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Robust High Gain Adaptive Output Feedback Control for Nonlinear
Systems with Uncertain Nonlinearities in Control Input Term

Ryuji Michino, Ikuro Mizumoto, Zenta Iwai, and Makoto Kumon

Abstract: It is well known that one can easily design a high-gain adaptive output feedback con-
trol for a class of nonlinear systems which satisfy a certain condition called output feedback ex-
ponential passivity (OFEP). The designed high-gain adaptive controller has simple structure and
high robustness with regard to bounded disturbances and unknown order of the controlled sys-
tem. However, from the viewpoint of practical application, it is important to consider a robust
control scheme for controlled systems for which some of the assumptions of output feedback
stabilization are not valid. In this paper, we design a robust high-gain adaptive output feedback
control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances. The
effectiveness of the proposed method is shown by numerical simulations.

Keywords: Adaptive control, high gain output feedback control, uncertain nonlinearity, nonlin-

ear systems.

1. INTRODUCTION

The linear plant is said to be ASPR (almost strictly
positive real) if there exists a static output feedback
such that the resulting closed loop system is SPR
{strictly positive real) [1]. It is well known that, for
the ASPR plants, one can design a stable control sys-
tem via adaptive output feedback with the very sim-
ple controller structure [2,3]. Unlike other adaptive
methods, under the ASPR condition, we are able to
design the adaptive controller without a priori infor-
mation of the controlled plants (e.g. order of the plant
and the size of the uncertainties). As for the nonlinear
systems the condition of the high gain output feed-
back stabilization is recognized as output feedback
exponential passivity (OFEP) [4,7]. The sufficient
conditions for systems to be OFEP are that the system
be globally exponential minimum phase, have a rela-
tive degree of one and that the nonlinearities of the
system satisfy the Lipschitz conditions. Furthermore,
the nonlinearities in the control input term are
bounded. Under these conditions, it has been shown
that one can stabilize uncertain nonlinear systems via
high gain feedback based adaptive output feedback
control with simple structure as well as by the method
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for ASPR linear systems [5-7]. It has also been shown
that the adaptive method has a highly robustness for
bounded disturbance and noise [5,7]. Unfortunately,
the above-mentioned OFEP (or ASPR) conditions are
very restrictive for practical systems and there might
exist unbounded (state dependent) disturbances with
which some of the OFEP conditions are not valid.

With this point in mind, some robust adaptive
schemes based on the high gain output feedback strat-
egy and alleviation methods for the restrictions on the
linear controlled system have been proposed {3,8].
Recently, robust adaptive output feedback control
schemes for OFEP nonlinear systems with output de-
pendent uncertainties and/or disturbances have been
proposed [7,9]. Considering the nonlinear uncertain
function as a kind of output dependent disturbance,
the methods are able to deal with robust stabilization
problems via high gain adaptive output feedback for
nonlinear systems, for which some Lipschitz
conditions on nonlinear functions are not satisfied
with respect to output signal. In these methods, how-
ever, it is assumed that the uncertainties in the control
input term are bounded.

In this paper, we will show that we can remove the
restriction that is imposed on the uncertainties in the
control input term. That is, we propose a robust high
gain adaptive output feedback strategy that can deal
with a broader class of uncertain nonlinearities.
Unlike previous high gain output feedback strategies,
it is shown that we can design an adaptive output
feedback controller for nonlinear systems with un-
bounded uncertainties in the control input term.
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2. PRELIMINARIES

Consider the following affine nonlinear systems:

x(0) = f(x)+g(x)u(),

1
y(0) = h(x), M

where x(t)e R" is a state vector, u(t)e R is an
input, y(¢)e Ris output, and f(x), g(x):R" > R"
and h(x):R’ — R" are sufficiently smooth (e.g. of
class C) functions such that f(0)=0, h(0)=0, i.e.
it is assumed that x(¢) = f(x) has an equilibrium at
the origin.

It is well known [10] that if the system (1) has a
strong relative degree of one, then there exists a
smooth nonsingular change of coordinates, z=®(x),
such that the system (1) can be transformed to the
normal form:

y(t) = a(y.np) + b(y,mu(t),
1) =q(y,n).

Throughout this paper, we consider the case where
the controlled system (1) has a relative degree of one
so that it is described by the form of (2).

)

3. ROBUST ADAPTIVE OUTPUT FEEDBACK
CONTROL

3.1. Problem statement
Consider the following SISO nonlinear system with a
relative degree of one:

y(&)=a(y,m)+b(y,put) + f.y.1m),

WO =g + fo(t v, )

where a(y,n), b(y,m), q(y.m) and [ @ y.1),
[, (t, y,n) are uncertain nonlinearities and/or distur-

bances.

We impose the following assumptions on the con-
trolled system (3):

Assumptions: (A-1) The nominal part of the sys-
tem (3) is exponentially minimum-phase. That is, the
zero dynamics of the nominal system:

() =q(0.1) “

is exponentially stable.
(A-2) The function ¢(y,n) is globally Lipschitz,

i.e., there exists a positive constant L, such that
laem)—aGomIIS L (|1 = vl +m -m]). - 5

(A-3) The function a(y,n) is globally Lipschitz,

i.e., there exists a positive constant L, such that

la(yw']l)_a(yz"lz)' < Lz (iyl - yZ‘ +"nl _”2“) (6)

(A-4) The uncertain nonlinearities f,(¢,y,5) can
be evaluated by

13| < Y dy )+, ™

with known positive functions;(y), and unknown
positive constants d;and d,, .

(A-5) The uncertain nonlinearities f, (t, y,#)
can be evaluated by

M,
TASN ) ESWLAORT ®)

with unknown positive constants g, and g, and
known positive functions @(y) which have the fol-
lowing property for any variables y, and y, :

¢,~(y.+yZ)S%()’;a)’z)l)’,|+¢2;()’2) )]

with known positive function ¢,.(v,,y,) and un-
known positive function ¢,,(y,) which is smooth
forally,e R.

(A-6) The function b(y,y) can be evaluated as

b(y.1) 2 b, >0 (10)

where b, is an unknown positive constant.
The control objective is to achieve the goal:

lim|y(t)~ ' @] <& (11)

for a given positive constant § and smooth function
y'(t) such as

' O|<B |y 0|<h (12)

Remark 1: It is noted that the restriction concern-
ing the relative degree might be a severe restriction
on practical systems. For this problem, the introduc-
tion of a parallel feedforward compensator (PFC) or
shunt filter which renders the resulting augmented
system OFEP has been proposed [6,7]. That is, it is
possible to make an exponentially minimum-phase
system with relative degree of one by introducing a
PFC. Furthermore, the restrictions on uncertainties
will be satisfied for a nonlinear system with output-
feedback form under mild conditions for nonlinear
functions.

Remark 2: The main modification on the proposed
method to previous methods [5,7,9] is that we con-
sider the further uncertain nonlinearity in the control
input term and remove the restriction on the uncer-
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tainty which is bounded or known.
3.2. Robust adaptive controller design

Under assumptions (A-1) to (A-6), we design an
adaptive controller as follows:

u(t) = {k(r)v(m Zluﬁ(t)} (13)

where v(t)=y(t)—y (t) and k(z) is an adaptive
feedback gain which is adjusted by the following
adjusting law:

k(ty=k, () +k, (1), 14)

k, (1) =y v — 0k, (1), k,(0)=0, (15)

M,
ke (=278, Y07, (16)

where 7, and o,
ug(t) is the robust

are positive constants, and
adaptive control term for

f,(y,n) which is given by

~ 2 . "
)= ld.owo) vayre, if \tf,-(t)u/,-(y)v(r)\SSﬁ an
d, (), (ysign(v@) if |d.-<t)t//,-(y)v(t)|>eﬁ
d, 0=y, NP0| -0,d 0, d©=0, (18)

ﬁ’}/(ll O-dl >0

The following theorem shows the main results in this

paper.
Theorem 1: Under assumptions (A-1) to (A-6),

there existy,, ¥,, Y., €; and the ideal feedback
gain k° such that all the signals in the closed-loop
system with the controller (13) to (18) are bounded
and the goal (11) is satisfied.

Proof: After the change of coordinates from
(y.n) to (v,n), the system (3) with the controller

(13) is transformed

W) =a(v+y',m)
-b(v+ y*,n){k(t)v(t) + Zuﬁ (t,v+ y*)} (19)

+AEv+Y -y (@)

H=qv+y ,m+ f,(t,v+y.,n). (20)

From assumption (A-1) and the Converse theorem of
Lyapunov on exponential stability [11,12] , there
exists a positive definite function W(#») and posi-

tive constants ¢, to ¢, such that

AW () IW(n)
0, — i<
p» T2 40, <=0 )7, ’ p» L AG|
a.ne < W) < ane) -
21

Now, we consider the following positive definite
function:

V,n,k,d) = W) + Loy +b—°[k, 0) ~k*]2
2 2y,
(22)

2

+§: 2b0 0]

where g is any positive constant and k~ is an ideal

feedback gain to be determined later.
The time derivative of (22) along the trajectories of
(15), (18) and (19), (20) yields

av _ W)
dr —H on
(O aw+y,m+ vy m=3 O

[q0+y'm+ £ v+ y'm ]

—b(v+y'.n) {k(t)v(t) + Zuﬁ(t, v+ y*)H
= (23)

+b—°[k, O =k |7y =0,k ()]

di
; dl Iidl(t)_a:|

X[ 1, v+ 3] - 0,4, |

It follows from assumptions (A-4) and (A-5) that (23)
can be represented by

av _ ﬂBW(n)
dt on
oW (1)
on
IW (i)
an

+|v(t)”

(0,17) = byk v(e)’

+u law+".m~qc0.n)

+u

[23i¢i(v+y*)+g0:|

by kv Y

O+ Y Yy (1Y)
vl {Z dy,(v+y)+ do} +]3" @]y

+b, ’kk(t)+ ok, (V) — b, ’k(t)

I I



22 International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003

M; . ~
~by > . —4d (1)

i=l [di

+h Zd Oy, v+ Y|+ Z 7"' dd, (r)

=l [qi

- Zld,.l//,. W+ y))

Considering assumptions (A-2),(A-3) and taking (12)
and (21) into account, we can evaluate the time de-
rnivative of V as follows:

av 2 .
<t af + s s (0] )~k vy
+ua{zz 8,

+L (v + |y’ |+ “l][|)|v(t)| + B, |[v(®)|+ dy [v(2)|
—b(v+ Y, k() + &, (8) [v(t) + Bk, w2y’

+0, () + g, }||n||

OB+ Y )Y U, v+ )

i=1

+b02éi(tm W+ YO

b . b, £
Ao 0k oy [0 -

2

—boiﬁ[ci(t)—d,/bo]

i=1 di

O-l
,17:,[‘1 d/b}i 25)

Here, we have from (15) and (16) that
k, () ="k, (0)+ j 9Dy e dr 20 (26)
and
k,()=0. Q27
It follows from (26),(27) and assumption (A-6) that

—bv+y' )k, (0)+k, (0) [v(2) + by, (Dv()’
< —by [k, (1) +k, (1) [v(e) + bk, (v(1)*  (28)
= —bok, (WV(1)”

From (28), we obtain

av R
— - <—pa|f + ety + L) ullv)| - bk, (v)®
~(bk" = L,w@) +(L, B, +dy + B)v()|

+ﬂa2(L|ﬂ0 + i:gi¢2i(y*) + g(,)||r]||

11,3 8,0,y ]

“bv-+y )y v+ Y 0)
+b, Z d.(Ow, v+ y)|v(@)| 29
i=]

—%0, [ko-kT —b—"a, (k- ]k

I

—boiﬂ[ci(z)—d,./bo]z —Z [ d,(t)-d, /b, d,.

i=l ldi i=l /Sdi
Moreover, taking the following evaluation with any
constants p, to g, into consideration

(e L, + L

= ol - o] - L2 o
o
2 (30)
+ (,Uazf; +1) |v(t)|2
<plnff + I o
4p,
po (LG + 3 8.8, () + g0l
i=]
L. . 0D
. LB+ 50,0048
<, + 1
P
M,
1,y 2.6,y o)
; (32)
<3 ol + 3 E%E g ooy
i=] p"il
(Lzﬂo +d0 + ﬂl)'v(t)l
2 33
SpA‘v(t)|2+(L2'BO+d0+ﬂl) ( )
4p,
b, [k T by [k -k K
Y, Y, T
Y1 Ps byo, -
<-(1-2P56 X[k 1)k _k
bOGI |: j| p4}/[
Sk, (4.0~ 16,] -3 % (d, - d,1b,)d,
i=l I'di i=1 di
7d1p61 ’
=) (-=)0,—|d(t)-d. /b
2 boo-d: }/di |: :| (35)
+ < dizo-dl2

i=l 4p6i7di2 .

The time derivative of V can be evaluated from (30)
to (35) that
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av S
—<—(Uo,—p,—p,— z psi)”””z
=

dt
* (Ho, L, + Lz)z 2
bk —L, —p, - T T
(by L,-p, 4p, IV( )|
M, 2
N |:,ua2 (LG, + Zi:] 8P + go}
4p,
& (:uazg-)z *\2 2 2
+ZT'¢”(v,y Y v(e) bk, (£)v()
=l 3i
+ (l‘ZﬂO + dO +ﬁl)2 4 b()o-lk*l2 + < O-didi2 ’
4p, 47,Ps T 4Dy P
M, .
+b, > d (DY, (v + Y1)
i=]
Ml
—b(v+y )Y U (v +y (D) (36)
i=1

~(1=p,)b, %’[k, O-kT

M, .
_boz(l - pvsi %[di H-d, /bo]
i=1 i

di
where
o= Y1 Ps . Pa =LaPei 4ng Py 1S a constant such
bo bo,
o7 0 di

that ¢,.(y")<@,,, . Such a constant exists from as-
sumptions that @,,(y,) is smooth for all y,e R and
that y* isbounded. Here it follows from (16) that
< (Ho,g) .
L%;f’—)¢l,(v, ¥RV — bk, OW(0)

3i

izl

= Zz%xv, VYV =by 3 7,8y Y iy BT
i=l 3 i=]

M 2 TP
! {(uazga }
i=l 4b0ypi 4p31

Furthermore, in the case where 'c?,.(t)l//i(v+ y (1)
>, forany i wehave from(17)" that

bozc?,. OW, v+ Y@

b+ y Y v+ ¥ W)
- (38)

=5, Y d oY, v+ v

Mo .
—b(v + y*,q)z d.(Oy, v+ y)H|v@)|

and since we obtain from (18) that c?,. (t) 20, it fol-
lows from ¥,(v+y)>0 and assumption (A-6) that

b, ZI dA,. N, (v+ y*)lv(t)|
b+ ¥ Y d OV 0+ 3OO
< bo_Z'jc?i Oy, v+ Y)p) 39)

5,24, Op, v+ YO
=0

On the other hand, if ’éi(t)y/,.(w y*)v(t)[gﬁ, we

have

b d, (0w, v+ Y o)

o m [ dOwe+Y) ’
-b(v+y ,n)z[ . ] v(t
i=l fi (40)

< b()_zl[‘ii Oy (v+ y*)v(t)]
< bOZEﬁ .

Therefore, we have from (37),(39) and (40) that

dv ¢
—S_(ﬂa| PP _Zp3i)
i=1

dt
oL+ L)
4p,

1

al

~bk —L,—p, Kol

—(1- p})o, :—O[k, O-k'T

1

M, . b ~ 2
2= poy A w-d n] 4D
i=| di

M, 2
N [ﬂaz (L, + Zi:l 8P + go}
4p,

2
§_ {wazgi)}(lqﬂwdowl)z
i=l 4b0}/pi 4p3i 4:04

M,

° d’ i
+b°a’k, +> Gali_ +bhy Y £,
4}/lp5 i=1 4b0ydip6i i=l

Finally, setting the values

Ho, Mo, : o1
p1=p2=Tl’ p3i=4M12’ p5=p6i='2"

we obtain
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v __pe
LT
k=L, —p, _M%'_'__LZ))IV(I)‘Z
o, 2 [k, -k' T Z ou3 [d (-d, /b, ]
2y, (42)
':az(lﬂﬂo + Z,; &b + go}
+2u o
M, 1 TP 2
+Z 1 ﬂMz(azgi) _+_(Lzﬂ()+d0+ﬂ1)
i1 4Dy Y, @ 4p;

bo k" &
+ Oo—lk + Z O-(]l i +b ng
2y, = 2By Y,

Since it follows from (21) that
21
] = —wap 43)
a}

we have

‘fi—‘t/ <- 2“ [ﬂW('I) + —|v(t>| J
(44)

00’ [k O-k7T i“ Wl d.t)~d, /b, |

li

by choosing the ideal feedback gain k™ as

. +L,)’
kzl{ﬁ%b+%&ﬁL£i+m} 45)
by | 4oy 7 Mo
where
[az(LuBo + Z:‘: 8Pum + go):|-
B=2u
o
M, 2 P 2
+Z 1 l:'u M,(a,g;) :I " (L, 5, +dy+ f3) (46)
i=1 4b07pi a 4p4
2 M, 2 M,
chok > 9,4, +b, Y £, .
271 i=1 2b07di i=l

Consequently the time derivative of the positive defi-
nite function V(z) given in (22) can be evaluated by

Ve avep, @)
dr
a, = min[i,a, a] : (48)
2,

It is apparent from (47), (48) that all signals in the
closed-loop system with the controller (13) to (18)
are bounded and we also obtain

limV ()< Bla, . (49)
From the fact that |[v(1)" <2V (r), it follows that
lim|v(r)|’ <2/a,. (50)

Thus, the goal (11) is achieved for §* 228/, . It can
also be confirmed that the appropriate choice of
#and p, and design parametersy,, ¥, ¥, and

£, ensures the goal (11) for any &

fi
Remark 3: For example, one can set design pa-

rameters y,, ¥, , V;, and €, as follows in order

to attain the goal (11) for a given J.
Letsset 4 and p, such that

o, & 1)
24{a LB+ gy + 80
4 3(L2ﬁ0 + d(z) + ﬂl (52)
a0

and consider an ideal feedback gain k~ satisfying
the inequality (45). Then, it is sufficient to choose de-
sign parameters such as '

Moz g!
}/pi Zﬂ - /\242 2
8bya, (L 3, + Z,-:l 8P + 89) 53)
L 6hok” 6M,0,d;  _ a8

T a8 a2 b, 8> T " T 12M b,

Remark 4: Note that the design parameters ¥,,
Yois Vs and £, which are set in order to attain the

goal (11) for a given small &, depend on uncertain
constants. However, as shown in (53), if we set suffi-

ciently large y,, ¥, ., 7, and sufficiently small
£, , then the control objective will be attained even if

we do not know a priori information about uncertain
constants. Hence, the inequalities (53) provide a de-
sign principle for design parameters in the controller.]

Remark 5: As shown in the proof of theorem 1,
the control system can be stabilized by using an out-

put feedback gain k* which satisfies the inequality
(47). This means that the resulting control system can
be stabilized by an output feedback with sufficiently
large feedback gain. This is the reason why we call
the method ‘“high gain output feedback control’. In
the proposed method, since the controlled system is
unknown, we can not determine the lower bound of
the feedback gain and then we can not choose the
ideal static feedback gain. Therefore, we adaptively
determine the feedback gain by the adaptive adjusting
law (15).
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outputs

!

L

iwe (e

Fig. 1. Control result by the proposed control system.

4. NUMERICAL SIMULATIONS

Here the effectiveness of the proposed control
scheme will be confirmed through numerical simula-
tions.

Consider the following SISO affine nonlinear sys-
tem:

Input

Fig. 2. Control result by the proposed control system
without robust adaptive control term for

fi ko
y=a(y,p)+b(y,mu+f,
n=q(y,m+f,,

a(y,n) =y +sinn, +cos1,,
b(y,n) =exp(y +1,),

(54)



26 International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003

-1, +1,8iny
-m, -y 4
—7), + 1, siny
f, =3expy-+sin7, cos’ 1,

q(ys”) =

f= [cos2 y,sin7j, cos y, —y’ cosiy, JT .

The controlled system given in (54) has a relative
degree of one and is exponentially minimum phase.
In this simulation, it is supposed that we have a priori
information about the controlled system such that
nonlinearities a(y,n) and ¢(y,y) are Lipshitz in

(y,n) and that nonlinear functions f,and f, are
not Lipshitz in ¢(y,n) but can be evaluated by

|£]|<d exp(y)+d,, (55)

[l < &y + - (56)

It is also assumed that nonlinearity in the control in-
put term b(y,y) is unknown. Note that
b(y,m)=exp(y+n,) is an unbounded nonlinear
function with respectto (y,7).

We consider the following desired trajectory that
the output y(¢) 1is required to follow.

1
Y= m[r] for0<r<8§
r(t) for8<t¢
0.3 0<r<2
0 2<t<4 57
r(t) = 0.6 4<t<6
0 6<r<8
03sin(z(z—-8)) 8<r<l15.

The design parameters of the controller are set as
follows:

¥, =100, y, =100, y, =10,
I P d . (58)
0,=0.1, 0,=0.1, & =le".

Fig.1 shows the simulation results of the proposed
method. To illustrate the effectiveness of the proposed
method, the simulation results for the controller with-

out robust control input term k, and f, against

f, and f,, i.e., a controller with only high gain adap-

tive output feedback, are shown in Fig.2. It is clear
that performance of the proposed control system is
better than that of the conventional high gain output
adaptive control system.

5. CONCLUSIONS

In this paper, we proposed a robust high-gain adap-
tive output feedback control for a class of nonlinear
systems with uncertain nonlinearities. It was shown
that using the robust high gain adaptive output feed-
back control method, one can design a stable adaptive
output feedback control system even if the controlled
system has uncertainty in the control input term. It was
also confirmed that the appropriate choice of design
parameters ensures the tracking error be small, i.e., that
the tracking error be less than & for any given 6 >0.
The effectiveness of the proposed method was borne
out through the numerical simulations.
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