• Title/Summary/Keyword: exponential analysis

Search Result 989, Processing Time 0.024 seconds

Error Analysis of the Exponential RLS Algorithms Applied to Speech Signal Processing

  • Yoo, Kyung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.78-85
    • /
    • 1996
  • The set of admissible time-variations in the input signal can be separated into two categories : slow parameter changes and large parameter changes which occur infrequently. A common approach used in the tracking of slowly time-varying parameters is the exponential recursive least-squares(RLS) algorithm. There have been a variety of research works on the error analysis of the exponential RLS algorithm for the slowly time-varying parameters. In this paper, the focus has been given to the error analysis of exponential RLS algorithms for the input data with abrupt property changes. The voiced speech signal is chosen as the principal application. In order to analyze the error performance of the exponential RLS algorithm, deterministic properties of the exponential RLS algorithms is first analyzed for the case of abrupt parameter changes, the impulsive input(or error variance) synchronous to the abrupt change of parameter vectors actually enhances the convergence of the exponential RLS algorithm. The analysis has also been verified through simulations on the synthetic speech signal.

  • PDF

Comparative Analysis on the Performance of NHPP Software Reliability Model with Exponential Distribution Characteristics (지수분포 특성을 갖는 NHPP 소프트웨어 신뢰성 모형의 성능 비교 분석)

  • Park, Seung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.641-648
    • /
    • 2022
  • In this study, the performance of the NHPP software reliability model with exponential distribution (Exponential Basic, Inverse Exponential, Lindley, Rayleigh) characteristics was comparatively analyzed, and based on this, the optimal reliability model was also presented. To analyze the software failure phenomenon, the failure time data collected during system operation was used, and the parameter estimation was solved by applying the maximum likelihood estimation method (MLE). Through various comparative analysis (mean square error analysis, true value predictive power analysis of average value function, strength function evaluation, and reliability evaluation applied with mission time), it was found that the Lindley model was an efficient model with the best performance. Through this study, the reliability performance of the distribution with the characteristic of the exponential form, which has no existing research case, was newly identified, and through this, basic design data that software developers could use in the initial stage can be presented.

Modeling of Time Delay Systems using Exponential Analysis Method

  • Iwai, Zenta;Mizumoto, Ikuro;Kumon, Makoto;Torigoe, Ippei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2298-2303
    • /
    • 2003
  • In this paper, very simple methods based on the exponential analysis are presented by which transfer function models for processes can easily be obtained. These methods employ step responses or impulse responses of the processes. These can also give a more precise transfer function model compared to the well-known graphical methods. Transfer functions are determined based on Prony method, which is one of the oldest and the most representative methods in the exponential analysis. Here, the method is reformed and applied to obtain the so-called low-order transfer function with pure time delay from the data of the step response. The effectiveness of the proposed method is examined through several numerical examples and experiments of the 2-tank level control process.

  • PDF

Exponential stability of stochastic static neutral neural networks with varying delays

  • Sun, Xiaoqi
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.237-242
    • /
    • 2022
  • This paper is concerned with exponential stability in mean square for stochastic static neutral neural networks with varying delays. By using Lyapunov functional method and with the help of stochastic analysis technique, the sufficient conditions to guarantee the exponential stability in mean square for the neural networks are obtained and some results of related literature are extended.

A Non-Linear Exponential(NLINEX) Loss Function in Bayesian Analysis

  • Islam, A.F.M.Saiful;Roy, M.K.;Ali, M.Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.899-910
    • /
    • 2004
  • In this paper we have proposed a new loss function, namely, non-linear exponential(NLINEX) loss function, which is quite asymmetric in nature. We obtained the Bayes estimator under exponential(LINEX) and squared error(SE) loss functions. Moreover, a numerical comparison among the Bayes estimators of power function distribution under SE, LINEX, and NLINEX loss function have been made.

  • PDF

A Study on the Software Reliability Model Analysis Following Exponential Type Life Distribution (지수 형 수명분포를 따르는 소프트웨어 신뢰모형 분석에 관한 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.4
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, I was applied the life distribution following linear failure rate distribution, Lindley distribution and Burr-Hatke exponential distribution extensively used in the arena of software reliability and were associated the reliability possessions of the software using the nonhomogeneous Poisson process with finite failure. Furthermore, the average value functions of the life distribution are non-increasing form. Case of the linear failure rate distribution (exponential distribution) than other models, the smaller the estimated value estimation error in comparison with the true value. In terms of accuracy, since Burr-Hatke exponential distribution and exponential distribution model in the linear failure rate distribution have small mean square error values, Burr-Hatke exponential distribution and exponential distribution models were stared as the well-organized model. Also, the linear failure rate distribution (exponential distribution) and Burr-Hatke exponential distribution model, which can be viewed as an effectual model in terms of goodness-of-fit because the larger assessed value of the coefficient of determination than other models. Through this study, software workers can use the design of mean square error, mean value function as a elementary recommendation for discovering software failures.

MEAN SQUARE EXPONENTIAL DISSIPATIVITY OF SINGULARLY PERTURBED STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

  • Xu, Liguang;Ma, Zhixia;Hu, Hongxiao
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.205-212
    • /
    • 2014
  • This paper investigates mean square exponential dissipativity of singularly perturbed stochastic delay differential equations. The L-operator delay differential inequality and stochastic analysis technique are used to establish sufficient conditions ensuring the mean square exponential dissipativity of singularly perturbed stochastic delay differential equations for sufficiently small ${\varepsilon}$ > 0. An example is presented to illustrate the efficiency of the obtained results.

Imputation Procedures in Exponential Regression Analysis in the presence of missing values

  • Park, Young-Sool
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.135-144
    • /
    • 2003
  • A data set having missing observations is often completed by using imputed values. In this paper, performances and accuracy of five imputation procedures are evaluated when missing values exist only on the response variable in the exponential regression model. Our simulation results show that adjusted exponential regression imputation procedure can be well used to compensate for missing data, in particular, compared to other imputation procedures. An illustrative example using real data is provided.

  • PDF

EXPONENTIAL STABILITY OF A CLASS OF NONLINEAR DIFFERENCE EQUATIONS IN BANACH SPACES

  • Nguyen, Sinh Bay;Le, Van Hien;Hieu, Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.851-864
    • /
    • 2017
  • The problems of global and local exponential stability analysis of a class of nonlinear non-autonomous difference equations in Banach spaces are studied in this paper. By a novel comparison technique, new explicit exponential stability conditions are derived. Numerical examples are given to illustrate the effectiveness of the obtained results.