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Abstract: We propose a result on the stabilization of nonlinear time-delay systems via the feedback linearization method.

Using the predictor based control and the parametric coordinate transformation, we introduce a stabilizing controller to com-

pensate time delay. Specifically, we present the delay-dependent stability analysis to makes the considered system stable. Also,

an illustrative example is provided
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1. Introduction
Feedback linearization method is recognized as useful tool for

designing nonlinear systems. Also, feedback linearization re-

quires the accurate plant model to achieve exact linearization

of the closed loop system. However, there exist inevitable

time delays in many engineering systems. In other words, in

real world, there are time delays because of transport pro-

cess, computation process and other effects. In particular,

an input time delay is one of the most common forms of

time delay. It is well known that the existence of time delay

degrades the controller performance. Worst of all, a time

delay makes systems unstable. The research of control the-

ory for time delay systems has established various types of

approaches for linear systems with time delays. However,

the nonlinear time delay systems was rarely analyzed. Thus,

the time delay problem still remains as open problems [1].

In [2], the Smith predictor is usually used to improve the

control performance of linear time delay systems. Thus, the

Smith predictor framework is not available for nonlinear sys-

tems. The control scheme for nonlinear time-delay systems

has been presented [3],[4]. In [5], using the extended Lie

derivative for functional differential equations, the nonlinear

systems with the state delay have been analyzed. Several

theses deal with the control problem of the time delay sys-

tems via predictor based controller [6]-[8]. Therefore, a time

delay system can be transformed into a delay free system.

An input delay system based on a transformation that con-

verts the original system into a delay free form. It is shown

that the asymptotically stability of the transformed system

guarantees the asymptotically stability of the original sys-

tem.

In this paper, we use a predictor type transformation and the

parametric coordinate transformation to compensate time

delay. Also, based on the Lyapunov-based approach and the

improved Razumikhin theorem, we propose a stabilizing con-

troller and a stability analysis for the feedback linearizable

system with time delay.

2. Preliminary
Consider the following single-input nonlinear system :

ẋ(t) = f(x(t), x(t − τ)) + g(x(t))u(t − τ) (1)
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with x ∈ Rn and (f(x(t), x(t − τ)), g(x(t))) being feedback

linearizable where f(x(t), x(t− τ)), g(x(t)) are smooth func-

tions defined in a domain Dx ⊂ Rn that contains the origin.

Without loss of generality, it is assumed that f(0) = 0. The

initial conditions are given as x(0) = x0 and x0(θ) = φ(θ),

−τ ≤ θ ≤ 0 where xt(θ) = x(t + θ).

From an extension of the Lie derivative [5], the derivative of

Φ̄(x(t), x(t − τ)) along f(x(t), x(t − τ)) is defined as

Lf Φ̄(x(t), x(t − τ)) =
∂Φ̄

∂x(t)
f +

∂Φ̄

∂x(t − τ)
f(·) (2)

where f(·) = f(x(t−τ), x(t−2τ)). Since Lf Φ̄(x(t), x(t−τ))

is a real-valued function with time delays, this operation can

be respected for higher orders as

Lk+1
f Φ̄(x(t), x(t − τ)) =

∂Lk
f Φ̄

∂x(t)
f +

∂Lk
f Φ̄

∂x(t − τ)
f(·) (3)

where f(·) = f(x(t − τ), x(t − 2τ)). This operator is called

the delayed state derivative.

From a coordinate transformation z(t) = Φ̄(x(t), x(t − τ)),

the system (1) is transformed into the following form

żi(t) = zi+1(t), for i = 1, ..., n − 1

żn(t) = β−1(z(t), z(t − τ))

×[u(t − τ) − α(z(t), z(t − τ))] (4)

where β−1(z(t), z(t − τ)) = LgLn−1
f z(t) and α(z(t), z(t −

τ)) = − Ln
f

z(t)

LgLn−1
f

z(t)
. Moreover, the term α(z(t), z(t− τ)) can

be written as α(z(t), z(t− τ)) = α1(z(t), z(t− τ))+α2(z(t−
τ)).

Assumption 1: There exist a nonzero constant m0 and

positive constants m1, m2 such that

LgLn−1
f z(t) = m−1

0

|α1(z(t), z(t − τ))| ≤ m1

n−1∑
k=1

|zk(t)| + m2

n−1∑
k=1

|zk(t − τ)|

Note that all norms are used in the sense of Euclidean 2-norm

in this paper.

3. Main Results
From Assumption 1, the system (4) is written as

żi(t) = zi+1(t), for i = 1, ..., n − 1

żn(t) = m−1
0 [u(t − τ) − α(z(t), z(t − τ))] (5)
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We introduce the control input u(t) = u1(t) + u2(t). Using

a linear transformation based on the reduction method [6],

we obtain a simple transformation as follows:

z̄(t) = z(t) +

∫ t

t−τ

Bcm
−1
0 u1(θ)dθ (6)

Then, the system (5) is transformed to

˙̄zi(t) = z̄i+1(t), for i = 1, ..., n − 2

˙̄zn−1(t) = z̄n(t) −
∫ t

t−τ

m−1
0 u1(θ)dθ

˙̄zn(t) = m−1
0 [u1(t) + u2(t − τ)

−α1(z(t), z(t − τ)) − α2(z(t − τ))] (7)

Also, we introduce the control law u1(t) = α1(z(t), z(t−τ))+

m0v(t). Then, the system (7) is obtained as follows

˙̄zi(t) = z̄i+1(t), for i = 1, · · · , n − 2

˙̄zn−1(t) = z̄n(t) −
∫ t

t−τ

(m−1
0 α1(z(θ), z(θ − τ)) + v(θ))dθ

˙̄zn(t) = v(t) + u2(t − τ) − α2(z(t − τ)) (8)

Using u2(t − τ) = α2(z(t − τ)), the system (8) is written as

follows

˙̄z(t) = Acz̄(t) + Bcv(t)

−B[

∫ t

t−τ

(m−1
0 α1(z(θ), z(θ − τ)) + v(θ))dθ] (9)

where (Ac, Bc) is the Brunovsky controllable pair and B =

[0 · · · 0 1 0]T .

The parametric coordinate transformations are defined as

[3]:

wi(t) = ρi−1z̄(t), i = 1, 2, · · · , n (10)

for a positive constant ρ ≥ 1. Then, we obtain the following

equation:

ρẇ(t) = Acw(t) + ρnBcv(t) − ρn−1B

×[

∫ t

t−τ

(m−1
0 α1(z(θ), z(θ − τ)) + v(θ))dθ](11)

Also, using the control law v(t) = ρ−n
∑n

i=1
kiwi(t),

ρẇ(t) = Acw(t) + BcKw(t) − ρn−1B

×[

∫ t

t−τ

(m−1
0 α1(z(θ), z(θ − τ)) + v(θ))dθ](12)

where K = [k1, k2, · · · , kn].

From (10) and (12),

v(t) = K̄(k, ρ)z̄(t) (13)

where K̄(k, ρ) = [ρ−nk1, ρ1−nk2, · · · , ρ−1kn].

Let, P and Q be the positive-definite, symmetric matrices

such that (Ac + BcK)T P + P (Ac + BcK) = −Q where

K is chosen so that (Ac + BcK) is Hurwitz. Also, let

σ = λmin(Q)
2λmax(P )

.

Theorem 1: The control laws are defined as{
u1(t) = α1(z(t), z(t − τ)) + m0K̄(k, ρ)z̄(t)

u2(t) = α2(z(t))
(14)

where K̄(k, ρ) = [ρ−nk1, ρ1−nk2, · · · , ρ−1kn].

The closed-loop system (7) with the control laws (14) is

asymptotically stable if the following condition is satisfied

τ <
σ

ρn−1m−1
0 (m1 + m2) + ρ−1‖K‖ (15)

Proof: Let V (w(t)) = ρwT (t)Pw(t) be a Lyapunov function

where (Ac + BcK)T P + P (Ac + BcK) = −Q. Then,

V̇ = ρẇT (t)Pw(t) + wT (t)Pρẇ(t)

= −wT (t)Qw(t)

−2wT (t)PB[

∫ t

t−τ

(a−1α1(z(θ), z(θ − τ)) + v(θ))dθ]

From (6), we can obtain as follows [z̄1(t), z̄2(t), · · · , z̄n(t)] =

[z1(t), z2(t), · · · , zn(t) +
∫ t

t−τ
m−1

0 u1(θ)dθ]. Also, from the

equation (10) and the improved Razumikhin Theorem in [9],

‖z̄t(θ)‖ ≤ q‖z̄(t)‖, q > 1, − τ ≤ θ ≤ 0, then we obtain

‖α1(z(t), z(t − τ))‖ ≤ m1‖z̄(t)‖ + m2‖z̄(t − τ)‖
≤ (m1 + qm2)‖z̄(t)‖
≤ (m1 + qm2)‖w(t)‖

Also, since ‖v(t)‖ ≤ ρ−n‖K‖‖w(t)‖, we obtain

V̇ ≤ −λmin(Q)‖w(t)‖2 + 2ρn−1‖w(t)‖‖P‖

×[

∫ t

t−τ

(m−1
0 (m1 + qm2)‖w(θ)‖ + v(θ))dθ]

≤ −λmin(Q)‖w(t)‖2 + 2τ‖w(t)‖‖P‖
×[ρn−1m−1

0 (m1 + qm2)‖wt(θ)‖ + ρ−1‖K‖‖wt(θ)‖]

Again, from the improved Razumikhin Theorem, ‖wt(θ)‖ ≤
q‖w(t)‖, q > 1, − τ ≤ θ ≤ 0, then we obtain

V̇ ≤ −λmin(Q)‖w(t)‖2

+2τq[ρn−1m−1
0 (m1 + qm2) + ρ−1‖K‖]‖P‖‖w(t)‖2

= −b‖w(t)‖2

where b = λmin(Q) − 2τq[ρn−1m−1
0 (m1 + qm2) +

ρ−1‖K‖]‖P‖.
If the inequality (15) is satisfied, q > 1 exists such that

b > 0. According to the improved Razumikhin Theorem [9],

the system (7) is asymptotically stable. �

From (6), z̄(t) → 0 implies z(t) → 0. Thus, the system (5)

is asymptotically stable.

Remark 1: As the tuning parameter ρ is getting larger,

the term the term ρ−1‖K‖ can be effectively suppressed.

However, the term ρn−1(m1 + m2) will become large as a

large value of the tuning parameter ρ. Thus, the tuning

parameter ρ should be appropriately chosen.
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4. Simulation Results
Example 1: Consider the following nonlinear system :

ẋ1(t) = x2(t)

ẋ2(t) = x2
1(t − τ) − 0.1x1(t) sin x2(t − τ) + u(t − τ)

where τ = 0.25.

Let z1 = x1 and z2 = x2, then the control laws are defined

as {
u1(t) = 0.1z1(t) sin z2(t − τ) + K̄(k, ρ)z̄(t)

u2(t) = −z2
1(t)

(16)

where K̄(k, ρ) = [ρ−2k1, ρ−1k2]. We select ρ = 10, k1 = −5

and k2 = −6.

For comparison, we use the conventional controller with the

same parameter values [5]. As shown in Figs. 1-2, the pro-

posed controller makes the considered system asymptotically

stable while the conventional controller makes unstable.
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Figure 1: Result via the proposed controller
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Figure 2: Result via the conventional controller [5]

5. Conclusions
In this paper, we propose a controller for a class of feedback

linearizable nonlinear systems with time delay. To compen-

sate time delay, we introduce the stabilizing controller based

on the predictor type transformation and the parametric co-

ordinate transformation. Specifically, we derive the delay-

dependent sufficient condition to guarantee the stability for

the considered system.

References
[1] J. P. Richard, “Time-delay systems: an overview of

some recent advances and open problems,” Automatica,

Vol. 39, pp. 1667-1694, 2003.

[2] C. Kravaris and R. A. Wright, “Deadtime compensation

for nonlinear processes,” AIChE J., Vol. 35, No. 9, pp.

1535-1542, 1989.

[3] W. Wu and Y. S. Chou, “Output tracking control of

uncertain nonlinear systems with an input time delay,”

IEE Proc.-Control Theory Appl., Vol. 143, No. 4, pp.

309-318, 1996.

[4] W. Wu, “Robust linearising controllers for nonlinear

time-delay systems,” IEE Proc.-Control Theory Appl.,

Vol. 146, No. 1, pp. 91-97, 1999.

[5] T. Oguchi, A. Watanabe and T. Nakamizo, “A finite

pole assignment procedure for retarded nonlinear sys-

tems,” Proc. of the Amer. Control Conf., pp. 2682-2686,

1997.

[6] W. H. Kwon and A. E. Pearson, “Feedback stabilization

of linear systems with delayed control,” IEEE Trans.

Automat. Contr., Vol. AC-25, No. 2, pp. 266-269, 1980.

[7] Y. H. Roh and J. H. Oh, “Robust stabilization of uncer-

tain input-delay systems by sliding mode control with

delay compensation,” Automatica, Vol. 35, pp. 1861-

1865, 1999.

[8] S. A. AL-SHAMALI, O. D. CRISALLE and H. A.

LATCHMAN, “An approach to stabilize linear systems

with state and input delay,” Proc. of the 22nd Amer.

Control Conf., pp. 875-880, 2003

[9] J. J. Yan, J. S. H. Tsai, and F. C. Kung, “A new result

on the robust statbility of uncertain systems with time-

varying delay,” IEEE Trans. Circuits and Sys., Vol. 48,

No. 7, pp. 914-916, 2001.

1908


	Main Menu
	Previous Menu
	Search CD-ROM
	Print



