. We show excellent agreement between our model and simulation which is conducted by Raphael, 3D numerical field solver. It is possible to improve the accuracy of compact model such as BSIM-CMG using the proposed model.

Analysis on Self-Heating Effect in 7 nm Node Bulk FinFET Device

  • Yoo, Sung-Won;Kim, Hyunsuk;Kang, Myounggon;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.204-209
    • /
    • 2016
  • The analyses on self-heating effect in 7 nm node non-rectangular Bulk FinFET device were performed using 3D device simulation with consideration to contact via and pad. From self-heating effect simulation, the position where the maximum lattice temperature occurs in Bulk FinFET device was investigated. Through the comparison of thermal resistance at each node, main heat transfer path in Bulk FinFET device can be determined. Self-heating effect with device parameter and operation temperature was also analyzed and compared. In addition, the impact of interconnects which are connected between the device on self-heating effect was investigated.