
  
  
            1. INTRODUCTION

This paper is concerned with the problems associated with
obtaining transfer function of the process from the
experimental data of the step response or impulse response. In
many control engineering text books which include the so-
called classical control theory, control systems design
procedures are stated by assuming the a priori knowledge
concerning the transfer function of the controlled plant.
However few books refer to the determination of the transfer
function of the process from the step response of the system.
The modeling of the process dynamics in the form of transfer
function is frequently discussed in relation to the
determination of PID tuning. For example, three-parameter
transfer function models characterized by the static gain, the
time constant and the dead time, or static gain and two
different time constants are by far the most commonly used
models in the papers of PID controller tuning and these three
parameters can be determined graphically for monotone step
response[1,2,3].
 At present, most text books take the position that the
determination of the transfer function should belong to the
area of system identification and we have many effective
techniques concerning process dynamics identification
basically derived by the combination of ARMA model and the
least squares concepts [4]. However it requires sufficient
richness of the input and some numerical procedures to
convert the obtained results to transfer function in the
continuous form.
 On the contrary, identification by step response can be
executed by a simple setpoint change so that it does not
require any special inputs for identification [5]. It means that
such a method is able to apply to many practical cases if we
have suitable means of identification. Unfortunately we have
had no effective means to determine transfer function of the
system directly from the data of the step response except the
above-stated graphical methods which are very useful in some
practical cases but not so effective in general higher order case
because of the accuracy of the obtained model.
 As is well known, many physical and biological phenomena
can be described by first order linear differential equations
whose solution has exponential decay [6,7]. Systems which
have a single decay can be described by
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This is the simplest case and we have a more general form
with multiple decays
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The form (1.1) is called “monoexponential analysis form” and
the form (1.2) is called “multiexponential analysis form”.
Obviously these forms correspond to the impulse response or
the equivalent step response of SISO linear time invariant
systems with distinct real eigenvalues. Hence, it is possible to
determine the corresponding transfer functions if we can
determine the parameters iα  and iλ  in eq.(1.2)  from the
measured output data Such an idea has been considered in the
analysis of physical phenomena  The method using this idea
is called exponential analysis method[7].
 In section 2, we will explain the Prony method which is
known as one of the oldest but the most representative
multiexponential analysis methods. Then we will show the
relation between multiexponential analysis form and the
expression by the transfer function. It is noted that the above
stated method was published in 1795 and the concrete
procedure of the method given in this report is actually based
on the procedures described in [7, 8]. In section 3, we will
discuss the procedure for determining the approximate transfer
function model with pure time delay which is very much
interested in process control area. In section 4, two numerical
examples will be given to explain the proposed method. In
section 5, some experimental results will be given by using 2-
tank water-level control system.

2. PRONY’S METHOD

Let us consider a single input and single output linear time
invariant plant with n distinct real characteristic roots. The
step response of the plant is given as
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where ,,,1, nii L=−λ denote the n distinct negative real
characteristic roots of the system and γ  denotes the constant
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steady state of the plant. In the following, we assume that the
value of γ  is known. Then eq.(2.1) results in eq.(1.2) by
assuming γ−= )(~)( tyty . Hence we treat eq.(1.2) hereafter.
 Suppose that the output )(ty be measured at n2  equidistant
points: for example,
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where T denotes the sampling period. Let
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Then we have the following n2  equations with respect to
n2 unknown variables nixii ,,1,, L=α .
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solved this problem dexterously as stated in the following.
These equations are nonlinear equations and it is difficult to
obtain the solution. Prony
 Let nxx ,,1 L be the solutions of the following algebraic
equation,
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or equivalent equation,
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If we can determine coefficients 10 ,, −naa L , we have
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from eq.(2.2) and solutions ix  of eq.(2.5) .Thus the problem
results in a need to determine the coefficients  10 ,, −naa L  in
eq.(2.5). Prony solved this problem only by using the above
stated n2  equations (2.3)[7]. Here we will treat this problem
in a slightly different form compared to Prony’s original
method.
 We multiply the k -th equation in eq.(2.3) by 0a ,the

1+k th equation by 1a ,…,the 1−+ nk th equation by 1−na
and the nk + th equation by 1=na . If we then add up these
n  equations, we have
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We have assumed that ix  are the solutions of eq.(2.5), Hence

0110 =+++ ++ nknkk yayaya L                         (2.8)

Starting successively with the LL ,,,2,1 nkkk +++ , we find that
eqs.(2.3) and (2.5) imply the following linear equations:
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Suppose that the number of equations (2.9) are greater than or
equal to n . Then the following relation gives estimated
values of parameters ia :
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where
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Here we assume the regularity of NN T . From this result, we
can determine n  distinct roots ix  of eq.(2.5). It follows that
the parameters iα  in eq.(2.3) can easily be determined. For
example, here we will give a similar algorithm as shown in
eq.(2.10). That is,
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Here we assume the nonsingularity of the matrix XX T .
Prony’s original method used first n  equations in eq,(2.3) to
determine a  and the latter half n  equations were used to
determine α . However it is suggested in the literature [7]
that such a selection is not so effective under the existence of
noise. Hence the least squares approach is derived here as
given in eqs.(2.10) and (2.12).
 Transfer function of the plant can easily be determined from
the obtained data. Let eq.(2.1) be the output of the unit step
input of the corresponding plant. Then the Laplace Transform
of eq.(2.1) becomes
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In eq.(2.14), we have assumed that the initial value of the
plant is to be zero. It must include
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Then we can calculate the transfer function as follows:
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Case of 2=n  is shown as an example of eq.(2.16):
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3. APPROXIMATION BY FIRST-ORDER
SYSTEM+TIME DELAY

 In process systems, the model
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is known as one of the most common model used in PID
controller tuning. This system is characterized by three
parameters: the static gain K , the time constant T , and the
dead time L . Here we discuss this model in detail because it
has been
widely used practically.

Fig.1 Approximation by low-order system

Consider the following model:
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(1) Determination of αλ,
 Let xe T =−λ . Then
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holds. Corresponding to eq.(2.5), we have
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Multiplying 0a  to eq.(3.3) and using eq.(3.4) lead to
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Solving the above 11 +k  relations yields the least squares
solution of 0a . Parameter λ  is then found as follows:
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T
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We also can determine the least squares value of parameterα
using 11 +k  relations of eq.(3.3).
(2) Determination of τα ,
 From eq.(3.2), we have
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Parameters ),,( λτα determines the three parameters of the

model (3.1) such that
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It is noted that the values ),,( λτα  are closely related to the
selection of 0k : starting point of identification and 1k :
section of matching. This raises a question concerning the best
three parameters approximate model in eq.(3.1). This problem
will be considered a little bit later through the experimental
results.

4. EXAMINATION BY SECOND- ORDER SYSTEMS

 In this section, several simple numerical examples are shown
by using second order systems.

Example 1. Real distinct characteristic roots.
 The model is
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The exponential analysis was applied to the unit step response
of eq.(4.1).Data was obtained from the section [ ]5,0∈t .
Sampling interval is 1.0=T  so that 500 points were used.
Parameters )1(,, 210 =aaa  were obtained from eq.(2.10) by
substituting
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21,αα can be determined by using eq.(2.11) where
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Calculating results are as follows:

1
494.0,49.1,424.0,141.0
958.0,986.0,94.1,945.0

2121

2110

=
=−===
==−==

γ
ααλλ
xxaa

           (4.4)

Hence

22

24

1096.5565.0
1096.51085.1)(

~
−

−−

×++
×+×

=
ss
ssG              (4.5)

On the other hand, from eq.(4.1),
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In Fig.2, step responses are derived for )(sG  and )(
~

sG . The
small term s41085.1 −× in the numerator of )(

~
sG  is thought to be

a kind of numerical round off error which happened during the
process of identification. The effects of such kinds of
erroneous term will be discussed later.
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Fig.2 Step response of the plant with distinct roots

Example 2. Conjugate complex roots.

 In the application of exponential analysis method, we have
assumed that the characteristic roots are real and distinct.
However, conjugate complex cases do not conflict with the
distinct root assumption as long as we execute the calculation
on the complex domain. Here we apply the exponential
method to the second order vibrating system given by
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Data is taken from the section [ ]10,25.0∈t  with sampling
interval: 01.0=T . Results are as follows.
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The step responses of )(sG  and )(
~

sG are given in Fig.3. There
exists a small phase difference between ideal response and
estimated response. We rewrite the transfer function as
follows:
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where )(
~

sG∆  can be recognized as an additive mismatch.
Ignoring )(

~
sG∆  gives good matching of the response. It is

noted that can see the same tendency in Example 1(Fig.4)
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Fig.3 Simulation of the plant with conjugate complex
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Fig.4 Simulation of the plant with conjugate complex roots
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5. EXPERIMENTAL EXAMINATION BY
LIQUID-LEVEL SYSTEM

 
Fig.5 2-tank liquid level system

  Consider the experimental system shown in Fig.5. The
roblem is to obtain the transfer function between the water
flow rate change sec)/( 3mu  to tank 1 and the liquid level )(ty
of tank 2 from the steady state. In Fig.6, a step response used
in the analysis is shown where sec)/(1089.3 36 mu −×= .
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5.1 Graphical approach as a second order system
 To indicate and clarify the problems in classical techniques, a
graphical method written in references [2,9] was applied to the
step response given in Fig.6. This was to obtain a second order
transfer function model. First we determine the inflection
point A of the graph. Secondly, we write a tangent line at point
A and seek for two intersecting points B and C with the final
steady state level and the time axis. Then we can obtain two
time constants of the second order model from the numerical
values of B and C. An example of the model (5.1) and its step
response (Fig.7) are shown below.
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Fig.7 Step response of identified model by a graphical method

The difficulty of the method is that the result is quite sensitive
to the selection of the inflection point and its tangent line. On
the other hand, the exponential analysis gives a more
compatible model compared to the model derived from the
graphical data. It is noted that such a graphical method is not
able to apply to higher order plants.

5.2 Approximation by first order system with dead time
 This model is also known as the three parameter model [3].
The method given in section 3 is applied to the data in Fig. 6.
Throughout the calculation, the sampling interval was fixed to
1 second. In the following, it is shown 4 different models
corresponding to as 4 different matching sections.
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Experimental data and simulation data of step responses for
models (a),(b),(c) and (d) are shown in Fig.8.

Fig.8 Step responses of approximate first order models with
dead time

Fig.9 ISE between experimental curve and model

This is a quite natural question as to which model is the most
relevant. Fig.11 expresses ISE between the experimental curve
and the simulation curves. Here integration was executed on
the section ]2000,0[∈t . From the above mentioned facts, we
can conclude that there exists some close relation between the
compatibility of the model and the fitting sections of the curve.
Actually, cases (b) and (c) realize well-fitted curves in Fig.10.
However a method for realizing an “optimal” fitting is left for
further consideration.

6. CONCLUSIONS
  
 As one can see in this paper, very simple methods based on
the exponential analysis were presented by which transfer
function models for processes can easily be obtained. These
can also give more precise transfer function model compared
to well-known graphical methods in spite of using step
response. Transfer functions are determined based on Prony
method, which is one of the oldest and the most representative
method in the exponential analysis. Here, the method is
reformed and applied to obtain the so-called low-order with
pure time delay transfer function from the data of the step
response. The effectiveness of the proposed method is first
examined through ideal second order numerical examples.
Several basic possibilities concerning multiple root plant and
vibratory system are given by simple numerical results. As an
application to the practical system, modeling of the 2-tank
liquid-level process from the experimental data of step
response was considered and reasonable results were obtained
in spite of the existence of measurement noise. The contents of
this paper show only a few cases out of many possibilities, and
as mentioned in the preceding sections, there are many
interesting questions to be solved for practical applications.
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