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Abstract

A data set having missing observations is often completed by using
imputed values. In this paper, performances and accuracy of five
imputation procedures are evaluated when missing values exist only on
the response variable in the exponential regression model. Qur simulation
results show that adjusted exponential regression imputation procedure can
be well used to compensate for missing data, in particular, compared to
other imputation procedures. An illustrative example using real data is
provided. -
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1. INTRODUCTION

The problem of missing values in incomplete data arises frequently in many
data sets and appears particularly common in practical situations such as the
medical and social sciences. Incomplete data consist of two types missing units
and missing items. Missing units are the result of nonresponse for a sample unit
and typically arise from subjects who refuse or are inaccessible. This type of
nonresponse is also called unit nonresponse. On the other hand, missing items
may result when some individuals provide information, but fail to answer some of
the questions. This type of nonresponse is called item nonresponse.

When analyzing data with missing values, it is common practice to either
eliminate all units with missing data or to use other information to replace the
missing data. Procedures using other information to replace missing values are
referred to as imputation procedures. Imputation methods have been well accepted
and widely exploited over the years both in major surveys as well as in small
surveys in that they may provide less biased estimates of parameters and result
in a less concomitant loss in precision compared to discarding all units which
have missing values on any variables used in the particular analysis. Once the
missing values are imputed, methods of analysis that require complete data on all
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variables are then used to ‘analyze the data.

Efron (1994) used nonparametric bootstrap approaches to assess the accuracy of
an estimator in a missing data situation and found that the simplest form of
nonparametric bootstrap confidence interval turns out to give convenient and
accurate answers. Bello (1995) examined several numerical imputation procedures
(the mean substitution method, EM algorithm, principal component method, general
iterative principal component method and singular value decomposition method) and
investigated their comparative performances. He found that imputed values based
on both the response and explanatory variables may give spurious impression of
high - precision especially as the proportion of missing data increases, and
overestimation of residual mean square error may arise when imputed values are
based on only the explanatory variables. Hegamin-Younger and Forsyth (1998)
compared the effectiveness of four imputation procedures (mean, conditional mean,
hot deck and regression) in a two-variable regression by including 18,869
participants in the sample. The results of the study provide that the grand mean
procedure is not appropriate for handling missing data and when the prediction of
the dependent variable is of interest, the regression procédure should be used.

Let ¥: be the true (but possibly missing) value of a van'aBle Y for an individual

i, and let m;=1 if ¥; is missing and 0 if it is observed. Let X1,°*"X; be a set of
variables that are observed. Then the mechanism of missingness for the variable
Y is called:
(1) missing completely at random(MCAR) if the following is true:
Pim,=1ly,xy x5} = Plim,=1}
(2) missing at random(MAR) if _
P{m;=1ly,xy .25} = P{m;= 1l xy, =, 24}
(3) non-ignorable(NI) if
P{m;=11y, %, 2} = P{m,= o, 26} or

P{m;=1ly;xy, -, %5} = P{m;=11y;} (Little and Rubin, 1987).

The primary purpose of this paper is to examine the behavior of and to
investigate the accuracy of five different imputation procedures on the estirhates of
the Exponential regression coefficients when we are considering only the situation
where time to event, Y, is missing and the mechanism of missingness for the
variable, Y, is MCAR. Five imputation procedures we examine are the grand
mean imputation procedure(GM), conditional mean imputation procedure(CM),
hot-deck (HD), exponential regression imputation procedure(EI) and adjusted
exponential regression imputation procedure(AEI).

In section 2 the exponential regression model is formulated and in section 3 we
briefly describe the imputation procedures under consideration. Monte Carlo design
and results are presented in section 4. Finally, an application to an example data
set and conclusions are given in sections 5 and 6, respectively.
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2. THE EXPONENTIAL REGRESSION MODEL

Let !; denote the failure time of the 7-th observation. The hazard rate of the
proportional hazard model for the Exponential distribution function is given by

Wt = Aexp{Byx,+--+B,x,}, =0 and >0

where A is the scale parameter, X1, """, X, is a set of covariates, and B;,**, B, are

regression coefficients. If we let Y=In¢#, then Y has a standard extreme-value
distribution. The accelerated failure-time(AFT) model for the same distribution
function is also given by

= exp{,5’0+/31x1+---+ﬁ,,x,}s

where X1,"""» %, is a set of covanates, and & has an exponential distribution with
parameter 1.

There are relationship between the proportional hazard model and the accelerated
failure-time model as next follow.

Bi:: _B; for i=112’."1p1
A= exp{—ﬁo}.

3. SOME IMPUTATION-BASED PROCEDURES

In this section we present a brief description of five imputation procedures that
use all covariates to obtain imputed values for missing values in response variable
Y. Suppose that some individuals do not have complete variables and that the
missing variables are missing completely at random as described in Rubin (1976).

3.1 Traditionary Method

(a) Grand Mean Imputation

The grand mean imputation procedure (GM) is perhaps the simplest imputation
procedure. This procedure involves replacing missing values on a particular
variable by the mean value of the observed data on that variable.

(b) Conditional Mean Imputation

The conditional mean imputation (CM) uses collateral information to provide an
estimate for the missing value. This procedure partitions the sample into
homogeneous groups based on responses to collateral information. For example,
groups might be formed on the basis of stated responses (or dependent variable)
to a question about class rank. The responses are categorized into quartiles (top
25%, second quarter, third quarter and the last guarter).

(¢) Hot Deck Method
An individuals missing value, Y, is replaced by the value of another individual
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sampled in the survey whose Y value was not missing. There are many ways to
select the donor individuals for a hot-deck (HD) method.

In the hot deck method, cells are defined on the basis of variables that are
considered important for imputation. These are generally variables that relate to
the particular sample design used or to demographic or other variables. The data
set is then sorted first according to these defined cells and secondly by other
variables that are considered relevant for imputation. For each cell, a register is
defined as the record of an individual on whom all variables are recorded. In a
single pass through the data set, the cell of each record is identified and, if a
certain value of a variable is missing, then the value for that cells register is
substituted for the missing value. '

On the other hand, if the individuals record is complete, then the values of the
variables for this record replace the values in the registry for that cell. This
process is repeated until all missing values are imputed.

3.2 Exponential Regression Imputation and Adjusted Exponential Regression
Imputation
Regression equations are fit from a data set consisting of complete records with
the variable to be imputed serving as the dependent variable. The fitted regression
line may be of the form
3’ = bo + blxl + bzxz + oo + bkxk.
where ¥ is the response variable to be imputed for a given record and

X1s X9,°"*, Xp are covariates known for the individual. This method is called
regression imputation.

Exponential regression imputation (EI) is studied similarly and can be discussed
in a manner similar to regression imputation. The AFT models are fit from a data
set consisting of complete individuals with the variable to be imputed serving as
the dependent variable. The resulting Exponential regression model may be of the
form

}= exp(b0+ blxl +-b2x2 + .-+ bkxk)’ (31)
where 7 is the fitted survival time and X, ¥2,°*", X4 are covariates known for the
individual. EI will be a procedure to replace missing values by the fitted values.

The log-likelihood function L(B) of the AFT model is obtained as

L(B) = Z(Cizi— eZi)'
where 2; = y,-—x;-ﬂ, B = (ﬂo, By, ﬂk)' and X; = (Lxm '"’x}a‘)’. Note that

the score equation for the intercept term is
ti

Ze= X (7) 32)

2
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where * is given in equation (3.1).
In the usual linear regression model, the sum of the observed and the fitted
values are equal. However, the first term in (3.2) is equal to the number of

non-censored observations. For this reason, the adjusted predicted value t; of the
Exponential regression model can be proposed as

- c; \~

h= (257
Adjusted Exponential regression imputation procedure (AEI) can be proposed by

replacing missing values by the adjusted predicted values f;. As expected, in
section 4 we will show that AEI becomes a slightly improved procedure compared
to EI. Note that the distribution of the survival time ¢ is Exponential.

4. MONTE CARLO STUDY

We have performed a simulation study to empirically examine the comparative
performance of the imputation procedures described in section 3. The objective of
this work was to investigate the accuracy of five different imputation procedures
on the estimates of the Exponential regression coefficients in the prediction system
below.

Data were generated from a Exponential distribution E(Ad) with fixed parameter,
where A is a scale parameter using IMSL subroutines RNEXP and SSCAL. The
resulting survival time ¢ is of the form

| t= E(A=1) exp(By+ c18; + ¢:8,).
Values of Bg» B, By were set to 15 55 and -15 respectively. The missing

scheme is based on MCAR. bTwo covariates were generated: the first, €1, is a
categorical variable which takes on the values 0 for half the subject and 1 for the

other half; the second, €2, is a random variable generated from a uniform
distribution U(0,1) using IMSL subroutine RNUN. Ten percent of the values were
randomly generated from the status variable, which take the value 0 as the
censored status.

The results presented here are all based on 5000 replications for sample sizes
40, 60 and 100. Reasonable proportions(k) of missing data are considered as 0.05,
0.10, 0.15 and 0.20 in this study as these would seem to cover values likely to
occur in real practical situations.

Tables 1 and Tables 2 present the estimates of five different parameters

(By, B1,B2) and the corresponding mean squared errors(MSEs), respectively,
arising from the use of the five imputation procedures on incomplete Exponential
regression data.

We note several commonalities among the five imputation procedures: (1) When
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the missing proportion, %k, increases, the estimate based on each of the imputation
procedures gets more remote from the true values and the corresponding MSEs
tend to increase. (2) When the size of the sample, n, increases, the corresponding
estimates of all parameters seem to get closer to their true values and, as a
result, the corresponding MSEs decrease.

Differences among five different imputation procedures can be summarized as
follows: (1) When the sizes of the sample, 40 or 60, MSEs based on CM and AEI
has smallest value. When the size of the sample, 100, and the missing proportions,
0.05 and 0.10, MSEs based on AEI and CM has smallest value. When the size of
the sample, 100, and the proportions of missing data, 0.15 and 0.20, MSEs based
on AEl and HD has smallest value. (2) In the estimates of parameters

(/30,/31,/32), AEI and HD has a smaller bias than CM. (3) MSEs based on GM
tend to be bigger than those based on other four imputation procedures, regardless
of sample size and missing proportion. So GM is not good. MSEs based on AEI
becomes a slightly smaller than those based on EL



Table 1. Comparison of five imputation procedures based on the
estimates, where GM means the grand mean imputation, CM the
conditional mean imputation, HD the hot deck method, EI the Exponential
regression imputation and AEI the adjusted Exponential regression

imputation. The 3x1 vector in each cell denotes the estimates of the
shape parameter, intercept term 8o, 81 and B2, respectively when the true
values of the 3x1 vector are -1.5, -55, 1.5, respectively.

| n k GM CM HD ElI AEI

-3.635123 | -1.500239 | -1.531679 | -1.533301 | -1.526753
40 5% -4873974 | -5618687 | -5611927 | -5622315 | -5.620828
3.571461 1.499434 1.540333 1.540218 1.532117
-4323903 | -1475153 | -1536520 | -1535152 | -1.520455
10% -3.811954 | -5641269 | -5606614 | -5618607 | -5.616261
3.089545 1451774 1.540844 1.536323 1.526687

-3.864768 | -1.395989 | -1.542747 | -1.529388 | -1.521009
15% -2526356 | -b566090 | -5604462 | -5620047 | -5.624607
0.289728 1.149003 1.554565 1528153 1.562556

4415373 | -1.325754 | -1.545991 | -1.551888 | -1.508503
20% -2.220041 | -5584087 | -5.598067 | -5.624381 | -5.622331
0.775722 1.098648 1.550889 1.562415 1.561946

~4.200683 | -1540261 | -1600492 | -1619278 | -1615212
60 5% | -4.031991 | -5539330 | -5.498826 | -5.494202 | -5.495996
3305201 | 1447723 | 1556051 | 1558645 | 1557929
-4519772 | -1500836 | -1605988 | -1.621527 | -1.613282
10% | -3.364414 | -5564879 | -5.496493 | -5493703 | -5.494158
2817064 | 1368722 | 1550907 | 1557850 | 1562955
4473425 | -1431176 | -1611064 | -1.633810 | -1.611423
15% | -2373850 | -5545060 | -5.493121 | -5485446 | -5.492766
1141999 | 1198603 | 1556271 | 156394 | 1575350
~4521713 | -1.426651 | -1610302 | -1.633040 | -1.610801
20% | -2.119308 | -5525581 | -5.487852 | -5.492458 | -5.495729
0792166 | 1139993 | 1546610 | 1573598 | 1.615629

-3.334405 | -1.527537 | -1.558673 | -1.567348 | -1.564289
100 5% -3.219060 | -5442117 | -5454051 | -5.447823 | -5.449037
0.520675 1.314367 1.402601 1.403379 1403888

-3.693627 | -1.508374 | -1.559703 | -1.567142 | -1.557994
10% -2.747208 | -5433132 | -5455675 | -5445173 | -5.445399

0.353834 1.255393 1.406137 1.393682 1.396877
-3.966180 | -1.459855 | -1.560780 | -1.560498 | -1.549130
15% -2.332092 | -5.427676 | -5.458047 | -5438385 | -5.442465

0.038747 1.105867 1.410002 1.360402 1.389138
-4458676 | -1.392729 | -1565741 | -1.568136 | -1.537009
20% -2.028631 | -5474834 | -5457628 | -5.434446 | -5.436823

0.509578 1.029996 1.420577 1.370499 1.396470

141
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Table 2. Comparison of five imputation procedures based on MSEs, where

GM means the grand mean

imputation, CM the conditional mean

imputation, HD the hot deck method, EI the Exponential regression
imputation and AEI the adjusted Exponential regression imputation.

n k GM CM HD El AEl

40 5% 3.290644 0.204909 0.242663 0.211084 0.211013
10% 4657721 0.203242 0.25429% 0.216319 0.215266
15% 5.382910 0.193223 0.266210 0.244044 0.245374
20% 6.657419 0.222159 0.271079 0.268105 0.266821

60 5% 4.352593 0.119442 0.145434 0.139835 0.139517
10% 5.244156 0.118754 0.156914 0.146505 0.145638
15% 6.295015 0.134957 0.167482 0.163793 0.162409
20% 7.072670 0.145135 0.177154 0.173941 0.174901

100 5% 3.209503 0.084957 0.089958 0.085220 0.085003
10% 4.616873 0.092629 0.093761 0.090034 0.089019
15% 6.132301 0.117365 0.098049 0.097506 0.094475
20% 7.301789 0.140754 0.109728 0.104334 0.101085 -

5. AN EXAMPLE

To illustrate some patterns for the values imputed by the five imputation
procedures, the data set for the HMO-HIV+study shown in Hosmer & Lemeshow
(1999, p4) was used. Four variables, time(days between entry date and end date),
age, drug(history of IV drug use) and a censoring status variable measured on
100 different subjects were considered. For the purpose of demonstration, we have
chosen the same missing proportions 2=5%, 10%, 15% and 209% as was used in
the simulation study in section 4. Missing values were chosen at random from the
response variable, time. Results of applying some imputation procedures on the

incomplete data are shown in Tables 1-2.
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Table 3. Comparison of five imputation procedures based on the estimates,
where GM means the grand mean imputations, CM the conditional mean
imputation, HD the hot deck method, EI the Exponential regression
imputation and AEI the adjusted Exponential regression imputation. The
3x1 vector in each cell denotes the estimates of the shape parameter,

intercept term Bo» By and B2, respectively when the true values of the
3x1 vector are -6.151630, 0.092092, 1.009856, respectively (HMO-HIV+

study).

%k | nonmissing GM CM HD EI AE1
-6.151630 | -5.713845 | -5.609066 | -6.079307 | ~5.995275 | -6.006202
5% 0.092092 | 0.077556 | 0.073270 | 0.089992 | 0.086656 | 0.087053
1.009856 1.022298 1.130116 | 0.994101 1.035377 1.034384
-6.151630 | -5.597359 | -5.579041 | -5.946630 | ~5.995272 | -6.018138
10% 0.092092 0.073935 0.071069 0.085387 0.086041 0.087083
1.009856 0.911987 1.111660 1.011745 1.015121 1.016440
-6.151630 | -5.565361 | -5579041 | -5.940540 | -6.039474 | -6.067515
15% 0.092092 0.072042 0.069943 0.084477 0.085652 0.087179
1.009856 0.866754 1.143497 0.974614 1.048344 1.048025
-6.151630 | -5516619 | -5514032 | -5.753061 | -6.014347 | -6.050556
20% 0.092092 0.069418 0.066406 0.076774 0.083538 0.085804
1.009856 0.818621 1.177710 1.029930 1.060857 1.066151
Table 4. Comparison of five imputation procedures based on MSEs,

where GM means the grand mean imputations, CM the conditional mean
imputation, HD the hot deck method, EI the Exponential regression
imputation and AEI the adjusted Exponential regression imputation

(HMO-HIV+study).

k GM CM HD El AEI
5% 0.0640072 0.1030640 0.0018277 0.0083759 0.0072588
10% 0.1057082 0.1205968 0.0140225 0.0081707 0.0059632
15% 0.1215305 0.1154028 0.0152863 0.0046980 0.0023521
20% 0.1467745 0.1451218 0.0531648 0.0071736 0.0044749

The pattern of the imputed values shown in these tables lends support to our
simulation results. For 2=10%, 15% or 20% and regardless of sample sizes, in

particular, AElI is the most efficient of the imputation procedures considered in the
sense of closeness of Exponential regression coefficients to their true values and
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smallness of MSEs as comparative criteria. In addition, for £#=5%, HD and AEI
are more efficient than any other imputation procedures. That is, MSEs based on
HD and AEI are relatively smaller than GM and CM.

6. CONCLUSIONS

In this paper, the simulation study clearly shows that the five different
imputation procedures may lead to different results, depending on sample sizes,
shape parameter and proportion of missing values in the Exponential regression
model. The results of the study show that GM is not an appropriate procedure for
handling missing data. In particular, AEI may be recommended as a useful and
practical guide even in the Exponential regression models when estimating the
Exponential regression coefficients of the covariates. But when determined to use
AEIl, we should be careful which variables to choose the given data set to apply
AEI properly. For the use of AEI, we propose to select all significant covariates in
Exponential regression model. I would like to recommend AEI because using CM
might cause various limitations in selecting variables and grouping data.
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