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DISTURBANCE ATTENUATION FOR A CLASS OF

DISCRETE-TIME SWITCHED SYSTEMS WITH

EXPONENTIAL UNCERTAINTY

Changlin Li, Fei Long, and Guohui Ren

Abstract. The disturbance attenuation problem for a class of discrete-
time switched linear systems with exponential uncertainties via switched
state feedback and switched dynamic output feedback is investigated, re-

spectively. By using Taylor series approximation and convex polytope
technique, exponentially uncertain discrete-time switched linear system
is transformed into an equivalent switched polytopic model with addi-
tive norm bounded uncertainty. For such equivalent switched model, one

designs its switching strategy and associated state feedback controllers
and dynamic output feedback controllers so that whole switched model is
asymptotical stabilization with H-infinity disturbance attenuation based
on switched Lyapunov function and LMI approach. Finally, two numeri-

cal examples are presented to illustrate our results.

1. Introduction

As we know, many practical systems involve a mixture of continuous and
discrete dynamics. Systems in which these two kinds of dynamics coexist and
interact are usually called to hybrid systems. The history of hybrid system
research can be traced back at least to the 1950’s with the study of engineer-
ing systems. However, hybrid systems began to attract people’s attention in
the early 1990’s, mainly because of the vast development and implementa-
tion of digital micro controllers and embedded devices. Hybrid system models
can describe systems in a wide range of applications, including robotics, au-
tomotive electronics, manufacturing, automated highway systems, air traffic
management systems, integrated circuit design, hybrid dynamic automobile,
multimedia, and so on.
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Switched linear system belongs to a special class of hybrid system, which
comprises a collection of subsystems described by linear dynamics together
with a switching law that specifies the switching between the subsystems. The
importance of switched linear systems scheme stems from the following facts:

1) Switched linear system can represent a wide class of practical systems;
2) Based on switching control approach, the two-level system structure pro-

vides an effective multiple-controller switching path;
3) Many tools and approaches for linear systems are applicable or extendable

to cope with switched linear systems.
Hetel, et al. [4, 5] show that sampled model of linear system is derived and

discrete time control methods are applied in order to design a computer based
controller for the following switched linear system

.
x(t) = Mσx(t) +Nσu(t).

Under the case that sampling and actuation are periodic and synchronous with
the periodicity, the sampled model is given by

x(k + 1) = Aσ(ρ(k))x(k) +Bσ(ρ(k))u(k),

where Aσ(ρ(k)) = eMσρ(k), Bσ(ρ(k)) = (
∫ ρ(k)

0
eMσsds)Nσ; ρ(k) is sampling

periodicity; k denotes sampling step.
It is well known that, in many control problems, the sampling periodicity

of system is often affected by some delays (delays between the sensor and the
digital control, computing delays in the controller, communication delays be-
tween the controller and the actuator, and so on). Furthermore, these delays
are often unknown, time-varying and bounded [17]. As a result, exponential
uncertainty is encountered. Because of the practical background of exponential
uncertainty, the control synthesis problem of switched linear system subject to
exponential uncertainties is a very important and challenging one. Generally
speaking, exponential uncertainty can be represented as eMρ or

∫ ρ

0
eMτdτ that

depends on an unknown, possibly time-varying and bounded parameter ρ. In
the literature [21], exponential uncertainty is treated by assuming estimable de-
lay uncertainties. Andrea Balluchi, et al. [1] treats the uncertain exponential
terms as bounded uncertainties. L. Hetel, et al. [5] studies the state feed-
back stabilization problem for a class of discrete-time switched linear systems
with exponential uncertainties under the arbitrary switching rule, and then the
obtained results are extended to cope with network controlled systems.

The H∞ control problem for some uncertain switched linear systems was
also investigated, such as bounded uncertainties [6, 15, 16, 18], linear fractional
uncertainties [9, 11], polytopic uncertainties [20], actuator saturation [14, 19],
modeling uncertainties [8, 10], and so on. Motivated by the reference [4, 5], F.
Long, et al. [12, 13] have discussed H∞ state feedback and dynamic output
feedback control problem for a class of exponentially uncertain continuous-time
switched linear system by using Taylor series approximation and convex poly-
tope technique. In this manuscript, using similar idea of results [12, 13], one is
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intended to investigate the disturbance attenuation problem for discrete-time
switched linear systems with exponential uncertainties via switched state feed-
back and dynamic output feedback. It is assumed that the switching strategy
used in this paper is picked in such a way that there are finite switches in finite
steps.

One’s goal is, for discrete-time switched linear systems subject to expo-
nential uncertainty, to design a switching σ(k) strategy and associated state
feedback controllers and dynamic output feedback controllers such that the re-
sulting closed-loop system is asymptotical stabilization with a prescribed H∞
disturbance attenuation level for all admissible uncertainties. Firstly, one shows
that exponential uncertain switched system is transformed into an equivalent
polytopic model with an additive norm bounded uncertainty based on Tay-
lor series approximation and convex polytope technique. And then, by taking
advantage of switched Lyapunov function and LMI approach, the robust H∞
disturbance attenuation property of such equivalent switched model is inves-
tigated via switched state feedback and switched dynamic output feedback,
respectively.

The remainder of this paper is organized as follows: The problem state-
ment and some preliminaries are described in Section 2, while in Section 3 the
asymptotical stabilization with H∞ disturbance attenuation for exponentially
uncertain discrete-time switched linear system is investigated via switched state
feedback. In Section 4, one discusses the asymptotical stabilization with H∞
disturbance attenuation for a class of discrete-time switched linear systems
subject to exponential uncertainties via switched dynamic output feedback.
Two numerical examples are presented in Section 5 to illustrate one’s results.
Finally, some conclusions are drawn in Section 6.

Notations: The symmetric terms in a symmetric matrix are denoted by ∗,
X⊥ denote any matrix whose columns form bases of the null space of X and
λmax(P ) denote the maximum eigenvalues of matrix P .

2. Problem statement and preliminaries

In this paper, based on switched Lyapunov function techniques and LMI
approach, one investigates the asymptotical stabilization with H∞ disturbance
attenuation for the exponentially uncertain discrete-time switched linear sys-
tems (1) and (2) via switched state feedback and switched dynamic output
feedback, respectively.

(1)

{
x(k + 1) = Aσ(ρ(k))x(k) +Bσ(ρ(k))u(k) +B1σω(k)

z(k) = C1σx(k) +Dσu(k)
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and

(2)


x(k + 1) = Aσ(ρ(k))x(k) +Bσ(ρ(k))u(k) +B1σω(k)

z(k) = C1σx(k) +Dσu(k)

y(k) = C2σx(k),

where x ∈ Rn is the system state; u ∈ Rm is the control input; ω ∈ Rr is the
exogenous disturbance input that satisfies

∑∞
k=0 ω

T (k)ω(k) < ∞; z ∈ Rq is the
controlled output variable. y ∈ Rp is the measured output. The switching sig-
nal σ(·) : N

∪
{0} −→ N = {1, 2, . . . , N}, N < ∞ denotes the piecewise constant

switching rule. {Mi ∈ Rn×n, i ∈ N} and {Ni ∈ Rn×m, i ∈ N} are two families

of matrices. Ai(ρ(k)) = eMiρ(k), Bi(ρ(k)) = (
∫ ρ(k)

0
eMisds)Ni, the uncertain

parameter ρ(k) is positive, time varying, bounded and 0 < ρ < ρ(k) < ρ (where

ρ and ρ are two known constants). B1i, C1i, C2i and Di(i ∈ N) are constant ma-
trices with appropriate dimensions. Uncertain switched systems such as (1) and
(2) may be used to represent digital models for network controlled systems or for
systems affected by sampling jitter. Each pair {(Mi, Ni, C1i, Di, B1i), i ∈ N}
and {(Mi, Ni, C1i, Di, C2i, B1i), i ∈ N} describes a discrete-time time model
representing different regimes of system behavior. Here, σ will be considered a
piecewise constant function that may change its value at the sampling period.
The linear version of an uncertain system with exponential uncertainty can be
obtained by considering only one model (N = 1).

The objective of this paper is, for any given γ > 0, to find switched state
feedback controller (switched output feedback controller) so that the discrete-
time switched linear systems (1) (the discrete-time switched linear system (2))
satisfies:

a) With zero disturbance input condition ω ≡ 0, it is asymptotically stable
for all admissible uncertainties.

b) With zero-initial condition x(0) = 0,

l∑
k=0

zT (k)z(k) < γ2
l∑

k=0

ωT (k)ω(k)

for all nonzero ω satisfying
∑∞

k=0 ω
T (k)ω(k) < ∞ and all admissible uncer-

tainties.
Now, one introduces some support lemmas and the concept of switching

sequence, which can be use in the later.

Lemma 2.1 ([5]). Consider the uncertain polynomial parameter dependent
n-order matrix L(ρ) = L0 + L1ρ + L2ρ

2 + · · · + Lhρ
h with the uncertain pa-

rameter ρ is positive, bounded and 0 < ρ < ρ < ρ (where ρ and ρ are two
known constants). Then one can find a convex polytope with h + 1 vertices
that envelopes L(ρ), i.e., there exist parameters µj(ρ), j = 1, 2, . . . , h + 1 sat-

isfying
∑h+1

j=1 µj(ρ) = 1, µj(ρ) > 0 such that L(ρ) =
∑h+1

j=1 µj(ρ)Uj, where
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Uj , j = 1, 2, . . . , h+ 1 represent the polytope vertices given as follows.

U1 = L0 + L1ρ+ L2ρ
2 + · · ·+ Lhρ

h

U2 = L0 + L1ρ+ L2ρ
2 + · · ·+ Lhρ

h

U3 = L0 + L1ρ+ L2ρ
2 + · · ·+ Lhρ

h

· · ·

Uh+1 = L0 + L1ρ+ L2ρ
2 + · · ·+ Lhρ

h.

The relation between the uncertain parameter ρ(k) and µj(ρ) is given by

µj(ρ) =


1− ρ−ρ

ρ−ρ , j = 1

ρj−1−ρj−1

ρj−1−ρj−1 − ρj−ρj

ρj−ρj , j = 2, 3, . . . , h

ρh−ρh

ρh−ρh , j = h+ 1.

Lemma 2.2 ([2]). Given a symmetric matrix Ψ ∈ Rn×n and two matrices
Γ, Ξ of column dimension m, consider the problem of finding some matrix
Θ of compatible dimensions such that Ψ + ΓTΘTΞ + ΞTΘΓ < 0. Denote by
WΓ,WΞ any matrices whose columns form bases of the null spaces of Γ and Ξ,
respectively. Then the above matrix inequality is solvable for Θ if and only if
WT

Γ ΨWΓ < 0 and WT
Ξ ΨWΞ < 0.

Lemma 2.3 ([3]). Given symmetrically positive definite matrices X,Y∈ Rn×n,
if there exist matrices X2 ∈ Rn×nk (where nk is a positive integer) and sym-
metrical matrices X3 ∈ Rnk×nk such that(

X X2

XT
2 X3

)
> 0,

then (
X X2

XT
2 X3

)−1

=

(
Y Y2

Y T
2 Y3

)
if and only if (

X I
I Y

)
≥ 0,

where

rank

(
X I
I Y

)
≤ n+ nk, Y2 ∈ Rn×nk , Y3 = Y T

3 ∈ Rnk×nk .

Definition (switching sequence). The sequence {(km, rm)|rm = 1, 2, . . . , N ;
m = 1, 2, . . .} is said to be switching sequence, if

(i) σ(km) ̸= σ(km − 1),
(ii) σ(km) = σ(km + 1) = · · · = σ(km + tm) = rm, tm ≥ 1.
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Remark 2.4. The switching sequence {(km, rm)|rm = 1, 2, . . . , N ;m = 1, 2, . . .}
denotes that the rm-th subsystem of discrete-time switched systems is active
at the km step and the constant tm is dwell steps in the rm-th subsystem of
this discrete-time switched systems.

3. Robust H∞ control via switched state feedback

In this section, the robust H∞ control problem of system (1) is investigated
via switched state feedback. Before the design of switched state feedback con-
troller, one firstly shows how the system (1) can be expressed as a switched
polytopic system with additive norm bounded uncertainty. According to the
Lemma 2.1 and the properties of exponential matrix:

eMx =

∞∑
j=0

M j

j!
xj ,

∫ x

0

eMsds =

∞∑
j=1

M j−1

j!
xj .

The following lemma is obvious.

Lemma 3.1 ([5]). The discrete-time switched linear system (1) subject to ex-
ponential uncertainties can be expressed as:

(3)


x(k + 1) = (Ah

σ(ρ(k)) + ∆Ah
σ(ρ(k)))x(k)

+ (Bh
σ(ρ(k)) + ∆Bh

σ(ρ(k)))u(k) +B1σω(k),

z(k) = C1σx(k) +Dσu(k),

where

Ah
σ(ρ(k)) =

k+1∑
j=1

µj(ρ(k))U
Ah
σj ,(4)

Bh
σ(ρ(k)) = (

k+1∑
j=1

µj(ρ(k))U
Bh
σj )Nσ,(5)

h+1∑
j=1

µj(ρ) = 1, µj(ρ) > 0, j = 1, 2, . . . , h+ 1,(6)

(7)



UAh
σ1 = I +Mσρ+

M2
σ

2!
ρ2 + · · ·+ Mh

σ

h!
ρh

UAh
σ2 = I +Mσρ+

M2
σ

2!
ρ2 + · · ·+ Mh

σ

h!
ρh

UAh
σ3 = I +Mσρ+

M2
σ

2!
ρ2 + · · ·+ Mh

σ

h!
ρh

· · ·

UAh
σ,h+1 = I +Mσρ+

M2
σ

2!
ρ2 + · · ·+ Mh

σ

h!
ρh,
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(8)



UBh
σ1 = ρI +

Mσ

2!
ρ2 +

M2
σ

3!
ρ3 + · · ·+ Mh

σ

(h+ 1)!
ρh+1

UBh
σ2 = ρI +

Mσ

2!
ρ2 +

M2
σ

3!
ρ3 + · · ·+ Mh

σ

(h+ 1)!
ρh+1

UBh
σ3 = ρI +

Mσ

2!
ρ2 +

M2
σ

3!
ρ3 + · · ·+ Mh

σ

(h+ 1)!
ρh+1

· · ·

UBh
σ,h+1 = ρI +

Mσ

2!
ρ2 +

M2
σ

3!
ρ3 + · · ·+ Mh

σ

(h+ 1)!
ρh+1.

The remainders of the Taylor series approximation ∆Ah
σ(ρ(k)) and ∆Bh

σ(ρ(k))
are given as follows.

(9)


∆Ah

σ(ρ(k)) = eMσρ(k) −
h∑

j=0

M j

j!
ρj(k),

∆Bh
σ(ρ(k)) = (

∫ ρ(k)

0

eMσsds−
h+1∑
j=1

M j−1

j!
ρj(k))Nσ.

The relation between the uncertain parameter ρ(k) and the coordinates µj(ρ) is
given by Lemma 2.1.

Remark 3.2. The describing and proof of Lemma 3.1 was come from the same
idea of literature [5] and [12, 13].

Notice that the uncertain items ∆Ah
σ(ρ(k)) and ∆Bh

σ(ρ(k)) are bounded
while 0 < ρ < ρ(k) < ρ. Therefore one can write

(10) ∥∆Ah
σ(ρ(k))∥ ≤ γA, ∥∆Bh

σ(ρ(k))∥ ≤ γB ,

where

(11)


γA = max

1≤i≤N
sup

ρ≤ρ(k)≤ρ

∥eMiρ(k) −
h∑

j=0

M j

j!
ρj(k)∥,

γB = max
1≤i≤N

sup
ρ≤ρ(k)≤ρ

∥(
∫ ρ(k)

0

eMisds−
h+1∑
j=1

M j−1

j!
ρj(k))Ni∥.

By the above analysis, switched dynamic model (3) is actually a switched
polytopic system subject to additive norm bounded uncertainty. As Lemma 3.1
has showed, such a switched model can be used to represent the discrete-time
switched linear system (1). Therefore, stabilizing switched dynamic model (3)
is equivalent to doing the system (1).

Our goal is in this section, for any given γ > 0, to design a switched state
feedback controllers u(k) = Kh

σ(k)x(k) such that the resulting closed-loop sys-

tem of system (3) satisfies:
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a) With zero disturbance input condition ω ≡ 0, it is asymptotically stable
for all admissible uncertainties.

b) With zero-initial condition x(0) = 0,

l∑
k=0

zT (k)z(k) < γ2
l∑

k=0

ωT (k)ω(k)

for all nonzero ω satisfying
∑∞

k=0 ω
T (k)ω(k) < ∞ and all admissible uncer-

tainties.
For disturbance attenuation performance of system (3), we have the following

result.

Theorem 3.3. Given any constant γ > 0 the discrete-time switched linear
system (3) is asymptotically stabilization with H∞ disturbance attenuation γ
via switched state feedback if there exist symmetrically positive definite matrices
Xi and matrices Yi with i ∈ N such that the following linear matrix inequality
is satisfied for any i = 1, 2, . . . , N .

(12)



−Xi ∗ ∗ ∗ ∗ ∗
0 3ηiB

T
1iB1i − γ2I ∗ ∗ ∗ ∗√

3(Ah
i (ρ)Xi

+Bh
i (ρ)Yi) 0 −Xi ∗ ∗ ∗√

6ηiγAXi 0 0 −I ∗ ∗√
6ηiγBYi 0 0 0 −I ∗

C1iXi +DiYi 0 0 0 0 −I


< 0,

where ηi is a constant and satisfies ηi≥λmax(X
−1
i ).

In this case, the state feedback controller gain and switching strategy are
taken as Kh

i = YiX
−1
i and

(13) σ(k) = arg min
1≤i≤N



xT (k){3(Ah
i (ρ) +Bh

i (ρ)K
h
i )

TX−1
i (Ah

i (ρ)

+Bh
i (ρ)K

h
i ) + 6ηiγ

2
AI + 6ηiγ

2
B(K

h
i )

TKh
i

+ (C1iDiK
h
i )

T
(C1iDiK

h
i )}x(k)

< min
1≤i≤N

{xT (k)(X−1
i )x(k)}


.

Proof. Setting Xi = P−1
i , Yi = Kh

i P
−1
i , then the matrix inequality (12) is

equivalent with the following matrix inequality.

(14)



−P−1
i ∗ ∗ ∗ ∗ ∗
0 3ηiB

T
1iB1i − γ2I ∗ ∗ ∗ ∗√

3(Ah
i (ρ)

+Bh
i (ρ)K

h
i )P

−1
i 0 −P−1

i ∗ ∗ ∗√
6ηiγAP

−1
i 0 0 −I ∗ ∗√

6ηiγBK
h
i P

−1
i 0 0 0 −I ∗

(C1i +DiK
h
i )P

−1
i 0 0 0 0 −I


< 0.
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Pro-multiplying and post-multiplying the matrix diag(Pi, I, I, I, I, I) in left-
side of matrix inequality (14), the matrix inequality implies the following matrix
inequality.

(15)


−Pi ∗ ∗ ∗ ∗ ∗
0 3ηiB

T
1iB1i − γ2I ∗ ∗ ∗ ∗√

3ACi(ρ) 0 −P−1
i ∗ ∗ ∗√

6ηiγAI 0 0 −I ∗ ∗√
6ηiγBK

h
i 0 0 0 −I ∗

CCi 0 0 0 0 −I

 < 0,

where ACi(ρ(k)) = Ah
i (ρ(k)) +Bh

i (ρ(k))K
h
i , CCi = C1i +DiK

h
i .

By means of the schur complement formula, the matrix inequality (15) is
equivalent to the following inequality.

(16)

 3AT
CiPiACi + 6ηiγ

2
AI 0

+6ηiγ
2
B(K

h
i )

TKh
i + CT

CiCCi − Pi

0 3ηiB
T
1iB1i − γ2I

 < 0.

Consider the notations:

αi(k) =

{
1 (k ∈ Qi),

0 (k∈Qi),

where Qi = {k ∈ N| the i-th subsystem is active at the k-th step}.
The closed-loop dynamic of system (3) with state feedback controller u(k) =

Kh
σ(k)x(k) is given by:

(17)

{
x(k + 1) = (ACσ(ρ(k)) + ∆ACσ(ρ(k)))x(k) +B1σω(k),

z(k) = CCσx(k),

where ∆ACσ(k)(ρ(k)) = ∆Ah
σ(k)(ρ(k)) + ∆Bh

σ(k)(ρ(k))K
h
σ(k).

Consider the following switched parameter dependent Lyapunov-like func-
tion

(18) V (x(k)) = xT (k)(
N∑
i=1

αi(k)Pi)x(k).

Then for any k ∈ Qrm = {km + 1, km + 2, . . . , km + tm}, the difference of (18)
along with the trajectory of system (17) is given by

∆V = xT (k)[AT
CrmPrmACrm + 2AT

CrmPrm∆ACrm

+∆AT
CrmPrm∆ACrm − Prm ]x(k) + 2xT (k)AT

CrmPrmB1rmω

+ 2xT (k)∆AT
CrmPrmB1rmω + ωTBT

1rmPrmB1rmω

≤ xT (k)[3AT
CrmPrmACrm + 3∆AT

CrmPrm∆ACrm − Prm ]x(k)

+ 3ωTBT
1rmPrmB1rmω

= xT (k)[3AT
CrmPrmACrm + 3∆AT

CrmPrm∆ACrm + CT
CrmCCrm − Prm ]x(k)
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+ 3ωTBT
1rmPrmB1rmω − zT (k)z(k)

= xT (k)[3AT
CrmPrmACrm + 3∆AT

CrmPrm∆ACrm + CT
CrmCCrm − Prm ]x(k)

+ ωT (3BT
1rmPrmB1rm − γ2I)ω + γ2ωTω − zT (k)z(k).

By means of (10) and

∆AT
CrmPrm∆ACrm

= (∆Ah
rm(ρ) + ∆Bh

rm(ρ)Kh
rm)TPrm(∆Ah

rm(ρ) + ∆Bh
rm(ρ)Kh

rm)

≤ 2(∆Ah
rm(ρ))TPrm∆Ah

rm(ρ) + 2(∆Bh
rm(ρ)Kh

rm)TPrm(∆Bh
rm(ρ)Kh

rm)

≤ 2ηrmγ2
AI + 2ηrmγ2

B(K
h
rm)TKh

rm .

The following inequality is obvious.

zT (k)z(k)− γ2ωTω +∆V(19)

≤ xT (k)[3AT
CrmPrmACrm + 3∆AT

CrmPrm∆ACrm

+ CT
CrmCCrm − Prm ]x(k) + ωT (3BT

1rmPrmB1rm − γ2I)ω

≤ xT (k)[3AT
CrmPrmACrm + 6ηrmγ2

AI + 6ηrmγ2
B(K

h
rm)TKh

rm

+ CT
CrmCCrm − Prm ]x(k) + ωT (3ηrmBT

1rmB1rm − γ2I)ω

=

(
x(k)
ω

)T


3AT

Crm
PrmACrm

+6ηrmγ2
AI

+6ηrmγ2
B(K

h
rm)TKh

rm 0
+CT

Crm
CCrm − Prm

3ηrmBT
1rmB1rm

0 −γ2I


(

x(k)
ω

)
.

Assume x(0) = 0 and introduce the performance

J =
l∑

k=0

(zT (k)z(k)− γ2ωT (k)ω(k)).

Let {(km, rm)|rm ∈ N;m = 1, 2, . . . ; 0 = k1 < k2 < · · · < ks < l} be switching
sequence that is generated by the switching strategy (13) in the set {1, 2, . . . , l}.
Noting that x(k1) = x(0) = 0, then for every satisfying

∑∞
k=0 ω

T (k)ω(k) < ∞,

J =
l∑

k=0

(zT (k)z(k)− γ2ωT (k)ω(k) + ∆V (x(k)))−
l∑

k=0

∆V (x(k))

=

l∑
k=0

(zT (k)z(k)− γ2ωT (k)ω(k) + ∆V (x(k)))− V (x(l))

≤
l∑

k=0

(zT (k)z(k)− γ2ωT (k)ω(k) + ∆V (x(k))).
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By virtue of the matrix inequality (16) and (19), it follows that J < 0. That

is to say
∑l

k=0 z
T (k)z(k) < γ2

∑l
k=0 ω

T (k)ω(k).
Now, one proves that the discrete-time switched linear system (3) with ω ≡ 0

is asymptotically stable.
Let {(km, rm)|rm ∈ N;m = 1, 2, . . . ; 0 = k1 < k2 < · · · < ks < · · · } be a

switching sequence that is generated by the switching strategy (13) in the set
of natural numbers.

For any k ∈ {km +1, km +2, . . . , km + tm} = Qrm , the difference of V (x(k))
along with the trajectory of the discrete-time switched linear system (17) with
ω ≡ 0 is given by

∆V = [xT (k)AT
Crm + xT (k)∆AT

Crm ]Prm [ACrmx(k) + ∆ACrmx(k)]

− xT (k)Prmx(k)

≤ xT (k)[3AT
CrmPrmACrm + 6ηrmγ2

AI + 6ηrmγ2
B(K

h
rm)TKh

rm

+ CT
CrmCCrm − Prm ]x(k)

=

(
x(k)
0

)T


3AT

Crm
PrmACrm

+6ηrmγ2
AI

+6ηrmγ2
B(K

h
rm)TKh

rm 0
+CT

Crm
CCrm − Prm

3ηrmBT
1rmB1rm

0 −γ2I


(

x(k)
0

)
.

Therefore, by virtue of the matrix inequality (16), for any k ∈ {km + 1, km +
2, . . . , km + tm} = Qrm the difference of (18) alone with the trajectory of the
discrete-time switched linear system (17) with ω ≡ 0 is less than zero.

Without loss of generality, suppose that σ(km+tm) = k and σ(km+tm+1) =
k+1. Then by P−1

i = Xi, ACi(ρ) = Ah
i (ρ)+Bh

i K
h
i and CCi = C1i+DiK

h
i (i ∈

N), one has

V (x(k + 1))− V (x(k))

= xT (k + 1)Prm+1
x(k + 1)− xT (k)Prmx(k)

= [xT (k)AT
Crm+1

+ xT (k)∆AT
Crm+1

]Prm+1 [ACrm+1x(k)

+ ∆ACrm+1x(k)]− xT (k)Prmx(k)

≤ xT (k)[3AT
Crm+1

X−1
rm+1

ACrm+1 + 6ηrm+1γ
2
AI

+ 6ηrmγ2
B(K

h
rm+1

)TKh
rm+1

+ CT
Crm+1

CCrm+1 −X−1
rm ]x(k)

< 0.

Hence by Lyapounv stability theory, under the action of switching controller
(13), the asymptotic stability of system (3) with ω ≡ 0 follows immediately.
This completes the proof. □



786 CHANGLIN LI, FEI LONG, AND GUOHUI REN

4. Robust H∞ control via dynamic output feedback

In this section, the robust control problem of the discrete-time switched
linear system (2) is investigated via switched dynamic output feedback. As
same doing in Section 3, one firstly shows that the system (2) can be expressed
as a switched polytopic system with additive norm bounded uncertainty.

By Lemma 3.1, the following lemma is obvious.

Lemma 4.1. The discrete-time switched linear system (2) subject to exponen-
tial uncertainties can be expressed as:

(20)


x(k + 1) = (Ah

σ(ρ(k)) + ∆Ah
σ(ρ(k)))x(k)

+ (Bh
σ(ρ(k)) + ∆Bh

σ(ρ(k)))u(k) +B1σω(k)

z(k) = C1σx(k) +Dσu(k)

y(k) = C2σx(k),

where Ah
σ(ρ(k)) and Bh

σ(ρ(k)) are described as (4)-(5) and (7)-(8); the remain-
ders of the Taylor series approximation ∆Ah

σ(ρ(k)) and ∆Bh
σ(ρ(k)) are given

by the functions (9)-(11). The description of parameters µj(ρ) is given by (6)
and Lemma 3.1.

In view of the Lemma 4.1, switched dynamic model (20) is actually a
switched polytopic system subject to norm bounded uncertainty. Furthermore,
such a switched model can be used to represent the discrete-time switched linear
system (2). Therefore, stabilizing switched dynamic model (20) is equivalent
to doing the system (2).

One’s goal is, for any given γ > 0, to find a switched dynamic output
feedback controller such that the resulting closed-loop system of system (20)
satisfies:

a) With zero disturbance input condition ω ≡ 0, it is asymptotically stable
for all admissible uncertainties.

b) With zero-initial condition x(0) = 0,

l∑
k=0

zT (k)z(k) < γ2
l∑

k=0

ωT (k)ω(k)

for all nonzero ω satisfying
∑∞

k=0 ω
T (k)ω(k) < ∞ and all admissible uncer-

tainties.
For system (20), one is interested in constructing the form of the switched

dynamic output-feedback controller as follows:

(21)

{
ξ(k + 1) = Âσ(k)ξ(k) + B̂σ(k)y(k)

u(k) = Ĉσ(k)ξ(k) + D̂σ(k)y(k),

where ξ ∈ Rn.
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The resulting closed-loop system of system (20) with switched dynamic out-
put feedback controller (21) is given by

(22)

{
x̃(k + 1) = (ACσ(k) +∆ACσ(k))x̃(k) +BCσ(k)ω(k)

z(k) = CCσ(k)x̃(k),

where

x̃T = (xT , ξT ), ACσ(k) = A0
σ(k) +B0

σ(k)Kσ(k)C
0
2σ(k),

∆ACσ(k) = ∆A0
σ(k) +∆B0

σ(k)Kσ(k)C
0
2σ(k),

CCσ(k) = C0
1σ(k) +D0

σ(k)Kσ(k)C
0
2σ(k), D

0
σ(k) = (Dσ(k) 0),

C0
1σ(k) = (C1σ(k) 0), BCσ(k) = B0

1σ(k) = (B1σ(k) 0)T ,

A0
σ(k)) =

(
Ah

σ(k) 0

0 0

)
,∆A0

σ(k) =

(
∆Ah

σ(k) 0

0 0

)
,

B0
σ(k) =

(
Bh

σ(k) 0

0 I

)
,∆B0

σ(k) =

(
∆Bh

σ(k) 0

0 0

)
,

C0
2σ(k)) =

(
C2σ(k) 0

0 I

)
,Kσ(k) =

(
D̂σ(k) Ĉσ(k)

B̂σ(k) Âσ(k)

)
.

Next, one gives the sufficient conditions for existence of the switched dynamic
output feedback controllers (21) such that the resulting closed-loop system (22)
is stabilization with disturbance attenuation level γ.

Lemma 4.2. Given any constant γ > 0, the uncertain switched linear system
(20) is said to be asymptotically stabilizable with H∞ disturbance attenuation
level γ via switched dynamic output feedback, if there exist symmetrically posi-
tive definite matrices XCi such that the following non-linear matrix inequality
hold for all i ∈ N.

(23)


−XCi ∗ ∗ ∗ ∗ ∗

0 3ηiB
T
CiBCi − γ2I ∗ ∗ ∗ ∗√

3ACi 0 −X−1
Ci ∗ ∗ ∗√

6ηiγAI0 0 0 −I ∗ ∗√
6ηiγBRCi 0 0 0 −I ∗
CCi 0 0 0 0 −I

 < 0,

where RCi = I0KiC
0
2i, I0 = [I 0], IC = IT0 I0, ηi is a constant and satisfies

ηi≥λmax(XCi).
In this case, the dynamic output feedback controllers gain matrix:

Ki =

(
D̂i Ĉi

B̂i Âi

)
, i = 1, 2, . . . , N.
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The switching strategy σ(k) is given by

(24) σ(k) = arg min
1≤i≤N


x̃T (k)[3AT

CiXCiACi + 6ηiγ
2
AIC

+ 6ηiγ
2
BR

T
CiRCi + CT

CiCCi]x̃(k)

< min
1≤i≤N

{x̃T (k)(XCi)x̃(k)}

 .

Proof. By means of the Schur Complement formula, the matrix inequality (23)
is equivalent to the following matrix inequality.

(25)

 3AT
CiXCiACi + 6ηiγ

2
AIC 0

+6ηiγ
2
BR

T
CiRCi + CT

CiCCi −XCi

0 3ηiB
T
CiBCi − γ2I

 < 0.

Consider the notations:

αi(k) =

{
1 (k ∈ Qi)

0 (k∈Qi),

where Qi = {k ∈ N| the i-th subsystem is active at the k-th step}.
Constructing switched parameter dependent Lyapunov-like function as fol-

lows.

(26) V (x̃(k)) = x̃T (k)(

N∑
i=1

αi(k)Pi)x̃(k).

Then for any k ∈ Qrm = {km + 1, km + 2, . . . , km + tm}, the difference of (26)
along with the trajectory of system (22) is given by

∆V = x̃T (k)[AT
CrmPrmACrm + 2AT

CrmPrm∆ACrm +∆AT
CrmPrm∆ACrm

− Prm ]x̃(k) + 2x̃T (k)AT
CrmPrmBCrmω + 2x̃T (k)∆AT

CrmPrmBCrmω

+ ωTBT
CrmPrmBCrmω

≤ x̃T (k)[3AT
CrmPrmACrm + 3∆AT

CrmPrm∆ACrm − Prm ]x̃(k)

+ 3ωTBT
CrmPrmBCrmω

= x̃T (k)[3AT
CrmPrmACrm + 3∆AT

CrmPrm∆ACrm + CT
CrmCCrm − Prm ]x̃(k)

+ 3ωTBT
CrmPrmBCrmω − zT (k)z(k)

= x̃T (k)[3AT
CrmPrmACrm + 3∆AT

CrmPrm∆ACrm + CT
CrmCCrm − Prm ]x̃(k)

+ ωT (3BT
CrmPrmBCrm − γ2I)ω + γ2ωTω − zT (k)z(k).

Again in view of (10) and

∆AT
CrmPrm∆ACrm

= (∆A0
rm +∆B0

rmKrmC0
2rm)TPrm(∆A0

rm +∆B0
rmKrmC0

2rm)

≤ 2(∆A0
rm)TPrm∆A0

rm + 2(∆B0
rmKrmC0

2rm)TPrm(∆B0
rmKrmC0

2rm)

≤ 2ηrmγ2
AIC + 2ηrmγ2

BR
T
CrmRCrm .



DISTURBANCE ATTENUATION FOR DISCRETE-TIME SWITCHED SYSTEMS 789

One has

zT (k)z(k)− γ2ωTω +∆V

≤ x̃T (k)[3AT
CrmPrmACrm + 3∆AT

CrmPrm∆ACrm + CT
CrmCCrm

− Prm ]x̃(k) + ωT (3BT
CrmPrmBCrm − γ2I)ω

≤ x̃T (k)[3AT
CrmPrmACrm + 6ηrmγ2

AIC + 6ηrmγ2
BR

T
CrmRCrm

+ CT
CrmCCrm − Prm ]x̃(k) + ωT (3ηrmBT

CrmBCrm − γ2I)ω

=

(
x̃(k)
ω

)T


3AT

Crm
PrmACrm

+6ηrmγ2
AIC

+6ηrmγ2
BR

T
Crm

RCrm 0
+CT

Crm
CCrm − Prm

3ηrmBT
Crm

BCrm

0 −γ2I


(

x̃(k)
ω

)
.

Assume x̃(0) = 0 and introduce the performance

J =
l∑

k=0

(zT (k)z(k)− γ2ωT (k)ω(k)).

Let {(km, rm)|rm ∈ N;m = 1, 2, . . . ; 0 = k1 < k2 < · · · < ks < l} be a
switching sequence that is generated by the switching strategy (24) in the
set {1, 2, . . . , l}. Noting that x̃(k1) = x̃(0) = 0, then for every ω satisfying∑∞

k=0 ω
T (k)ω(k) < ∞,

J =
l∑

k=0

(zT (k)z(k)− γ2ωT (k)ω(k) + ∆V (x̃(k)))−
l∑

k=0

∆V (x̃(k))

=

l∑
k=0

(zT (k)z(k)− γ2ωT (k)ω(k) + ∆V (x̃(k)))− V (x̃(l))

≤
l∑

k=0

(zT (k)z(k)− γ2ωT (k)ω(k) + ∆V (x̃(k))).

Consequently, setting Pi = XCi and by virtue of the matrix inequality (23), it
follows that J < 0. That is to say

l∑
k=0

zT (k)z(k) < γ2
l∑

k=0

ωT (k)ω(k).

Now, one proves that the discrete-time switched linear system (20) with ω ≡ 0
is asymptotically stable.

Let {(km, rm)|rm ∈ N;m = 1, 2, . . . ; 0 = k1 < k2 < · · · < ks < · · · } be a
switching sequence that is generated by the switching strategy (24) in the set
of natural numbers.
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For any k ∈ {km +1, km +2, . . . , km + tm} = Qrm , the difference of V (x̃(k))
along with the trajectory of the discrete-time switched linear system (22) with
ω ≡ 0 is given by

∆V = [x̃T (k)AT
Crm + x̃T (k)∆AT

Crm ]Prm [ACrm x̃(k) + ∆ACrm x̃(k)]

− x̃T (k)Prm x̃(k)

≤ x̃T (k)[3AT
CrmPrmACrm + 6ηrmγ2

AIC + 6ηrmγ2
BR

T
CrmRCrm

+ CT
CrmCCrm − Prm ]x̃(k)

=

(
x̃(k)
0

)T


3AT

Crm
PrmACrm

+6ηrmγ2
AIC 0

+6ηrmγ2
BR

T
Crm

RCrm

+CT
Crm

CCrm − Prm

3ηrmBT
Crm

BCrm

0 −γ2I


(

x̃(k)
0

)
.

Therefore, by virtue of the matrix inequality (23), for any k ∈ {km + 1, km +
2, . . . , km + tm} = Qrm the difference of (26) alone with the trajectory of the
discrete-time switched linear system (22) with ω ≡ 0 is less than zero.

Without loss of generally, suppose that σ(km+tm) = k and σ(km+tm+1) =
k + 1 . Then by Lyapunov-like functions (26), switching strategy (24) and
Pi = XCi, RCi = I0KiC

0
2i, ACi = A0

i +B0
i KiC

0
2i, CCi = C0

1i +D0
iKiC

0
2i(i ∈ N).

One has

V (x̃(k + 1))− V (x̃(k))

= x̃T (k + 1)Prm+1
x̃(k + 1)− x̃T (k)Prm x̃(k)

= [x̃T (k)AT
Crm+1

+ x̃T (k)∆AT
Crm+1

]Prm+1 [ACrm+1 x̃(k)

+ ∆ACrm+1 x̃(k)]− x̃T (k)Prm x̃(k)

≤ x̃T (k)[3AT
Crm+1

XCrm+1ACrm+1 + 6ηrm+1γ
2
AIC

+ 6ηrmγ2
BR

T
Crm+1

RCrm+1 + CT
Crm+1

CCrm+1 −XCrm ]x̃(k)

< 0.

Hence, by Lyapounv stability theory, under the action of switching controller
(21), the asymptotic stability of system (20) with ω ≡ 0 follows immediately.
This completes the proof. □

It should be pointed out, however, that the matrix inequality (23) is not
linear matrix inequality. In the following part, our goal is to transform matrix
inequality (23) into linear matrix inequalities.

The matrix inequality (23) is transformed into the following matrix inequal-
ity.

(27) HXCi
+ LT kiQ+QT kTi L < 0,
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where

L = (0 0
√
3(B0

i )
T 0

√
6ηiγBI

T
0 (D0

i )
T ), Q = (C0

2i 0 0 0 0 0)

and

HXCi =


−XCi ∗ ∗ ∗ ∗ ∗

0 3ηi(B
0
1i)

TB0
1i − γ2I ∗ ∗ ∗ ∗√

3A0
i 0 −X−1

Ci ∗ ∗ ∗√
6ηiγAI0 0 0 −I ∗ ∗

0 0 0 0 −I ∗
C0

1i 0 0 0 0 −I

 .

By means of Lemma 2.2, the matrix inequality (27) is equivalent to the following
matrix inequalities.

(28) L⊥THXCi
L⊥ < 0, Q⊥THXCi

Q⊥ < 0.

The above analysis shows that the matrices L and Q are the non-zero constant
matrices. Hence, if there exist the matrices HXCi

< 0, then the matrix in-
equalities (28) hold for all i ∈ N. In view of Lemma 2.3, the matrix inequality
HXCi

< 0 is transformed into the following inequalities.(
Xi I
I Yi

)
≥ 0,(29)


−Xi ∗ ∗ ∗ ∗
0 3ηi(B

0
1i)

TB0
1i − γ2I ∗ ∗ ∗√

3A0
i 0 −Yi ∗ ∗√

6ηiγAI0 0 0 −I ∗
C0

1i 0 0 0 −I

 < 0.(30)

According to the above analysis, one can obtain the following result for
disturbance attenuation performance of system (20).

Theorem 4.3. Given any constant γ > 0, the uncertain discrete-time switched
linear system (20) is said to be asymptotically stabilization with H∞ disturbance
attenuation level γ via switched dynamic output feedback, if there exist symmet-
rically positive definite matrices Xi and matrices Yi such that the above linear
matrix inequalities (29) and (30) are satisfied for all i ∈ N, where the switching
strategy σ(k) is given by (24).

In this case, the dynamic output feedback controllers gain matrix Ki can be
solved by using the following algorithm.

Assume that

Xi =

(
Xi1 Xi2

XT
i2 Xi3

)
, Yi =

(
Yi1 Yi2

Y T
i2 Yi3

)
,

where Xi1, Yi1 ∈ Rn×n, Xi2, Yi2 ∈ Rn×nk .
Step 1: To solve the matrices Xi and Yi by using the conditions (29) and

(30);
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Step 2: One first solves Xi ∈ Rn×nk via the matrix equality XiX
T

i = Xi1 −
Y −1
i1 , and then construct the matrix:

XCi =

(
Xi1 X̄i

X̄i
T

I

)
> 0,

where nk = rank(Xi1 − Y −1
i1 );

Step 3: To solve Ki via the matrix inequality (27).

Proof. The proof of Theorem 4.3 is obvious. □

5. Numerical example

The aim of the following two examples is used to illustrate that neither
of the designed state feedback and dynamic output feedback sub-controllers
stabilizes discrete-time switched linear system (1) and (2) with H∞ disturbance
attenuation level γ, respectively. But the discrete-time switched linear system
(1) and (2) is stabilization with disturbance attenuation level γ via switched
state feedback and switched dynamic output feedback, respectively.

Example 1. Consider the discrete-time switched linear system (1) withN = 2,
σ(k) : N

∪
{0} → {1, 2} and

M1 =

(
0 4
−1 −3

)
,M2 =

(
2 4
0 −2

)
, N1 =

(
−10 −3
−4 −1

)
,

N2 =

(
−9 −6
−4 −1

)
, B11 =

(
−0.1 0
0.1 −0.1

)
, B12 =

(
0.1 0.1
0 −0.1

)
,

C11 =

(
0 −2
2 −4

)
, C12 =

(
−2 0.1
−1 2

)
,

D1 =

(
−7 1
1 4

)
, D2 =

(
−3 2.1
−1.7 2.5

)
.

Set ρ = 0.1, ρ = 0.5, h = 3, η1 = η2 = 10, the system (1) is sampled with
T = 0.1s and the disturbance attenuation level γ = 0.9, then γA = 0.0624, γB =
0.0669. By Theorem 3.3, one has

X1 =

(
0.1930 0.1631
0.1631 1.2814

)
, Y1 =

(
0.0139 −0.1715
0.1232 1.2417

)
;

X2 =

(
1.4494 −0.5334
−0.5334 0.4916

)
, Y2 =

(
−0.3083 0.2002
0.8920 −0.3780

)
and by Kh

i = YiX
−1
i , the gain matrices of the state feedback sub-controller are

given by

Kh
1 =

(
0.2071 −0.1602
−0.2023 0.9947

)
,Kh

2 =

(
−0.1046 0.2937
0.5535 −0.1684

)
.



DISTURBANCE ATTENUATION FOR DISCRETE-TIME SWITCHED SYSTEMS 793

Example 2. Consider the discrete-time switched linear system (2) withN = 2,
σ(k) : N

∪
{0} → {1, 2} and

M1 =

(
−2.5 4.3
−1 1.41

)
,M2 =

(
0.71 2.3
−0.9 −2.02

)
, N1 =

(
2 −1
0 −2

)
,

N2 =

(
1.7 −1.3
−1 −0.2

)
, B11 =

(
−0.01 0
0.01 0

)
, B12 =

(
−0.01 0
−0.01 0

)
,

C11 =

(
−3 −2
2 −4

)
, C12 =

(
−3 −1.8
1.7 −3.9

)
, D1 =

(
−4 0
2 4

)
,

D2 =

(
−1.6 2.8
1.9 3.2

)
, C21 =

(
3 1
1 −1

)
, C22 =

(
2.4 1.4
−0.2 2

)
.

Set ρ = 0.1, ρ = 0.5, h = 3, η1 = 100, η2 = 40, the system (2) is sampled
with T = 0.1s and the disturbance attenuation level γ = 0.9, then

X11 =

(
52.1889 −0.4158
−0.4158 50.5443

)
, Y11 =

(
34.1746 −4.3079
−4.3079 32.4563

)
;

X21 =

(
23.0332 −0.4016
−0.4016 25.0708

)
, Y21 =

(
7.9361 −0.2951
−0.2951 10.6943

)
.

By Theorem 4.3, the system (2) with N = 2 satisfies robustH∞ performance
with the disturbance attenuation level γ = 0.9 via dynamic output feedback
controllers and a switching strategy, where the dynamic output feedback con-
trollers are given by:

Γ1 :


ξ(k + 1) =

(
0.0011 0.0048
0.0007 0.0030

)
ξ(k) +

(
0.7336 −1.5968
0.0269 0.1278

)
y(k)

u(k) =

(
−0.0001 −0.0003
0.0001 0.0004

)
ξ(k) +

(
−0.3126 0.1878
0.2813 −0.9691

)
y(k)

Γ2 :


ξ(k + 1) =

(
−0.0024 0.0015
0.0014 0.0001

)
ξ(k) +

(
0.32186 −0.5985
−1.0162 −0.1632

)
y(k)

u(k) =

(
0.0004 −0.0001
−0.0001 0.0001

)
ξ(k) +

(
−0.5135 0.6055
0.1472 0.3612

)
y(k)

They are evident that neither of the designed controllers makes the associ-
ated subsystem asymptotically stable.
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6. Conclusions

The robust H∞ control problem has been studied via switched state feed-
back and switched dynamic output feedback for discrete-time switched linear
systems with exponential uncertainties by using Taylor series approximation,
convex polytope technique and LMI method. Sufficient conditions are, by solv-
ing linear matrix inequalities, presented to realize the H∞ control design. How
to design switched controllers to improve the performance of singular uncertain
switched systems should be further studied in the future work.
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