• Title/Summary/Keyword: feedback stabilization

Search Result 231, Processing Time 0.028 seconds

On Feedback Linearization of Nonlinear Time-Delay Systems

  • Shin, Hee-Sub;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1906-1908
    • /
    • 2004
  • We propose a result on the stabilization of nonlinear time-delay systems via the feedback linearization method. Using the predictor based control and the parametric coordinate transformation, we introduce a stabilizing controller to compensate time delay. Specifically, we present the delay-dependent stability analysis to makes the considered system stable. Also, an illustrative example is provided

  • PDF

An adaptive Control of the Nonholonomic Mobile AGV

  • Han, Zhe-Yong;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.307-310
    • /
    • 2001
  • Mobile AGV is one of the nonholon-omic systems. The integration of the kinematic adaptive controller for the dynamic in this pa-per introduction a motion control problem's dynamic state feedback as well as output feedback tracking laws will be constructed with the adaptive extension of the controller is proposed. Feedback control strategies for mobile AGV are important to compensate for disturabances and errors in the initial condition. The problems of path following or tracking and of stabilization about a constant configuration have been treated as separate problems for nonholonomic mobile AGV.

  • PDF

Attitude Stabilization Performance Improvement of the Quadrotor Flying Robot (쿼드로터형 비행로봇의 자세 안정화 성능 개선)

  • Hwang, Jong-Hyon;Hwang, Sung-Pil;Hong, Sung-Kyung;Yoo, Min-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.608-611
    • /
    • 2012
  • This paper focuses on attitude stabilization performance improvement of the quadrotor flying robot. First, the dynamic model of quadrotor flying robot was estimated through PEM (Prediction Error Method) using experimental input/output data. And attitude stabilization performance was improved by increasing the generation frequency of PWM signal from 50 Hz to 500 Hz. Also, the controller is implemented using a standard PID (Proportional-Integral-Derivative) controller augmented with feedback on angular acceleration, allowed the gains to be significantly increased, yielding higher bandwidth. Improved attitude stabilization performance is verified by experiment.

Feedback Error Learning and $H^{\infty}$-Control for Motor Control

  • Wongsura, Sirisak;Kongprawechnon, Waree;Phoojaruenchanachai, Suthee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1981-1986
    • /
    • 2004
  • In this study, the basic motor control system had been investigated. The controller for this study consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such a tracking perfect, an adaptive law based on Feedback Error Learning (FEL) is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The theory in $H^{\infty}$-Control is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.

  • PDF

Laser Diode Output Stabilization by Optical feedback (Optical Feedback 방식에 의한 Laser Diode의 출력 안정화)

  • Jeong, Ui-Jin;Lee, Seong-Eun;Gang, Min-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.72-77
    • /
    • 1980
  • We analyze several problems concerning the operation of the optical feedback prebias control scheme in the loser diode optical transmitter and present a LD simulation circuit as a way of adjusting the component's optimum value without using the Laser - triode. 1.5% light power decrease was observed between the temperature range of $0^{\circ}C$ and 36$^{\circ}C$ in which the total light power of LD was used for feedback loop and fairly good operation was demonstrated when a star coupler was employed as a beamsplitter by which approximately 1% portion of the light power was feedbacked.

  • PDF

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Kumon, Makoto
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition called output feedback exponential passivity (OFEP). The designed high-gain adaptive controller has simple structure and high robustness with regard to bounded disturbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we design a robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances. The effectiveness of the proposed method is shown by numerical simulations.

DISTURBANCE ATTENUATION FOR A CLASS OF DISCRETE-TIME SWITCHED SYSTEMS WITH EXPONENTIAL UNCERTAINTY

  • Li, Changlin;Long, Fei;Ren, Guohui
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.775-795
    • /
    • 2011
  • The disturbance attenuation problem for a class of discretetime switched linear systems with exponential uncertainties via switched state feedback and switched dynamic output feedback is investigated, respectively. By using Taylor series approximation and convex polytope technique, exponentially uncertain discrete-time switched linear system is transformed into an equivalent switched polytopic model with additive norm bounded uncertainty. For such equivalent switched model, one designs its switching strategy and associated state feedback controllers and dynamic output feedback controllers so that whole switched model is asymptotical stabilization with H-in nity disturbance attenuation base on switched Lyapunov function and LMI approach. Finally, two numerical examples are presented to illustrate our results.

Design of Nonlinear PID Controller Based on Immune Feedback Mechanism (면역 피드백 메카니즘에 기초한 비선형 PID 제어기 설계)

  • Park Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.134-141
    • /
    • 2003
  • PID controllers with constant gains have been widely used in various control systems due to its powerful performance and easy implementation. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a nonlinear variable PR controller with immune feedback mechanism. An immune feedback mechanism is based on the functioning of biological T-cells, they include both an active term, which controls response speed. and an inhibitive term, which controls stabilization effect. Therefore, the proposed nonlinear PID controller is based on immune responses of biological. immune feedback mechanism which is the cell mediated immunity and In order to choose the optimal nonlinear PID controller games, we also propose the tuning algorithm of nonlinear function parameter in immune feedback mechanism. To verify performance of the proposed algorithm, the speed control of nonlinear DC motor are performed. Front the simulation results, we have found that the proposed algorithm is more superior to the conventional constant fain PID controller.

Attitude Control of a Tethered Spacecraft

  • Cho, Sang-Bum;McClamroch, N. Harris
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.67-75
    • /
    • 2007
  • An attitude control problem for a tethered spacecraft is studied. The tethered spacecraft is viewed as a multi-body spacecraft consisting of a base body, a massless tether that connects the base body and an end mass, and tether actuator dynamics. Moments about the pitch and roll axes of the base spacecraft arise by control of the point of attachment of the tether to the base spacecraft. The control objective is to stabilize the attitude of the base spacecraft while keeping the perturbations of the tether small. Analysis shows that linear equations of motion for the tethered spacecraft are not completely controllable. We study two different control design approaches: (1) we decouple the attitude dynamics from the tether dynamics and we design a linear feedback to achieve stabilization of the attitude dynamics, and (2) we decouple the controllable modes from the uncontrollable mode using Kalman decomposition and we design a linear feedback to achieve stabilization of the controllable modes. Simulation results show that, although it is difficult to control the tether, the tether motion can be maintained within an acceptable range while stabilizing the attitude dynamics of the base spacecraft.

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.