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Exponential Stabilization of a Class of Underactuated
Mechanical Systems using Dynamic Surface Control

Nadeem Qaiser, Naeem Igbal, Amir Hussain, and Naeem Qaiser

Abstract: This paper proposes a simpler solution to the stabilization problem of a special class of
nonlinear underactuated mechanical systems which includes widely studied benchmark systems
like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact
feedback linearizibility of these systems makes design of control law a challenging task.
Stabilization of these systems has been achieved using Energy Shaping and damping injection
and Backstepping technique. Former results in hybrid or switching architectures that make
stability analysis complicated whereas use of backstepping some times requires closed form
explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It
also exhibits the phenomenon of explosions of terms resulting in a highly complicated control
law. Exploiting recently introduced Dynamic Surface Control technique and using control
Lyapunov function method, a novel nonlinear controller design is presented as a solution to these
problems. The stability of the closed loop system is analyzed by exploiting its two-time scale
nature and applying concepts from Singular Perturbation Theory. The design procedure is shown
to be simpler and more intuitive than existing designs. Design has been applied to important
benchmark systems belonging to the class demonstrating controller design simplicity.
Advantages over conventional Energy Shaping and Backstepping controllers are analyzed
theoretically and performance is verified using numerical simulations.
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mechanical systems.

1. INTRODUCTION

Study and control of the dynamics of
Underactuated Mechanical Systems has been an active
research area. These arise in a variety of applications
including mobile Robots, underwater/surface vehicles
and spacecrafts, see [1] and references therein.
Underactuated Mechanical Systems are control
systems with fewer actuators (i.e., controls) than
configuration variables or degrees of freedom. The
class we consider comprises mechanical systems with
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two degrees of freedom with an inertia matrix that is
independent of unactuated variable. Important
examples include, Inertia Wheel Pendulum (IWP),
Translational Oscillator with Rotational Actuator
(TORA) and the Acrobot, in increasing order of
dynamics complexity.

First choice in stabilization techniques, for
nonlinear systems, is to use linearized/pseudo-
linearized models and gain scheduling controllers.
This proves inefficient for the case as vector field of
closed-loop system vanishes at equilibrium points
making the system sluggish. On the other hand exact
feedback linearization for such systems is also not
possible. However partial feedback linearization can
be applied that reduces the system to cascade normal
forms [2]. The structure of this form allows
application of existing control design methods like
Energy shaping techniques and Integrator Back-
Stepping (IBS), [1,3-5]. In energy-based techniques,
for instance in [3}, a supervisory hybrid/switching
control strategy is applied to asymptotic stabilization
of the system. First, a passivity-based controller [4]
forces the system near to the desired equilibrium point.
Then, a balancing controller, obtained by Jacobian
linearization or (local) exact feedback linearization
stabilizes the system at that equilibrium point.
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To avoid supervisory/switching controllers IBS
based design have been applied successfully. IBS,
based on results obtained by Sontag and Sussman [5],
is a powerful step-by-step design tool In such designs
a stabilizing controller is first designed for the
nonlinear part (reduced system) of the cascade and
then assuming the states of linearized part as virtual
inputs IBS is used to complete design, theoretically.
Backstepping suffers not only the problem of
“explosion of terms” but also requires certain system
functions to be C” [6]. Besides some times the control
law for the reduced systems requires explicit solution
of highly nonlinear equations, which complicates the
design even if not denying it at all. The control law
obtained through a cumbersome design procedure is
usually very complicated. Multiple Sliding Surfaces
(MSS) control [6], a procedure similar to integrator
backstepping, avoids this phenomenon but falls short

of integrator backstepping in terms of theoretical rigor,

as the need for analytical differentiation is pushed to a
numerical one.

Concept of Dynamic Surface Control (DSC), a
dynamic extension to MSS, introduced by Swaroop et
al. [7] resolves these issues by using low pass filters.
It addresses not only the issue of “explosion of terms”
associated with IBS, but also solves the problem of
finding ith state reference (desired) trajectory
derivatives numerically, for the MSS scheme. It is
simple, more intuitive and applies to a more general
class of systems as compared to the MSS scheme in
Won and Hedrick [6] as the requirement on nonlinear
function is to be C' only. More exotic methods like
fuzzy controllers [8] and neural networks based
solutions have also been reported but we are interested
in classical nonlinear techniques only.

Exploiting DSC a controller design scheme is
presented that addresses not only the problems
highlighted but also gives a single simple design
algorithm for the whole class. The design uses DSC
technique to track the required stabilization function
for the unstable zero dynamics instead of IBS. The
design procedure and control law is simpler than IBS
design and doesn’t require a supervisory controller
like the one by Spong et al [3] making the
architecture simple. Stability has been analyzed using
concepts from singular perturbation theory. The
scheme has been successfully used to design
controllers for benchmark nonlinear systems like IWP,
TORA and the Acrobot, demonstrating the design
method simplicity that also results in a less
complicated control law.

The paper starts formally with Section 2, containing
the general dynamical model for our special class.
Here necessary coordinate transformations are also
given, as the dynamic model is not in a control design
amenable form. Controller design strategy and
procedure appear in Section 3. Section 4 hosts

detailed stability discussion. Section 5 presents
application examples with simulation results
comparing controller performance to existing designs
followed by brief concluding remarks in Section 6.

2. DYNAMICAL MODEL

Dynamic model of two degrees of freedom
underactuated mechanical systems can be obtained by
using Euler Lagrange method [9]. The Lagrangian for
a simple mechanical system for mentioned class is
given as

L(q,q)%qTM(q»q'—V(q), )

where q =[q; qz]T,(q,Q) are generalized coordinates
and quasi velocities, M(q,)the inertia matrix and
V(q) is the potential energy function. For our special
class note that M(q,) is independent of ¢, that is

in fact the unactuated configuration variable for our
modelling scheme. This property is referred to as
kinetic symmetry with respect to g; in our case.
Using the Lagrangian of the system, equations of
motion can be found by

d oL oL
o u 2
a0 o O(q) €3]
given as

K AR kv SE
my my ||da] |+ T

The state space model for these systems is
unsuitable for direct application of DSC [7] for not
being in strict feedback form. Feedback Linzarization
employs a change of control and coordinate
transformation, which leaves the system dynamics
linear or at least partially linear, more amenable to
control [2]. Different coordinate transformations have
been used for benchmark systems belonging to this
class for instance [3,10,11]. We prefer [11] that
exploits structural properties and uses Collocated
Partial Feedback Linearization, Spong [12]. Based on
Theorem 1 [11] the following change of coordinates
and invertible change of control input [12]

g, =q1 +7(q2)s

Pr =my (@)1 +miy(92)p)s @
T = a(qZ)u + ﬁ(q’q)a (5)
where

y(qy) = jqz IT(S; ds and
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2(q,.q2)= —[DqlV(q"qz )]‘11:%_7’(‘12) ’

transforms the dynamics in (3) to a cascade nonlinear
system in strict feedback form.

qr =Dr /mll(qZ)’

. (6)
pr = gr(qr9q2)5

qZ =D2

. (7
Py =Uu.

Remark 1: System after coordinate transformation
is a cascaded interconnection of a nonlinear (core or
reduced) subsystem and a linear (double integrator)
subsystem.

Remark 2: After transformation the obtained form
is amenable to several control design techniques.
Normally backstepping or energy based techniques
are applied after this stage.

3. CONTROLLER DESIGN

Although the transformed system is in strict
feedback form but DSC technique is not applicable in
usual fashion as the core system is non-affine in
control. Thus first assuming ¢, as the virtual input a

stabilization function is found for the core subsystem.
Afterwards DSC technique is used to design u

forcing ¢, to track the required stabilization

function, ultimately stabilizing the total system. DSC
is chosen as it has not only nice trajectory tracking
feature with arbitrarily small bounded error but it also
doesn’t exhibits the phenomenon of explosion of
terms associated with IBS.

3.1. Core subsystem controller design
The equations of the core systems are often highly
nonlinear and the virtual input appears in a very

complicated manner. However assuming ¢, =v asa

virtual control input, existence of a static feedback for
(6) in the explicit form

V(qr’pr):a(qr)—ao-(clqr +C2pr) (8)

is guaranteed by Theorem 3.2 [13], which globally
asymptotically stabilizes the core system. Here
a(q,) is a smooth function that satisfies
g (. a(q,) =0, a(0)=0. ©)
However using control Lyapunov Functions simpler
control laws do exist for stabilization of reduced
systems for certain cases as is demonstrated for cases
of IWP and TORA in example section.
Remark 3: Normally backstepping is recom-
mended to complete the design, [13]. Theoretically

the procedure yields a static feedback that guarantees
stability of total system. Whereas practically for
subsequent design it requires derivatives of (9). This
obviously demands availability of explicit solution of
(9) in closed form during design. For systems having
highly complicated dynamics, for instance, like that of
the Acrobot it is very hard to find such solutions even
by using symbolic computing engines. Implicit
solutions can be found [13}; requiring inversions by
exotic methods like lookup tables, neural networks,
splines, or other curve fitting approaches. However
solutions provided by these are useless for
backstepping for being numerical in nature.

One of the advantages of presented scheme is that it
doesn’t require this solution necessarily to be
available in closed form during design and thus

a(q, ) can be calculated numerically online and used.

3.2. Outer subsystem controller design
To stabilize (6) g, is required to follow the

trajectory given as
Gra =V(Gy> Dy )- (10)

Applying DSC technique we design a control law
that forces the linear system to generate the required
stabilization function. Theorem for Boundedness of
Tracking Error Using DSC for Lipschitz Systems by
Swaroop et al. [7] lists necessary requirements for
applications DSC technique. It’s trivial to verify that
required assumptions are satisfied by (7) regarding the

system which is in strict feedback form with feC L
and by (10) regarding the trajectory as a(g,) is
smooth and o(cg, +¢,p,) isa sigmoidal function.

3.2.1 Design procedure
Let the error in generation of stabilization function

be Sl

81 =42 ~ 924> (1)
S1 =4y —Gag = P2~ Goa- (12)

Assuming p, as next virtual input p; is chosen

to drive §; to zero.

Dy =-KiSi+¢q (K;>0) (13)

Notice that the direct calculation of ¢,,(f)
required at this step by the conventional backstepping
design procedure requires availability of ¢,; in
analytical form, calculation of which has already been
seen as a very difficult task. Even if it is available it

leads to complexity due to “explosion of terms”.
Motivated by DSC technique [7] a low pass filter with
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small positive time constant

, givenas following is

used here
7,024 (D + 020 = Qra> 424(0)=24(0),  (14)

where ¢,,;(f) and ¢,;(f) are obtained by online
filtering of g4

) 924 —924(1)
Goa () =242, (15)
T
q
Define the second surface as
Sy = P2~ P> (16)
Sy =Py —Prqg =U— Prg- a7

Control input u is designed to derive S, to zero
u=-K;S, +prg, K, >0. (18)

Another low pass filter with small positive time

constant 7, given as following is used here

7,024 )+ P2a() = Pays P24(0)=P24(0), (19)
where p,;(f) and p,,(¢) are obtained by filtering p, 4

ZOR 2710)

Pra(t)= (20)
T
p
which completes the design and
u:_K2S2+P2d(f)—P2d(t). 1)
T
p

Substituting (21) in (5) gives the required 7.

3.3. Controller parameters
As obvious from design K; can be set moderately

high for faster convergence rates. Filter time constants
control boundary layer error and hence must be set as
low as possible. However physical component values
and actuator saturation must be kept in mind as
smaller values increase control effort peaks and make
the control signal noisy. Average control effort and
rise time can be tuned by adjusting ¢; and transients

damping can be enhanced using c,.

It is interesting to see that during design the control
law and its derivative are never required in their
analytical forms during design. This solves the issue
of finding closed form solution for (9) which are
otherwise available easily using numerical techniques.
The procedure also circumvents the issue of
explosions of term effectively thus the resulting
control law is simpler with easy implementation.

Besides it gives a single controller design algorithm
for whole of the class, as sufficient conditioas, found
in next section are not very restrictive. A comparison
to existing designs in [3,10,13] reveals the ease of
design and simplicity of obtained control law.

4. STABILITY ANALYSIS

Although core is GAS for the virtual input defined
as (8) and errors in virtual control are removed
exponentially but it’s not sufficient to prove stability
as it ignores filter dynamics. Addition of low pass
filters makes things more complicated and it’s hard to
find a simple Lyapunov function to prove stability
using classical techniques. The MSS controller
doesn’t follow an independent trajectory thus
Theorem for Boundedness of Tracking Error Using
DSC for Lipschitz Systems by Swaroop ef al. [7], also,
cannot be used directly to infer the stability of the
system.

Fortunately the filter time constants can be set
arbitrarily low. By exploiting this we show that for
sufficiently small filter time constants the system
shows two-time scale nature and can be modelled as a
singularly perturbed system. Khalil [14] and
references therein provide a good account of the
theory of singularly perturbed system and terminology
adopted in the following discussion.

Our main result summarized as proof of given
proposition and following theorem analyzes closed
loop system stability by examining the reduced and
boundary layer models, obtained by using concepts
from singular perturbation theory.

Proposition 3.3.1: The augmented error dynamics
formed by closed loop system with controller
designed and low pass filter equations can be written
as a standard singularly perturbed model given as
following

x= f(x,2), 22)
ez=g(x,z,¢8), (23)
where fand g are continuously differentiable in their
arguments for (x,z,&)e D, xD,x[0,&], Dy R4,

D, c R% and ¢ is a small positive parameter.
Proof: Let the boundary layer errors are given as

21 =G ~ D> (24)
Z) = Pag — Pad- (25)
Thus From (15) and (20)

. g> — t z

q2d(,):q2d—qu() =4, (26)
Ty %y

. Dy () — t z

pzd(t)zfﬂ(_)_f_’}ig_.). -_Z22 27)

p Tp
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Thus
P2 =D2q Sy + 23, (28)
dr =42q +51 +21. (29)

Boundary layer error dynamics can be found as
following

. . - V4

21=429 =924 = ‘T—I—Bx(S,Pr,qr,Z),
q

(30)

. . N VA
Zy) = Prg — D2d Z_T—Z_Bz(SaPr,‘Jr,Z)-
p

After substitutions and some algebraic manipu-
lations we can write the augmented error dynamics as

C}r =P, /mn(V,Sl,Zl),

: 31)
Py =gr(qravaslazl):
Sl = "‘K]Sl +S2 +Zz, (32)
. y4
| =__1_BI(S5praqr5Z)a

Tq

(33)

. Zy
2y ==—"=By(S,Pr,4y52)

’p

where B;(-) is an appropriate continuous function.

Filter time constants 7, , can be set arbitrarily small

9.p
and (33) has an isolated real root when 7, ,=0.

Thus after renaming variables as x =[q,., p,,3 ,S2]T,

z=|z,2, ]T and ¢=7,=71,, the composite system

g~ "p>
can be modelled as a singularly perturbed system,
written in standard form as in (22), (23). O

Stability of these augmented error dynamics implies
the stability of the closed loop system, which we
prove in following theorem.

Theorem 3.3.1: Lets assume that the following

holds for f(q,.¥(q,,,),0,0) in(31).

-H1: £(0,0,0,0) = 0.

-H2: f (g+, v(gr, pr),0,0) is continuously differentiable
with bounded derivatives up to the second order
in xeB,.

-H3: Linearization 4 =[d/(q,,%g,,p,),0,0)/&g,,p,)]
(0) is Hurwitz.

-H4: g(0,0,0)=0, g() and its partial derivatives up
to second order are bounded in z€ B,.

Then for the closed loop system formed by (6), (7)

and the controller designed in Sections 3.1 and 3.2

with appropriate choices of KI,K2,rp,rp,a,cl, and

c, there exists £ >0 such that for all < &', the

origin of the augmented error dynamics (22), (23) is
exponentially stable.
Proof: We exploit the two-time scale nature of the

‘system (22), (23) and an isolated root z:=/h(x)=0,

is found as solution of 0= g(x,z,0). Thus the quasi
steady state of z is at origin and the reduced system

x= f(x,h(x)) is given as following.
X = x /[y (v(x),%2), X3),

Xy = g(xy,v(xy,%2),X3),

X3 (-K 1 x5 X3
["‘J{ 0 "Kj[)%:l‘— Azz[xj' G2

Linearization of this system around origin can be
written as

(34)

% = Ax, (36)

4, 4
where 4 =[ 81 12} and 4, defines appropriate
22

interconnection terms. A is Hurwitz due to its
special block diagonal structure, by H3 and by
definition of A4,,. Combining this with H2 and using
Lyapunov indirect method, this shows exponentially
stability of origin of (34)-(35), Theorem 4.15 [14]. By
Theorem 4.14 [14], there is a Lyapunov function V(x)
for the reduced system that satisfies for some positive
constants ¢; for xeB, where ry<r

2

2
ald <V <e|x| (37)
oV 2
AT B I (38)
ov
—|| < ¢4 ||x])- 39
o< o)
Equation {23) can be rewritten as
cz=g(x,z,6)=—A4,z+ ep(x,2), (40)
1 0
where A4, = .
01
Further applying a change of time scale to (40) as
dat
Sézﬂ or a, 1 and setting £=0 yields the
dt dt d ¢
boundary layer system given as
s =g(x,2,0)=-4,z. “41)

dt

s

Due to simple structure of low pass filters it is not
only independent of x but is also exponentially stable
as A, is Hurwitz. Treating x as a frozen parameter,



552 Nadeem Qaiser, Naeem Igbal, Amir Hussain, and Naeem Qaiser

by Lemma 9.8 [14], there is a Lyapunov function
W(z) for the boundary layer system that satisfies

blaf <w @ <b |, (42)
aa—W g(x,2,0) < by || - (43)
A

From H1 and H4 it follows that f and g are

Lipschitz in ¢ and suppose the following estimates
hold

|/ e 2) = £ (6,00 < Ly 1] (44)

IeOE 45)
We use

o(x,z)=V(x)+W(z) (46)

as a composite Lyapunov function candidate for the
system (22), (23). The derivative of v(x,z)along the

trajectories of the system is given as following
oV 10w
Wx,z)=— f(x,2)+———|-4,z+ ,
O(x,2) = f(x,2) = [-4,z+ep(x,2)]
v oV
= ——f(xao)+_a;[f(xaz)_f(x90)] (47)

1 ow —A4,z +8—Wp(x,z).
£ o0z z

Using the estimates (44), (45) and properties (37)-
(39), (42), (43) of V(x)and W(z) it can be verified

that following inequality holds

. 1
R A e

] e [

B )

where c¢; >0 and to make M positive definite we

need 03((1/£)+b3)—(c4L1/2)2>0. As we can

choose ¢ arbitrarily small thus there exists & >0

such that for all ¢ <&*, we have

O(x,z) < 2yv, (49)
o(x(t), (1)) < exp[ -2yt v(x(0),2(0)),y >0, (50)

and from properties of V' (x)and W(z)

)
©)

x(1)

-0 (51)

< K exp[-y1]

which completes the proof. O

Remark 4: All the requirements listed as H1, H2,
H3, H4 and estimates (44), (45) are not very
restrictive and it is trivial to verify that these are
satisfied by benchmark systems used in examples
section.

5. ILLUSTRATIVE EXAMPLES

Design algorithm presented in Section 3 has been
successfully applied to synthesize controllers for
benchmark systems belonging to our special class of
under actuated mechanical systems. These include
TORA [15], IWP and Acrobot. The Lagrangian
models of these benchmark systems possess kinetic
symmetry with respect to ¢; in spite of possessing

no symmetry in classical sense [11]. This makes them
perfect candidates for the class defined in Section 2. It
is interesting to note that our design gives a single
algorithm for different systems belonging to the
mentioned class, which is a great advantage if we see
the variety in existing design for different system. It is
trivial to verify that reduced systems of the examples
satisfy the requirements listed in Section 4.

5.1. TORA

TORA first introduced by Wan et al. [10], has been
extensively used as a test bed for nonlinear controllers
for cascade systems, mainly for passivity based
approaches [16]. Global stabilization of TORA system
using Integrator Backstepping procedure (IBS) has
been known due to Wan er al. [10], Raza [17].

The TORA system as depicted in Fig. 1 consists of
a translational oscillating platform, which is
controlled via a rotational eccentric mass. Model of
TORA after applying coordinates transformation
given in Section 2 the reduced system is given as

4, =mp,,

. (52)
Py =—kig, +esin(qy).

It satisfies all the conditions listed for stability in

SomNoN

Fig. 1. The TORA system.
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Fig. 2. (a) Box position and velocity (b) Rotor position and velocity (c) Core system trajectories (d) Control effort.

Section 4. Assuming ¢, as an input for (52) and
. 1

taking Vo(qr,pr)=5(k1qr2 +mp}) as a Lyapunov

function candidate, a control is found such that ¥} is

rendered negative definite. Trying ¢, :=a(p,)=

~atan” (¢ p,).

Vy =—emp, sin(atan™ (¢, p,)) <0, (33)

where 0<a <% and ¢;>0.

This is negative semi definite but is sufficient to
show Global Asymptotic Stability (GAS) of the origin
of (52) with help of LaSalle’s invariance For a fair
performance comparison the initial conditions and
parameters used for TORA have been principle. Let
the largest invariant set where all solutions converge
is

Q={[p,q,1€ R* :V(p,,q,)=0}.
Thisis p, =0 and from (52)
pr=0=p,=0=4, =0.

Thus Q={0}. The outer subsystem is designed as

described in Section 3 with control law given as (21).
A comparison to design of Wan et al. [10] reveals

the ease of design and simplicity of obtained control
law. System parameters are kept same as by Reza [17],
re, m =10, my =1, k=5, r=1, I=1. Following
controller parameters were used for simulations.
a=115, ¢ =05, K;=12, K, =25, 7,,=1. The

controller effectively damps translational vibrations of
cart and brings rotor to origin in reasonable time, Fig.
2(a), 2(b), and 2(c). The stabilization is more
aggressive than Reza [17]. However initial control
effort peaks are higher in this case, Fig. 2(d).

5.2. TWP

IWP first introduced by Spong er al. [3], is a
Benchmark nonlinear UMS, used mainly for Energy
Shaping and Damping Injection based approaches [3].

Fig. 3. The inertia wheel pendulum system.
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Fig. 4. (a) Pendulum position and velocity (b) Wheel velocity (c) Control effort (d) Phase portrair.

The IWP as illustrated in Fig. 3 is a planar inverted
pendulum with a rotating wheel on the end. The joint
on the base is unactuated thus the pendulum is to be
controlled through wheel rotation.

The controller task is to stabilize the pendulum in
its upright equilibrium position while the wheel stops
rotating. The specific angle of rotation of the wheel is
not important. In [3], a supervisory hybrid/switching
control strategy is applied for asymptotic stabilization
of the inertia-wheel pendulum around its upright
equilibrium point. First, a passivity-based controller
[4] swings up the pendulum. Then, a balancing
controller, obtained by Jacobian linearization or
(local) exact feedback linearization stabilizes the
pendulum around its upright position.

Transformed dynamical model of IWP after
applying coordinates transformation [17] is given as

21 = WSin(Zz ),
1 m

. 12
In=—2z1 ———123,
my m

4

23 =u.

Spong et al. [3] using a standard method from [2]
perform Feedback linearization of the system for
controller design. Reza [17] also applies further
change of coordinates and control to (54).

Besides IBS design still requires propagation of
derivatives during design. Our design approach

doesn’t require any further transformations before
application of same simple design algorithm. For

. __m 1 . :
obvious reasons Zz; = — (K|S +m—z1 —-2y4) in

) 11
(13).

A comparison to existing design methods for
instance [3] and [17] reveals the ease of dzsign and
simplicity of obtained control law. For fair
performance comparisons Reza [17] uses same system
parameters as Spong [3], and so do we i.e.,

m =483x107,  myy =my =my, =32x107%, and

w=379.26x10"". Following controller parameters
were used for simulations a=7/2, ¢=9, K, =4,

K, =6, and 7,,=0.035.

As depicted in Fig. 4 nonlinear controller
aggressively stabilizes pendulum from its downward
stable equilibrium point to its upright unstable
equilibrium point with negligible transierts, while
wheel stops rotating. Swing up is faster than the
design by Reza [17]. Design algorithm is simpler than
the designs by Reza [17] that requires more coordinate
transformations and IBS [2], which exhibits the
phenomenon of explosion of terms. The structure is
also simpler requiring no supervisory switching
controller as Spong’s design [3]. However initial
control effort peaks are comparatively larger (1.4 Nm
vs. 0.6 Nm by Reza) in this case.
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5.3. Acrobot

Acrobot is a planar robot that mimics the human
acrobat that hangs from a bar and tries to swing up to
a perfectly balanced upside-down position with
his/her hands still on the bar in Fig. 5.

The Acrobot, having a rich research past, first
introduced and studied by Murray and Hauser [18], is
a benchmark nonlinear under actuated mechanical
system. The Acrobot has been a test bed mainly for
Energy Shaping and Damping Injection based
approaches. Normally a supervisory hybrid/switching
control strategy is applied. Because of the large range
of the motion the swing-up problem is highly
nonlinear in nature, attracting attention of many
control designers. Several solutions have been
proposed ranging from Pseudo linearization
techniques to more exotic like fuzzy controllers and
use of neural networks.

The equations of motion for Acrobot are given as
following

o
My My || 9> h+¢ T

The element of Inertia matrix are given by

my(g,) = a+bcos(qy),
my(qy) =c+(b/2)cos(g,),
my(gz)=c.

with
a=ml +m2(Lf +122)+1] +1,,
b=2mLl,,
c=m2122 +1,.

There is no need for the definition of /4, and ¢

in design procedure; interested readers may find the
same in [20]. After applying coordinate ftrans-
formations mentioned in Section 2 the core system is
written as (6) with

Fig. 5. The Acrobot.

g, (dya2) = (myly + myL)gsin(g, —7(d,))
+maly sin(q, — 7(g) + (‘12—2»

and

_ q> 2c—a a-b q>
¥{(q2) 5 +{m]arctan( oy tan( 5 j]

Spong [20] proposes two distinct design algorithms
for swing-up control. One design exploits unstable
zero dynamics of the system for swing up while
energy-pumping scheme is employed in the other.
Global stabilization of Acrobot has also been
suggested using Integrator Backstepping procedure
(IBS) by Reza [17]. Former requires a supervisory
control and later exhibits explosion of terms and
requires the explicit solution of (9) in closed form. As
demonstrated our presented scheme caters for both of
the issues.

Control law given in (8) is used to stabilize the core
system and the outer subsystem design follows steps
given in Section 3 with control law given as (21).

Instead of a closed form solution for (9) our design
allows us to use any numerical technique which is a
great practical advantage. As implicit solutions are
available for (9) a lookup table can also be used.
However we prefer a numerical solution for the
isolated root «(g,) for precision reasons. The

algorithm [19] employed uses a combination of
bisection, secant, and inverse quadratic interpolation
methods for fast convergence. The function (g, )

can be approximated with a straight line. This
approximation is used to calculate a suitable guess for
the algorithm for faster convergence. For simulations
nonlinear function %(g,) has been constructed

piecewise.

For an objective performance comparison we use
the same system parameters as [17] mnamely:
my=my =1, L,l;=1, and I{,I, =1/3. Following
controller parameters were used for simulations a=1,
=3, =1, K =5 K;=10, and 7,=17,=0.07.

As depicted in Figs. 6 and 7 the nonlinear controller
aggressively stabilizes Acrobot from both sets of
initial conditions to its upright unstable equilibrium
point. Stabilization is aggressive than [17].

6. CONCLUSIONS

The DSC technique has been exploited in a novel
way to design a new controller for a special class of
nonlinear underactuated mechanical systems. The
model is brought to a cascade in strict feedback form
before applying the modular design procedure. First a
control Law is found for the nonlinear part of the
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Fig. 7. Trajectory of (g, py,q,,p;) for the Acrobot with initial conditions (0,0,7,0).

cascade, using control Lyapunov function method or from singular perturbation theory with help of
any other suitable technique. The linear part, using composite Lyapunov functions. Technique has been
DSC, is then forced to generate this control law. applied successfully to benchmark systems like

Stability of the system is analyzed using concepts TORA, IWP and Acrobot. Examples demonstrate how
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the presented design gets rid of solving highly
nonlinear equations, as in Acrobot example and
phenomenon of explosion of terms in general. Design
simplicity is demonstrated and controller performance
is compared to existing designs using both theoretical
and simulation studies. Some critical issues
concering the initial conditions of the system have
also been studied numerically.

In conclusion, the proposed algorithm provides a
very simple controller synthesis procedure that is
applicable equally to whole class as compared to
separate designs existing for different systems
belonging to the same class. It requires fewer
transformations and results in a less complicated
control law.

The structure is also simpler requiring no
supervisory switching controller. Simulation results
show design achieves faster stabilization too. Future
work includes investigation of the robustness of the
controller. It is very important as the design procedure
uses cancellation of derivatives that involve uncertain
system parameters. It will be also interesting to
investigate structural properties of the systems
belonging to said class as this may help to simplify
the control law for the core system.
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