References
- M. Adivar and E. A. Bohner, Halanay type inequalities on time scales with applications, Nonlinear Anal. 74 (2011), no. 18, 7519-7531. https://doi.org/10.1016/j.na.2011.08.007
- R. P. Agarwal, Y. H. Kim, and S. K. Sen, New discrete Halanay inequalities: stability of difference equations, Commun. Appl. Anal. 12 (2008), no. 1, 83-90.
- G. Akrivis, Stability of implicit-explicit backward difference formulas for nonlinear par- abolic equations, SIAM J. Numer. Anal. 53 (2015), no. 1, 464-484. https://doi.org/10.1137/140962619
- S. Badia, R. Codina, and H. Espinoza, Stability, convergence, and accuracy of stabilized nite element methods for the wave equation in mixed form, SIAM J. Numer. Anal. 52 (2014), no. 4, 1729-1752. https://doi.org/10.1137/130918708
- N. S. Bay, On the exponential stability of nonlinear difference equations in Banach spaces, Comm. Appl. Nonlinear Anal. 21 (2014), no. 4, 16-26.
- N. S. Bay and V. N. Phat, Stability analysis of nonlinear retarded difference equations in Banach spaces, Comput. Math. Appl. 45 (2003), no. 6-9, 951-960. https://doi.org/10.1016/S0898-1221(03)00068-3
- A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, Oxford, 2003.
- L. Berezansky and E. Braverman, Stability conditions for scalar delay differential equa- tions with a non-delay term, Appl. Math. Comput. 250 (2015), 157-164.
- T. Erneux, Applied Delay Differential Equations, Springer, New York, 2009.
- M. I. Gil', Difference Equations in Normed Spaces: Stability and Oscilations, Elservier, Amsterdam, 2007.
- I. Gyori and F. Hartung, Asymptotic behaviour of nonlinear difference equations, J. Difference Equ. Appl. 18 (2012), no. 9, 1485-1509. https://doi.org/10.1080/10236198.2011.574619
- L. V. Hien, A novel approach to exponential stability of nonlinear non-autonomous difference equations with variable delays, Appl. Math. Lett. 38 (2014), 7-13. https://doi.org/10.1016/j.aml.2014.06.014
- L. V. Hien, Global asymptotic behaviour of positive solutions to a non-autonomous Nichol- son's blowflies model with delays, J. Biol. Dyn. 8 (2014), no. 1, 135-144. https://doi.org/10.1080/17513758.2014.917725
- L. V. Hien, V. N. Phat, and H. Trinh, New generalized Halanay inequalities with appli- cations to stability of nonlinear nonautonomous time-delay systems, Nonlinear Dynam. 82 (2015), no. 1-2, 563-575. https://doi.org/10.1007/s11071-015-2176-0
- A. Ivanov, E. Liz, and S. Trofikmchuk, Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima, Tohoku Math. J. 54 (2002), no. 2, 277-295. https://doi.org/10.2748/tmj/1113247567
- B. Li and Q. Song, Asymptotic behaviors of non-autonomous impulsive difference equa- tion with delays, Appl. Math. Model. 35 (2011), no. 7, 3423-3433. https://doi.org/10.1016/j.apm.2011.01.012
- E. Liz, Stability of non-autonomous difference equations: simple ideas leading to useful results, J. Difference Equ. Appl. 17 (2011), no. 2, 203-220. https://doi.org/10.1080/10236198.2010.549007
- E. Liz and J. B. Ferreiro, A note on the global stability of generalized difference equations, Appl. Math. Lett. 15 (2002), no. 6, 655-659. https://doi.org/10.1016/S0893-9659(02)00024-1
- E. Liz, A. Ivanov, and J. B. Ferreiro, Discrete Halanay-type inequalities and applications, Nonlinear Anal. 55 (2003), no. 6, 669-678. https://doi.org/10.1016/j.na.2003.07.013
- H. R. Marzban, Optimal control of linear multi-delay systems based on a multi-interval decomposition scheme, Optim. Control Appl. Meth. 37 (2016), no. 1, 190-211. https://doi.org/10.1002/oca.2163
- R. Medina, Delay difference equations in infinite-dimensional spaces, J. Difference Equ. Appl. 12 (2006), no. 8, 799-809. https://doi.org/10.1080/10236190600734192
- S. Mohamad and K. Gopalsamy, Continuous and discrete Halanay-type inequalities, Bull. Austral. Math. Soc. 61 (2000), no. 3, 371-385. https://doi.org/10.1017/S0004972700022413
- R. K. Mohanty and R. Kumar, A new fast algorithm based on half-step discretization for one space dimensional quasilinear hyperbolic equations, Appl. Math. Comput. 244 (2014), 624-641.
- S. Singh and P. Lin, High order variable mesh off-step discretization for the solution of 1-D non-linear hyperbolic equation, Appl. Math. Comput. 230 (2014), 629-638.
- H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2011.
- Y. Song, Y. Shen, and Q. Yin, New discrete Halanay-type inequalities and applications, Appl. Math. Lett. 26 (2013), no. 2, 258-263. https://doi.org/10.1016/j.aml.2012.09.004
- S. Udpin and P. Niamsup, New discrete type inequalities and global stability of nonlinear difference equations, Appl. Math. Lett. 22 (2009), no. 6, 856-859. https://doi.org/10.1016/j.aml.2008.07.011
- T. Vyhlidal, J. F. Lafay, and R. Sipahi, Delay Systems: From Theory to Numerics and Applications, Springer, Dordrecht, 2014.
-
L. Wang and X. Ding, Dissipativity of
${\theta}$ -methods for a class of nonlinear neutral delay integro-differential equations, Int. J. Comput. Math. 89 (2012), no. 15, 2029-2046. https://doi.org/10.1080/00207160.2012.698734 - L. Xu, Generalized discrete Halanay inequalities and the asymptotic behavior of non- linear discrete systems, Bull. Korean Math. Soc. 50 (2013), no. 5, 1555-1565. https://doi.org/10.4134/BKMS.2013.50.5.1555