DOI QR코드

DOI QR Code

EXPONENTIAL FORM OF BIQUATERNIONIC VARIABLES IN CLIFFORD ANALYSIS

  • Kim, Ji Eun (Department of Mathematics Pusan National University) ;
  • Shon, Kwang Ho (Department of Mathematics Pusan National University)
  • Received : 2016.03.20
  • Published : 2017.01.31

Abstract

We give expressions of a biquaternion and research operations and calculations of each form of a biquaternion. Also, we investigate representations and properties of exponential and trigonometric forms of a biquaternion.

Keywords

References

  1. S. D. Leo and P. Rotelli, A New Definition of Hypercomplex Analyticity, arXiv:funct-an/9703002 (1997).
  2. S. D. Leo, Hypercomplex Group Theory, arXiv:physics/9703033 (1997).
  3. J. D. E. Grant and I. A. B. Strachan, Hypercomplex Integrable Systems, Nonlinearity 12 (1999), no. 5, 1247-1261. https://doi.org/10.1088/0951-7715/12/5/302
  4. J. Kajiwara, X. D. Li, and K. H. Shon, Function spaces in complex and Clifford analysis, Inhomogeneous Cauchy Riemann system of quaternion and Clifford analysis in ellipsoid 14 (2006), 127-155.
  5. D. Kaledin, Integrability of the twistor space for a hypercomplex manifold, Selecta Math. (N.S.) 4 (1998), no. 2, 271-278. https://doi.org/10.1007/s000290050032
  6. J. E. Kim, S. J. Lim, and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstr. Appl. Anal. 2013 (2013), ID. 136120, 7 pages.
  7. J. E. Kim, S. J. Lim, and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr. Appl. Anal. 2014 (2014), ID. 654798, 8 pages.
  8. J. E. Kim and K. H. Shon, Polar Coordinate Expression of Hyperholomorphic Functions on Split Quaternions in Clifford Analysis, Adv. Appl. Clifford Algebr. 25 (2015), no. 4, 915-924. https://doi.org/10.1007/s00006-015-0541-1
  9. J. E. Kim and K. H. Shon, The Regularity of functions on Dual split quaternions in Clifford analysis, Abstr. Appl. Anal. 2014 (2014), ID. 369430, 8 pages.
  10. J. E. Kim and K. H. Shon, Coset of a hypercomplex numbers in Clifford analysis, Bull. Korean Math. Soc. 52 (2015), no. 5, 1721-1728. https://doi.org/10.4134/BKMS.2015.52.5.1721
  11. J. E. Kim and K. H. Shon, Inverse mapping theory on split quaternions in Clifford analysis, To appear in Filomat (2016).
  12. J. E. Kim and K. H. Shon, Properties of regular functions with values in bicomplex numbers, To appear Bull. Korean Math. Soc. (2016).
  13. S. Olariu, Hyperbolic complex numbers in two dimensions, math.CV/0008119-0008125 (2000).
  14. S. Olariu, Complex numbers in n dimensions, arXiv:math/0011044v1 (2000).
  15. L. Ornea and P. Piccinni, On some Moment Maps and Induced Hopf Bundles in the Quaternionic Projective Space, Internat. J. Math. 11 (2000), no. 7, 925-942. https://doi.org/10.1142/S0129167X00000489
  16. M. Verbitsky, Hypercomplex varieties, arXiv:alg-geom/9703016 (1997).
  17. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4 Ed., Cambridge Univ. Press, 1958.