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Abstract: In this study, the basic motor control system had been investigated. The controller for this study consists of two

main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems.

The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The

feedforward controller, used to solve the tracking control problem, is adaptable. To make such a tracking perfect, an adaptive

law based on Feedback Error Learning (FEL) is designed so that the feedforward controller becomes an inverse system of the

controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse

model. The theory in H∞-control is selected to be applied in the feedback part to guarantee the stability and solve the robust

stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.
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1. Introduction

Production machines in industry have played a significant

role in Thailand. They have been improved in order to in-

crease both quantity and quality of the production. Unfor-

tunately, these machines, e.g. CNC machine, are normally

imported from foreign countries. They are high-cost, over

functional and, due to the use of static PID controllers, have

moderate performance. Meanwhile, there are some locally

made ones, but they are low-performance, even though they

have moderate cost. The objective of this study is to find a

cheap controller that can achieve the desired system perfor-

mance.

For simplicity, the simple DC-servo motor, instead of the

expensive CNC machine, is used as a controlling plant. Nor-

mally, one controller scheme alone can not respond well. So,

more controller schemes are usually proposed. The controller

for this study consists of two main parts, a feedforward con-

troller part and a feedback controller part. The Feedback

Error Learning (FEL) is applied to the feedforward part.

The FEL novel architecture combines learning and control

efficiently. The novelty of the FEL method lies in its use

of feedback error as a teaching signal for learning the in-

verse model, which is essentially new in control literature.

Originally, FEL is adopted from the concept of brain motor

control[3]. From this study, it is shown that the system with

FEL controller have fast response speed.

Kimura[1] proposed a unified framework of H∞-control the-

ory based on the chain-scattering representation of the plant

and the (J , J ′ )-lossless factorization. This paper is con-

cerned with the application of this approach for motor con-

trol systems. The chain-scattering representation of systems

enables us to treat the feedback connection as a cascade con-

nection. Furthermore, this property of the chain-scattering

representation has been used in a variety of engineering

fields; e.g. a method of representing the reletionship be-

Fig. 1. Feedback error learning scheme

tween the power port, the scattering properties of a physical

system, etc. In this study, this approach is applied to the

feedback part. The stability of the overall system can also

be guaranteed.

This paper is organized as follows. In section 2 some theoret-

ical backgrounds are briefly reviewed. This section also con-

sists of two subsections. The first one will concern about the

FEL method and the other one is about chain-scattering ap-

proach to H∞-control. Section 3 shows and discusses about

the simulation results. Section 4 gives the conclusion of the

whole study.

2. Theoretical Background
To briefly explain the key concept of FEL, consider its ar-

chitecture shown in Fig. 1. The objective of control is to

minimize the error e between the command signal r and the

plant output y. The input u to the plant P is composed of

the output uff of feedforward controller K2 and ufb of the

feedback controller K1. If P is known and P−1 exists and

is stable, choosing K2 = P−1 makes the tracking perfect.

Indeed, from the relations uff = P−1r, ufb = K1(r−y) and

y = P (uff + ufb), it is easily to see that y = r. Thus, the

novelty of the FEL method lies in its way to learn the in-
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verse model of P . That is the parameter be adapted so that

K2 = P−1. Unfortunately, in practice, most of the plant is

not invertible or has unstable inverse. However, a method to

solve this problem is simply proposed by adding a prefilter.

As mention earlier, the feedback controller K1 is used to

solve stability problems, such as robust stabilization or sen-

sitivity reduction problems. The robustness in the system

with uncertainty is the main objective in this study. To deal

with this kind of problem, modern control theory has pro-

vided many powerful solving methods. The chain-scattering

approach to H∞-control is one of them and will be applied in

this study. This approach is very suitable and easy to utilize

for controling K1 in the feedback path of FEL system.

This section will then be divided into two subsections. The

first one will analyze the FEL mathematically and the last

one will explain how H∞-control theory can be applied to

such a system.

2.1. Feedback Error Learning(FEL)

Now, the FEL, one of the newest powerful method for solv-

ing control tracking problems, is introduced. The FEL, as an

adaptive control for two-degree-of-freedom control schemes,

was proposed firstly by Kawato and his group[7]. In this

control scheme the adaptive controller must become an in-

verse system of plant. Inversion is a key notion of the FEL

method. In practice, most of the plant is not invertible or

has an unstable inverse. A method to solve this problem

is proposed by using a prefilter to utilize to an invertible

system.

2.1.1 Feedback adaptive control method for invertible plant

case

The Feedback error learning[3] can be shown in the system

diagram Fig. 1. The system is simply composed of three

main parts. First, the feedback controller K1. Second, the

plant P . Last, the feedforward controller K2 which is the

most significant part in FEL. The main role that Feedfor-

ward controller K2 plays is to act like the inversion of the

plant P . Therefore, the feedforward controller K2 is actu-

ally the inversion of the plant P , which can be consided to

be a parameterization of an unknown system. There are

many research topics concentrated on this adaptation algo-

rithm[3][4][5].

In Miyamura’s paper[3] the following assumptions are given

1. The plant P is stable and has stable inverse P−1.

2. The upper bound of the order of P is known.

3. The high frequency gain

ko = lim
s→∞

P (s)

is assumed to be positive,

and the parameterization of the unknown system K2 is :

dξ1(t)

dt
= Fξ1(t) + gr(t) (1)

dξ2(t)

dt
= Fξ2(t) + gu(t) (2)

u(t) = cT (t)ξ1(t) + dT (t)ξ2(t) + k(t)r(t) (3)

where F is any stable matrix, g is any vector being control-

lable and ξ is any state vector of the system. c(t), d(t) and

k(t) are unknown parameters to be estimated. u(t) is the

desired output of the system. The appropriate selection of

parameters c(t) = co, d(t) = do and k(t) = ko can yield an

arbitrary transfer function from r(t) to u(t). Let the matrix

F and vector g be in a controllable canonical form :

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
. . . 1

−f1 −f2 −f3 . . . −fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, g =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

The transfer function can be rewritten as the following equa-

tion :

U(s)

R(s)
=

kos
n + (fnko + cn)sn−1 + . . . + (f1ko + c1)

sn + (fn − dn)sn−1 + . . . + (f1 − d1)
(5)

co = [c1 c2 · · · cn]T ,

do = [d1 d2 · · · dn]T
(6)

Hence, the construction of any transfer function of degree n

is adaptively done by continually updating appropriate pa-

rameters c(t), d(t) and k(t) to the true values co, do and

ko, respectively. This is equivalent to tune K2 to P−1. The

stability has already been proved for a system using the fol-

lowing adaptation law :

dθ

dt
= αK1(s)e(t)ξ(t) (7)

where

ξ(t) :=
[

ξ1(t)
T ξ2(t)

T r(t)
]T

,

θ(t) := [c(t)T d(t)T k(t)T ]T ,

and a parameter α is to adjust adaptation speed. The proof

says that the FEL algorithm is stable and the error e(t) tends

to 0, by choosing sufficiently large positive constant K1.

2.1.2 Feedback adaptive control method for non-invertible

plant case

In the previous section, it is assumed that the plant P (s)

has a stable inverse P−1(s). But most plants, including DC-

servo motors, do not have stable inverses. This section con-

siders the case where P (s) is strictly proper, i.e., P (s) has

positive relative degree. This section also proposes a method

in dealing with this problem by introducing a prefilter W (s).

When the plant P (s) does not have a stable inverse, an ap-

proximated inverse P−1
a is introduced as,

P (s)P−1
a (s) = W (s) (8)

P−1
a (s) = P−1(s)W (s) (9)

Using this approximation, the relative degree of P (s), which

is the cause of non-invertibility, is compensated by the rela-

tive degree of W (s).
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Fig. 2. The system block diagram described by FEL with

prefilter

Then, consider the system illustrated in Fig. 2.This sec-

tion aims to construct P−1
a (s) = W (s)P−1(s) as a feedfor-

ward controller by the scheme of the feedback error learning

method. In other words, an adaptive scheme, of the case

when a part of the adapted controller is known, is proposed.

Throughout this section, the following assumptions are

made:

Assumptions :

1. The plant P is stable.

2. The upper bound of the order of P is known.

3. The high frequency gain

ko = lim
s→∞

P (s)

is assumed to be positive.

4. Prefilter W (s) is given and known.

5. The upper bound of relative degree of P , i.e.

max{rd[P (s)]} is known.

The parameterization of the unknown system for feedforward

controller K2 is the same as the previous section.

Since the dynamics of W (s) is known, parameter in K2 are

subject to some constraints. In other words, because of the

information from W (s), the dimension of unknown parame-

ters is reduced.

To show the constraints in the case of relative degree 1 which

corresponds to the concerned servo plant system, P (s) would

be written generally as :

P (s) =
b1sn−1 + b2sn−2 + . . . + bn

sn + a1sn−1 + . . . + an
(10)

Select a prefilter with relative degree 1 as :

W (s) =
vo

s + w1
(11)

where w1 and vo are known.

Since P−1W (s) is represented by Equation (5), then :

K(s) =
U(s)

R(s)

=
kos

n + (fnko + cn)sn−1 + . . . + (f1ko + c1)

sn + (fn − dn)sn−1 + . . . + (f1 − d1)

=
vo

s + w1
· sn + a1sn−1 + . . . + an

b1sn−1 + b2sn−2 + . . . + bn

(12)

Comparing the coefficients of both sides, the following equa-

tions are obtained :

f1 − d1 =
bn

b1
w1

f2 − d2 =
bn−1

b1
w1 +

bn

b1

...

fn−1 − dn−1 =
b2

b1
w1 +

b3

b1

fn − dn = w1 +
b2

b1

(13)

From these relations, it is easy to derive the relation :

n−1∑
k=0

(−w1)
k(dk+1 − fk+1) = (−w1)

n (14)

This relation is written as :

[ho h1 h2 . . . hn−1] · [d(t) − f ] = hn (15)

where hk are defined recursively as :

ho = 1

hj+1 = −w1hj

hm = 0, m < 0

where f and d are defined as :

f := [f1 f2 f3 . . . fn]T

d := [d1 d2 d3 . . . dn]T

The relationship written as Equation (15) tells that one el-

ement of d(t) is determined by other elements of d(t), i.e.

there exists a function ξ1(d2, d3, . . . , dn) such as :

d1(t) = ξ1(d2, d3, . . . , dn) (16)

So in this case of rd[P (s)] = 1, the number of free parameters

decreases by one, i.e. the dimensions in which parameters

can move decreases by one.

Up to this point, by using the results from the previous sec-

tion, the construction of an adaptation law and the stability

proof can be taken similarly and will be skipped.

2.2. Chain-Scattering Approach to H∞-Control

2.2.1 Formulation of H∞-Control

Let the controlled plant be described as :[
z

y

]
= P

[
w

u

]
=

[
P11 P12

P21 P22

] [
w

u

]
(17)

where dim(z) = m, dim(y) = q, dim(w) = r, dim(u) = p

z : errors to be reduced

y : observation output

w : exogenous input

u : control input
If a controller is given by :

u = K y

The closed-loop system corresponding to this controller is

shown in Fig. 3. The closed-loop transfer function is given
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Fig. 3. Closed-Loop System.

Fig. 4. Unity Feedback Scheme

by :

Φ = P11 + P12K(I − P22K)−1P21

H∞-Control Problem is to find a controller K such that

the closed-loop system is internally stable and the closed-

loop transfer function Φ satisfies

||Φ||∞ < γ (18)

for a positive number γ > 0. In this study, for simplicity,

the normalize H∞problem, where γ = 1, is considered.

Several Classical synthesis problems of practical importance

can be reduced to the H∞-control problem. These problems

are concerned with the synthesis of a controller K of the

unity feedback scheme which is obviously analogous to find

K1 in FEL system.

The robust stabilization problem H∞-control problem

are usually concerned with the synthesis of a controller K of

the unity feedback scheme described in Fig. 4.

Consider the case where the plant P contains uncertainties

in the sense that G is represented by :

G(s) = G0(s) + ∆(s)W (s) (19)

where G0(s) is a given nominal plant model, W (s) is a given

weighting function, and ∆(s) is an unknown function that is

only known to be stable and satisfies :

||∆||∞ < 1.

The class of plants that can be represented in (19) is often re-

ferred to as the plant with additive unstructured uncertainty.

It is well known that a controller K stabilizes the closed-loop

system if and only if K stabilizes G0 and satisfies :

||WQ||∞ < 1,

Q := K(I + G0K)−1

The problem is reduced to an H∞control problem by choos-

ing P in (17) for which Φ in (18) coincides with :

WQ = WK(I + G0K)−1

Fig. 5. Chain-Scattering Representation of the Closed-Loop

System.

e.g.

P =

[
0 W

I −G0

]
(20)

2.2.2 Chain-Scattering Representations of Plants and H∞-

Control

There are many methods to solve such H∞-control problems.

The chain-scattering is one of the most powerful tools. To

deal with this approach, it must be first assumed that P21

in (17) is square and invertible. This implies q = r. Then,

the plant in (17) can also be represented as :[
z

w

]
= Θ

[
u

v

]
=

[
Θ11 Θ12

Θ21 Θ22

] [
u

v

]
(21)

where Θ is the chain-scattering representation of the plant

P given by :

Θ = CHAIN(P )

:=

[
P12 − P11P−1

21 P22 P11P−1
21

−P−1
21 P22 P−1

21

]

With the same controller as the previous section, Fig. 5

illustrates the chain-scattering representation of the same

system as in Fig. 3. The closed-loop transfer function Φ

becomes :

Φ = HM(Θ; K) := (Θ11K + Θ12)(Θ21K + Θ22)
−1

Note that the symbol HM stands for “Homographic Trans-

formation”. The graphical representation of HM(Θ; K) is

just the same as shown in Fig. 5.

Take a look at the H∞-control problem statement, Φ in (18),

now be in terms of Θ, instead of P . To apply H∞-control

theory to the robust stabilization problem, similar to (20),

choose Θ such that Φ is coincide with (18),e.g.

Θ =

[
W 0

G0 I

]
.

Then, the following theorem will conveniently be used. Not

only to answer whether the controller K exists or not, but

this theorem also find out what it is.

Theorem 1: [1] Assume that the plant P has a chain-

scattering representation Θ = CHAIN(P ) such that Θ is

left invertible and has no poles nor zeros on the jω-axis.

Then, the normalized H∞ problem is solvable for P if and

only if Θ has a (J , J ′ )-lossless factorization[1]

G = CHAIN(P ) = ΘΠ
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Fig. 6. The result of the system with H∞-controller

where Π is a unimodular matrix. In that case, K is a desired

controller if and only if

K = HM(Π−1; S)

for an S ∈ BHp×r
∞ [1].

Now, all mathematical descriptions and proof of convergence

for all concerned controlled mechanisms have been explained

successfully. In the next section, all of these concepts will be

applied in the simulation.

3. Simulation Results
Three main simulations have been done in order to illustrate

the improved system. The first simulation was the operation

of H∞-controller itself as shown in Fig. 6. In this case, the

feedforward path K2, in Fig. 2, have been removed and the

feedback controller K1 is just replaced with H∞-controller.

The second simulation is based on the FEL method where

the adaptive law in the feedforward path is the only consider-

ation. In other words, K1 is just the constant gain chosen to

be sufficiently large to guarantee the stability of the system.

This simulation diagram is shown in Fig. 7. In comparison

of results from the first and second simulation (Fig. 6 and

Fig. 7 accordingly), it is observed that the first simulation

is more robust to the system disturbance than the second

simulation. While, the tracking ability of the second one is

clearly better.

For the last simulation,the H∞-controller in the first sim-

ulation system is integrated into the feedback path of the

original FEL system in the second one. When the system

uncertainty is low, the simulation result is almost the same

as that of Fig. 7 and will not be shown. However, when the

uncertainty of the plant increases to some level, FEL alone

is not stable any more while the integrated one has much

better stability (see Fig. 8). The tracking performance also

remains the same. In another words the FEL with H∞-

controller is more robust to the system disturbance while

keeping the FEL tracking ability.
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Fig. 7. The result of the FEL system without H∞-controller
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Fig. 8. The Comparison between the FEL system with and

without H∞-controller when the system uncertainty is

large

4. Conclusions
In this study, it is concerned with the extention of the FEL

mechanisms for control DC-servo motor. Firstly, FEL with

adaptive learning scheme, in feedforward part, alone is con-

centrated. Then, the H∞-control theory is applied via the

feedback path, to increase the robustness of the controlled

system to the uncertainty of the plant. The results are quite

satisfactory. The analysis of each can be done separately

because the adaptive controller in feedforward path is obvi-

ously outside the loop. It is clear that all of the results in this

study can be easily applied to another system. Those con-

trolled systems will have a good tracking response together

with robustness to system disturbances. Furthermore, FEL

itself can also have the ability to solve the instability due

to the time-delay[6] in the feedback and feedforward path.

This obviously coincides with the human motor control that
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has very fast responses although the peripheral sensors have

very slow rate of transmission response. This time-delay is

the key to the new study and opens problems concerning the

FEL method.
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