
Journal of Korean

Data & Information Science Society

2004, Vol. 15, No. 4, pp. 899∼910

A Non-Linear Exponential(NLINEX) Loss Function 

in Bayesian Analysis

A. F. M. Saiful Islam1)․M. K. Roy2)․M. Masoom Ali3)

Abstract

In this paper we have proposed a new loss function, namely, non-linear 
exponential(NLINEX) loss function, which is quite asymmetric in nature. 
We obtained the Bayes estimator under exponential(LINEX) and squared 
error(SE) loss functions. Moreover, a numerical comparison among the 
Bayes estimators of power function distribution under SE, LINEX, and 
NLINEX loss function have been made.

Keywords : Bayes estimator, Linear exponential(LINEX) loss function, 
Non-linear exponential(NLINEX) loss function and Square error(SE) loss 
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1 Introduction

In many estimation and prediction problems use of symmetric loss functions 

may be inappropriate.  This has been recognized by Ferguson (1967), Zellner and 

Geisel (1973), Atchison and Dunmore (1975), Berger (1980), Zellner (1986) and 

Schabe (1991). Some new loss functions were studied by Rue (1995).

An asymmetric loss function is a model that defines unequal loss to the positive 

and negative error of the same magnitude. In such a situation Varian (1975), 

Zellner (1986) proposed a loss function called LINEX loss function. Wahed and 

Uddin (1998) suggested a loss function, which is a modification of LINEX loss 

function, known as modified linex (MLINEX) loss function.

The loss function given by Varian (1975), Zellner (1986), Wahed and Uddin 

(1998) were asymmetric in nature and linear function of the error. In this paper 
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we have proposed a new loss function that is asymmetric in nature, and 

non-linear function of the error called non-linear exponential (NLINEX) loss 

function. It is also a modification of LINEX loss function but this modification is 

done in the sense that the asymmetric loss function may not be always linearly 

related with its exponential form of loss. Such a non-linear loss over the entire 

distribution may occur in many real life data. So the asymmetric loss function 

may be non-linearly related with its exponential form of loss which claims the 

name non-linear exponential (NLINEX) loss function.

2. Proposed NLINEX loss function

If D  represents the estimation error in estimating θ  by θ̂  i.e.,  D = θ̂-θ , 

then we introduce the following asymmetric loss function of the form

L(D) = k exp (cD)+γD
2
-γD- k, r,c > 0               (2.1)

But for a loss function we must have, L(D) = 0  when D=0  i.e., when θ̂-θ  

and L(D)  must be minimum at D=0. Equation (2.1) satisfies L(D)= 0 , at 

D=0. For a minimum to exist at D=0  we must have, L'(D)|D= 0=0 , i.e., 

ck= γ. Putting ck= γ  in (2.1), we obtain the loss function

L(D) = k[ exp (cD)+ cD 2-cD-1], k > 0 , c > 0 ,           (2.2)

which is the required form of non-linear exponential (NLINEX) loss function. 

Expression (2.2) is easier to deal with as compared to expression (2.1). Expression 

(2.2) can be re-written as

    L(D) =  k[ { exp (cD)- cD-1 }+ cD 2]

           =  k[LINEX loss function + c{squared error(SE) loss function}].

Hence, NLINEX loss function is a linear combination of LINEX loss function 

and SE loss function. We can expect that this proposed new loss function would 

preserve the estimation error due to both LINEX and SE form of loss. The 

following figure shows shape of NLINEX loss function.

For multiparameter estimation problems and multivariate prediction problems 

there is a need to extend the form (2.2). Let Di= θ î-θ i  be the error in 

estimating θ i  by use of the estimate θ î. Then the extended NLINEX loss 

function is given by,
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L(D) =  ∑
n

i=1
k i[ exp (c iD i)+ c iD

2
i- c iD i-1] ,             (2.3)

provided  c i > 0 , k i > 0 , i=1,2,…,n  and D'= (D 1 ,D 2,…,Dn). This is a 

convex loss function such that L(0)= 0 , L'(0)  and D=0  corresponds to a 

minimum. The function (2.3) can be utilized in multiparameter estimation and 

prediction problems.

Shape Characteristics of the NLINEX Loss Function:

(i) For c > 0 , the function decreases almost nonlinearly when D=θ̂-θ < 0. On 

the contrary it increases almost nonlinearly when D=θ̂-θ > 0.

Figure 1 : Plots of exp (cD)+ cD 2- cD-1

(ii) On expanding exp (cD)  by Taylor series expansion when c  is small omitting 

terms of higher order we get, L(D)= c 1D
2  where c 1= (c+ c

2 )/2. Thus for 

small values of c , optimal estimates and predictions under NLINEX loss function 

are close to the estimates under SE loss function.

(iii) The parameter can be chosen to provide a variety of asymmetric effects.

In the following theorem we shall present the form of Bayes estimator under 

NLINEX loss function.
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3. Theorems

Theorem 3.1 For NLINEX loss function, the Bayes estimator for a parameter θ  

is

θ̂ NL =  -[ lnE θ{ exp (- cθ) }-2E θ(θ) ]/(c+2) ,

where, E θ  stands for posterior expectation.

Proof: To proof the theorem a simple assumption is considered as follows.

Assumption: Since Bayes estimator is consistent, hence

lim
n→∞
E( θ̂-θ) r → 0 , r≥2  .                       (3.1)

Now let us consider the estimator for a parameter θ  relative to the following 

proposed NLINEX loss function

L( θ̂ : θ) =  k[ exp {c( θ̂-θ) }
+ c( θ̂-θ) 2- c( θ̂-θ)-1], k > 0 , c > 0 .

         (3.2)

Again let, p(θ|x)  denote the posterior distribution of Θ  where p(θ)  is 

assumed to be a prior density with θ∈Ω , the parameter space. Then the 

posterior risk corresponding to the above loss function is

PR( θ̂;θ) =  E θL( θ̂,θ)

=  kE θ[ exp {c( θ̂-θ) }+ c( θ̂-θ)
2
- c( θ̂-θ)-1]

=  kE θ[ exp {c( θ̂-θ) }]+ cE θ( θ̂-θ)
2- cE θ( θ̂-θ)-1 .

   (3.3)

Bayes estimator of θ  is that value of θ  which minimizes PR( θ̂,θ). 

Differentiating (3.3) with respect to θ̂  and equating to zero we have,

∂PR( θ̂;θ)

∂ θ̂
=  k[E θ{ exp (- cθ) } ∂∂ θ̂ { exp (c θ̂)}+ c

∂

∂ θ̂
{E θ( θ̂-θ)

2
}]

    - k[c ∂∂ θ̂ {E θ( θ̂-θ)}] = 0
⇒ c exp (c θ̂)E θ{ exp (- cθ) }+2cE θ( θ̂-θ)- c=0

⇒ c θ̂+ lnE θ{ exp (- cθ) }= ln [1-2E θ ( θ̂-θ)]= ln [1- t]≈- t ,
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expanding ln (1- t)  on the basis of assumption (3.1) and neglecting 2nd and 

higher power of t, where t=2E θ( θ̂-θ). We have,

(c+2) θ̂ NL=2E θ(θ)- lnE θ{ exp (-cθ) }. 

Hence,

θ̂ NL=-[ lnE θ{ exp (- cθ) }-2E θ(θ)]/(c+2),             (3.4)

where E θ(⋅)  stands for posterior expectation.  This completes the proof.

Now the relationship between Bayes estimator for a parameter θ  under LINEX 

and NLINEX loss function is presented in the following theorem.

Theorem 3.2 Bayes estimators under LINEX and NLINEX loss function are 

related by the equation (c+2) θ̂ NL= c θ̂ BL+2E θ(θ), where θ̂ NL  and θ̂ BL  are 

the Bayes estimators under NLINEX and LINEX loss functions, respectively.

Proof: Under LINEX loss function L(D)= k[ exp (cD)- cD-1] , k > 0 , c > 0 , 

Bayes estimator for a parameter θ  is

θ̂ BL=-[ lnE θ{ exp (- cθ)]/c  .                 (3.5)

We have,

lnE θ{ exp (- cθ) }=- c θ̂ BL.                    (3.6)

From (3.4), Bayes estimator for a parameter under NLINEX loss function is

θ̂ NL=-[ lnE θ{ exp (- cθ) }-2E θ(θ)]/(c+2).          (3.7)

Using the result of (3.6) in (3.7), we have,

θ̂ NL =-[- c θ̂ BL-2E θ(θ)]/(c+2)

⇒(c+2) θ̂ NL= c θ̂ BL+2E θ(θ).
                (3.8)

This completes the proof.

The following theorem presents the relationship between Bayes estimator of θ  

under NLINEX and SE loss function.
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Theoream 3.3 Bayes estimator under NLINEX and SE loss function are related 

by the equation, (c+2) θ̂ NL=2θ̂ SE- lnE θ{ exp (- cθ) }, where θ̂ NL
 and 

θ̂ SE
 indicate the Bayes estimator under NLINEX and SE loss function, 

respectively.

Proof: For NLINEX loss function Bayes estimator for a parameter θ , from (3.4), 

is

θ̂ NL=-[ lnE θ{ exp (- cθ) }-2E θ(θ)]/(c+2).            (3.9)

For SE loss function Bayes estimator for a parameter θ  is the mean of the 

posterior density. Under SE loss function L( θ̂,θ)= ( θ̂-θ)
2, the Bayes estimator 

is

θ̂ SE=E θ(θ).                            (3.10)

Using the result of (3.10) in (3.9), we have,

θ̂ NL =-[ lnE θ{ exp(- cθ) }-2 θ̂ SE]/(c+2)

 ⇒(c+2) θ̂ NL=2 θ̂ SE- lnE θ{ exp (- cθ) }.

This completes the proof.

The following theorem presents the relationship among Bayes estimators of θ  

under LINEX, NLINEX and SE loss function.

Theorem 3.4 Bayes estimators under LINEX, NLINEX and SE loss functions 

are related by the equation (c+2) θ̂ NL= c θ̂ BL+2θ̂ SE
, where θ̂ BL, θ̂ NL  and 

θ̂ SE  indicate the Bayes estimators under LINEX, NLINEX and SE loss 

functions, respectively.

Proof: From equation (3.8) Bayes estimators under LINEX and NLINEX loss 

functions are related by the equation

(c+2) θ̂ NL= c θ̂ BL+2E θ(θ).                    (3.11)

We have Bayes estimator under SE error loss function in (3.10). Using the 

result of (3.10) in (3.11), we have, (c+2) θ̂ NL= c θ̂ BL+2θ̂ SE
, i.e.,
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θ̂ NL= c θ̂ BL/(c+2)+2 θ̂ SE/(c+2).                 (3.12)

This completes the proof.

4. Properties of Bayes estimator under NLINEX loss function 

at a glance

(i) Bayes estimator of θ  under NLINEX loss function is θ̂ NL =  

-[ lnE θ{ exp (- cθ) } -2E θ (θ)]/(c+2), where E θ  stands for posterior 

expectation.

(ii) Bayes estimator under LINEX and NLINEX loss function are related by the 

equation (c+2) θ̂ NL=c θ̂ BL+2E θ (θ) , where θ̂ NL
 and θ̂ SE

 indicate the 

Bayes estimator under NLINEX and LINEX loss functions, respectively.

(iii) Bayes estimator under NLINEX and SE loss function are related by the 

equation (c+2) θ̂ NL=2θ̂ SE- lnE θ{ exp (- cθ) } , where θ̂ NL  and θ̂ SE  indicate 

the Bayes estimators under NLINEX and SE loss function, respectively.

(iv) Bayes estimator under LINEX, NLINEX and SE loss function are related by 

the equation (c+2) θ̂ NL= c θ̂ BL+2 θ̂ SE ⇒ θ̂ NL= c θ̂ BL/(c+2)+2 θ̂ SE/(c+2). 

Bayes estimator under NLINEX loss function gives a general form, for odd as 

well as even c , as follows:

θ̂ NL= { ( i θ̂ BL+ θ̂ SE/(i+1), i=1,2,…, when c is even;

( j θ̂ BL+2θ̂ SE/( j+2), j=1,3,5,…, when c is odd.

One of the most important features observed for the odd number of c  is that the 

estimate θ̂ NL
 provides a weighted average of the estimates of θ̂ BL

 and θ̂ SE
.

(v)  If c → ∞ , then θ̂ NL → θ̂ BL.
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5. An Example

Let X  be a random variable from power function distribution with parameter 

θ . Then the density function of this distribution is given by

f(x;θ)= θx θ- 1, 0 < x < 1, θ > 0,

where θ  is the parameter to be estimated. We are to find Bayes estimators of θ  

under non-informative prior using LINEX, NLINEX and SE loss functions, 

respectively. Again let, X 1,X 2,…,Xn  be a random sample drawn from the above

power function distribution. So the likelihood function of this distribution is 

L(θ|x) = θ n ∏
n

i= 1
x θ- 1i

 that, lnL= n ln θ+(θ-1) ∑
n

i=1
lnx i. Again, ∂ lnL/∂θ=  

n/θ+ ∑
n

i=1
lnx i  and ∂

2lnL/∂θ 2=-n/θ 2. The approximate non-informative prior 

for θ  is obtained from g(θ) ∝ J
1/2(θ) , where, J( θ̂) =[-∂2 lnL/n∂θ 2] | θ =θˆ  . 

We have, J( θ̂)= 1/θ 2. Therefore, g(θ) ∝ 1/θ , then the posterior pdf p(θ|x) , is 

gamma(n,-1/ ∑
n

i=1
lnx i). The mean of the distribution is

E θ(θ)=-n/ ∑
n

i=1
lnx i                         (5.1)

and its moment generating function is obtained as E θ[ exp (tθ)]=

[1+ t/ ∑
n

i= 1
lnx i]

- n  provided t > - ∑
n

i=1
lnx i  and x i's are not equal to zero. 

Bayes estimator of θ  under squared error loss function, L( θ̂,θ)= ( θ̂-θ)
2, will 

be the mean of the posterior density and from (5.1) it is

θ̂ SE=-n/ ∑
n

i= 1
lnx i.                         (5.2)

We have,

E θ[ exp (- cθ)]= [1- c/∑ lnx i]
- n                   (5.3)

Using the result of (5.3) in (3.5), the Bayes' estimator of θ  under LINEX loss

function is obtained as
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θ̂ BL= (n/c) ln [1- c/∑ lnx i]                      (5.4)

provided, c < ∑ lnx i    and  x's are not zero. Again, using the results of (5.2) 

and (5.3) in (3.4), the Bayes' estimator of θ  under NLINEX loss function is 

obtained as,

θ̂ NL =n[ ln (1- c/∑ lnx i)-2/∑ lnx i]/(c+2)             (5.5)

It is to be noted that on expanding right hand side of equation (5.5) in 

logarithmic series and neglecting O(c 2) , the Bayes estimator under NLINEX loss 

function is θ̂ NL=-n/ ∑
n

i=1
lnx i, which is identical to the Bayes estimator of θ

under SE loss function.

We have obtained three estimators of power function distribution for parameter 

θ  theoretically, and these are θ̂ SE , θ̂ BL , θ̂ NL , for Bayes estimators under SE, 

LINEX, NLINEX loss functions, respectively. Now we shall estimate these 

estimators numerically on the basis of a Monte Carlo study of 5000 samples. To 

compare among the estimators it is worthwhile to consider either risk function or

mean squared error (MSE) of each estimator. But in practical it is too much 

complicated to estimate both the risk and the MSE of the estimators. By 

definition, risk of any estimator is the function of parameter only and need to be 

evaluated through multiple integration or different approximation by numerical 

methods. So we consider the biases of the estimators as a basis of our

comparison. The bias of an estimator is defined as, Bias(θ)= [E( θ̂)-θ]  where, 

θ  is the true parameter of the distribution. The numerical results are provided in 

the Tables 1-10. Different values of unknown parameters have been considered to 

observe the consistency among the estimators. We make comparison among the 

estimators with respect to the variation of sample size taking the different 

combination of c  and θ . On the basis of the numerical results we have the 

following findings.

1. The Bayes' estimator of power function parameter gives better estimate 

under symmetric SE loss function for positive c  when sample size is small 

(n≤10)  and in this case Bias( θ̂ SE) ≤ Bias( θ̂ NL) ≤ Bias( θ̂ BL). On the 

contrary, for large sample (n> 10)  Bayes estimator of θ  under LINEX loss 

function gives better estimate than the estimates obtained from SE and NLINEX
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loss functions and in this case, Bias( θ̂ BL) ≤ Bias( θ̂ NL) ≤ Bias( θ̂ SE).

2. The bias of all estimators has a tendency to be zero when the sample size n  

is increased.

3. Since we have considered asymmetric loss functions, sometimes the negative 

biases are more serious than the positive biases and the reverse is also true.

Tables 1-10: Mean and Bias of different estimate of power function distribution 

for the variation of sample size, n and for different combination of c  and θ

Table 1 : θ= 0.5, c= 1 Table 2 : θ= 0.5, c= 2

n θ̂ SE θ̂ BL θ̂ NL n θ̂ SE θ̂ BL θ̂ NL

5
0.4512

[-0.0488]

0.4320

[-0.068]

0.4448

[-0.0552] 
5

0.4512

[-0.0488]

0.4148

[-0.0852] 

0.4330

[-0.067]

10 
0.4892

[-0.0108]

0.4776

[-0.0224]

0.4853

[-0.0147] 
10

0.4892

[-0.0108]

0.4667

[-0.0333] 

0.4779

[-0.0221]

15
0.5992

[0.0992]

0.5876

[0.0876]

0.5953

[0.0953] 
15

0.5992

[0.0992]

0.5765

[0.0765] 

0.5878

[0.0878]

20
0.5403

[0.0407]

0.5336

[0.0336]

0.5380

[0.0380] 
20

0.5403

[0.0407]

0.5266

[0.0266]

0.5334

[0.0334]

Table 3 : θ= 1.5, c= 1 Table 4 : θ= 1, c= 1

n θ̂ SE θ̂ BL θ̂ NL n θ̂ SE θ̂ BL θ̂ NL

5
1.6303

[0.1303]

1.2320

[-0.2680]

1.3175

[-0.1825]
5

0.9042

[-0.0958]

0.8311

[-0.1685]

0.8798

[-0.1202]

10 
1.4718

[-0.0282]

1.3731

[-0.1265]

1.4389

[-0.0611]
10

0.9798

[-0.0202]

0.9347

[-0.0653]

0.9647

[-0.0353]

15
1.8011

[0.3011]

1.7009

[0.2009]

1.7677

[0.2677]
15

1.1996

[0.1996]

1.1540

[0.1540]

1.1844

[0.1844]

20
1.6374

[0.1374]

1.5738

[0.0738]

1.6162

[0.1162]
20

1.0912

[0.0912]

1.0629

[0.0629]

1.0816

[0.0816]
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Table 5 : θ= 1, c= 2 Table 6 : θ= 2, c= 2

n θ̂ SE θ̂ BL θ̂ NL n θ̂ SE θ̂ BL θ̂ NL

5
0.9042

[-0.0958]

0.7718

[-0.2282]

0.8380

[-0.162]
5

1.8122

[-0.1878]

1.3629

[-0.6371]

1.5875

[-0.4125]

10 
0.9798

[-0.0202]

0.8948

[-0.1052]

0.9373

[-0.0627]
10

1.9616

[-0.0384]

1.6549

[-0.3451]

1.8082

[-0.1918]

15
1.1996

[0.1996]

1.1128

[0.128]

1.1562

[0.1562]
15

1.4008

[-0.5992]

2.0828

[0.0828]

2.2418

[0.2418]

20
1.0912

[0.0912]

1.0357

[0.0357]

1.0634

[0.0634]
20

2.1829

[0.1829]

1.9745

[-0.0255]

2.0787

[-0.0713]

Table 7 : θ= 3, c= 1 Table 8 : θ= 3, c= 2

n θ̂ SE θ̂ BL θ̂ NL n θ̂ SE θ̂ BL θ̂ NL

5
2.8317

[-0.1683]

2.7758

[-0.2242]

2.8130

[-0.1870]
5

2.8317

[-0.1683]

2.7399

[-0.2601]

2.7858

[-0.2142]

10 
2.9423

[-0.0574]

2.5792

[-0.4208]

2.8212

[-0.1786]
10

2.9423

[-0.0574]

2.3138

[-0.6862]

2.5632

[-0.4368]

15
3.5999

[0.5999]

3.2256

[0.2256]

3.4654

[0.4654]
15

3.5999

[0.5999]

2.9403

[-0.0597]

3.2041

[0.2041]

20
3.2727

[0.2727]

3.0310

[0.0310]

3.1950

[0.1950]
20

3.2727

[0.2727]

2.9513

[-0.0487]

3.1120

[0.112]

Table 9 : θ= 1.5, c= 2 Table 10 : θ= 2, c= 1

n θ̂ SE θ̂ BL θ̂ NL n θ̂ SE θ̂ BL θ̂ NL

5
1.6303

[0.1303]

1.0862

[-0.4138]

1.3582

[-0.1418]
5

1.8122

[-0.1878]

1.5464

[-0.4536]

1.7236

[-0.2764]

10 
1.4718

[-0.0282]

1.2901

[-0.2095]

1.3709

[-0.1291]
10

1.9616

[-0.0384]

1.7912

[-0.2088]

1.9048

[-0.0952]

15
1.8011

[0.3011]

1.6142

[0.1142]

1.7026

[0.2026]
15

1.4008

[-0.5992]

2.2270

[0.2270]

1.6762

[-0.3238]

20
1.6374

[0.0374]

1.5164

[0.0164]

1.5769

[0.0769]
20

2.1829

[0.1829]

2.0717

[0.0717]

2.1458

[0.14598]
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6. Conclusion

Asymmetric NLINEX loss functions are useful in the analysis of many 

statistical estimation and prediction problems. Since NLINEX loss function is a 

proper combination of LINEX and SE loss function, it will preserve the estimation 

error due to both loss functions. According to the suggestion of Zellner in his 

paper [1986] " .....while the LINEX class of loss functions convenient and useful, it 

is recognized that other asymmetric loss functions, are available and may be 

useful...". We also have obtained the form of Bayes estimator under this loss 

function and established the relationship among the Bayes estimators under 

LINEX, NLINEX and SE loss function.
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