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Error Analysis of the Exponential RLS Algorithms Applied to 
Speech Signal Processing
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Abstract

The set of admissible time-variations in the input signal can be separated into two categories: slow parameter changes 

and large parameter changes which occur infrequently. A common approach used in the tracking of slowly time-varying 

parameters is the exponential recursive least-squares (RLS) algorithm. There have been a variety of research works on the 

error analysis of the exponential RLS algorithm for the slowly time-varying parameters. In this paper, the focus has been 

given to the error analysis of exponential RLS algorithms for the input data with abrupt property changes. The voiced 

speech signal is chosen as the principal application. In order to analyze the error performance of the exponential RLS al­

gorithm, deterministic properties of the exponential RLS algorithms is first analyzed for the case of abrupt parameter 

changes, the convergence of the algorithm are verified and then related errors are analyzed. It has been theoretically shown 

that the impulsive input (or error variance) synchronous to the abrupt change of parameter vectors actually enhances the 

convergence of the exponential RLS algorithm. The analysis has also been verified through simulations on the synthetic 

speech signal.

I. Introduction

The ability to track time-variations in the signal mod이 

is one of the main advantages of an adaptive filter, com­

pared with one with fixed parameters. Estimation of time­

varying parameters is therefore a key issue in adaptive 

filtering. The set of admissible time-variations in the in­

put signal can be separated into two categories: slow par­

ameter changes and large parameter changes which occur 

infrequentlyll].

A common approach used in the tracking of slowly 

time-varying parameters is to introduce an exponential 

forgetting factor, (0, 1), to 나】。input data, which leads 

to the exponential recursive least-squares (RLS) algor­

ithm. In the exponential RLS algorithm the data are ex­

ponentially weighted and the time constant of the data 

weighting (i.e., roughly the number of significant data 

points) is 1/(1-A). However, a fixed value of A. together 

with not persistently excited inp나t data are known to 

cause problems such as the exponential growth of the co­

variance matrix, which result in "burst” phenomena (also 

known as covariance wind-up problem)[2][3]. This prob­

lem becomes a severe one if the parameter vector descri­

bing the input data undciEoes abrupt changes. One way 
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to overcome this problem is to vary the value of the for­

getting factor with time, where we define an information 

content of the data and choose the forgetting factor at 

each iteration in such a way that this is kept constant. 

This leads to the design of a variable forgetting factor 

(VFF) RLS algorithm^].

In this paper, the focus has been given on the error an­

alysis of exponential RLS algorithms for the input data 

with abr니pl property changes. Situations where the signal 

parameters experience abrupt changes could be found in 

various applications. A sudden change of load variance 

and a shift of operating point in a non-linear system are 

examples in the adaptive control. In the signal processing, 

the speech signal and heart cardiogram are typical ex­

amples. It is interesting that, in the latter examples, it is 

reasonable to assume that the signal parameters vary in 

the quasi-periodic way and the sudden changes of the sys­

tem parameter often accompany a train of impulsive in­

put at the moment of changes. The voiced speech signal 

is chosen as the principal application in this work. The 

deterministic property of the exponential RLS algorithms 

is first analyzed for the case of abrupt parameter changes. 

The convergence of the algorithm are then verified and 

related errors are analyzed. It has been theoretically 

shown that the impulsive input (or error variance) synchr­

onous to the abrupt change of parameter vectors actually 

enhances the convergence of the exponential RLS algor­
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ithm using the idea of persistent excitation. The analysis 

has also been verified through simulations on the syn­

thetic speech signal.

II. Error Analysis of RLS Algorithm

Assume that the input signal x(n) is characterized by an 

AR(力)process such that

x(n) = wT(n)x(n — 1) +e(n) (1)

where wT(n — I) = [ x(n — 1),…，x(n~p)] is an input data 

vector, wT(n) = [wi(n),…，wp(n)] is a vector for the time­

varying filter weight, and the measurement error e(n) is a 

centered white Gaussian sequence with variance al. When 

an RLS algorithm is used to estimate w(n) (this correspon­

ds to the linear prediction), the least squares estimate w(n) 

with exponential forgetting is defined by the following 

RLS structure；

w(n) = w(n — 1) + XP(n) x(n — 1 )(x(n) — xT(n — 1) w(n - 1))

(2) 

P-1(n) = A.(P-l(n —1) +x(n —l)xT(n —1)) (3)

It starts from arbitrary initi시 values and then conver­

ges to its steady-state, whose speed (i.e. convergence rate) 

partially chareicterizes its performance. Convergence, 

tracking, and estimation error represent different, though 

related, properties of an exponential RLS algorithm. That 

is, all adaptive filters experience losses in performance, 

which are expressed through the excess mean-squared er­

ror (MSE), and are a res니t of two main sources of error; 

s이f noise and lag error. Since they are conflicting each 

other, one should find a trade-off in terms of 1 among 

the convergence speed, tracking efficiency, and the esti­

mation error. There have been numerous theoretical 

works for the derivation of an optimum trade-off for X 

for various applications, such as in [5-9].

1. Analysis of Speech Signal
An all-pole model such as in Eq. (1) has commonly 

been adopted in the parametric analysis of the speech sig­

nal. Here, the speech signal is generated by exciting an 

all-pole filter by either a white noise sequence or a quasi- 

periodic impulse train. Parameters in this model are then 

estimated through the linear prediction, which could be 

realized by a block algorithm such as the autocorrelation 

method or the covariance method" 이[11] or by a sequen­

tial algorithm such as a class of RLS algorithms"13]. 

The basic idea of block algorithms is that the model 

parameters remain stationary within the window length, 

which usually encompasses several pitch periods. How­

ever, the speech signal is non-stationary and model 

parameters are time-varying. Therefore, a large window 

size often ends up with a poor parameter estimates in the 

block algorithms compared to the pitch synchronous co­

variance method[14). In the sequential estimation, one 

possible approach for the time-varying case would be as­

suming that the parameters in Eq. (1) either undergoes an 

abrupt parameter changes synchronously to epoch lo­

cation or the noise variance of the assumed speech se­

quence shows a significant variance at the time of epoch. 

The basis of the first assumption can be found on the 

pitch synchrono니s speech analysis method. It is known 

that the pitch synchronous estimation of the formant par­

ameter provides the most reliable estimates amon앙 vari­

ous block-oriented speech analysis methods. The second 

assumption is also valid from the parametric model of a 

voiced speech signal. Based on these assumptions, it is 

quite natural to assume that the speech signal in Eq. (1) 

has quasi-periodic parameter changes together with im­

pulsive inputs.

Either impulses at each epoch location in every voiced 

sequence or the parameter change happening synchron­

ously with the beginning of a pitch period causes another 

source of error for the exponential RLS algorithm when 

it is applied to speech processing. Since this error is due 

to the variation of signal characteristics, it might be 

categorized as a tracking error. However, if the effect of 

these variations subsides fast enough as usually does., say 

within a pitch period of a speech signal, then its effett on 

the final estimation error would be negligible and thus it 

is reasonable to categorize it separately. Therefore, we 

could divide the estimation error into three parts；self 

noise, lag error, and error due to sudden parameter vari­

ation. We define the third source of error as the exci­

tation error, which is cmised by the abrupt parameter 

changes and impulsive input components.

2. Deterministic Error Analysis

In this section, we first identify the source of the exci­

tation error through a deterministic analysis based on the 

previous assumptions. Let the speech signal is stationary 

over an interval of interest, and thus be represented by 

the constant parameter vector, w, and let {h(n), n 느。} be 

the impulse response of the system represented by w. 

Now, assume that two impulses are applied to the filter 

at times n그0 and n =To with magnitude gi and g> re­
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spectively. Then, the output speech sequence will be a 

superposition of two impulse responses such as

x(n) = gj h(n) +g2 h(n 一 To) (4)

For n < To, 나le least-squares (LS) estimate wLs is the sol­

ution of the normal equations,

R(n) - WLs = p(n) (5)

where R(n) and p(n) are the sample correlation matrix and 

cross-correlation vector, respectively, given by

R(n)= £ An-kx(n-l)xT(n-l) (6)
k= 1

n

p(n)= L A,n-kx(n-l)x(n) (7)
k= I

To prove the exactness of the LS estimate, it is suf­

ficient to show that R(n)w = p(n). Then, by the uniqueness 

of the solution under the assumption that the sample au­

tocorrelation matrix R(n) is nonsingular, we have wls 三 w. 

Form the normal equations for linear prediction of the 

form

n p n

£ Xn-kx(k—t) £ WiX(k —i)= A.n-kx(k)x(k-T),
k=l i=1 k=1

T= 1,…，P (8)

it is straightforward to show that the vector w exactly 

satisfies the nonnal equations. Hence, the LS estimate 

becomes exact. This also holds for the interval n 느 To +p. 

This result can be simply extended to the equally spaced 

multi-pulse case. As a result, we can conclude that the 

normal equations generate the exact parameter vector es­

timate at times kTo +p< n M kTo~ 1 and n 느 kTo +p for 

k 그。. That is, if the input sequence is a superposition of 

an impulse response and its delayed, weighted copies, 

then the least-squares and thus the RLS algori나im can 

produce an exact solution, provided that an exact initia­

lization scheme is employed and the real parameter vector 

remains constant.

Analysis of the normal equations in the regions ToMn 

VTo+p is rather complicated. Within this interval, the 

normal equations do not produce an exact solution. 

When To is sufficiently large, then it is easy to show that 

the tap weight error vector, w(n)-w—w(n) at time T° +k 

could be approximated to

w(T0 +k) 三 흠 R->(T0 +k)x(T0-l), kA (9) 

Eq. (9) describes a bias in the least-squares estimation due 

to the impulsive inputs and could be categorized into an 

excitation error. Note that the deterministic bias is pro­

portional to the magnitude of the impulse. From the 

above analysis, it is clear that those parameters respond 

to the existence of the impulses quite sensitively, which 

are reflected in sharp peaks on the parameter trajectories, 

{Wj(n), n 그 0 }：= ]. The existence of 나lis error source co니d 

be utilized on the design of an event detector using a class 

of RLS algori나ims[15].

The excitation error due to an impulse lasts only p iter­

ations after the impose is applied to the system. From 

this exactness of 나le LS estimates for n>T0 +p, we could 

deduce that

h 시 (To +k)x(ToT) = Op, kAO (10)

where 0p is a /^-dimensional zero vector. Now, assume that 

the underlying parameter vector step-changes its value at 

time To +1 from w +<5w to w. Also assume that the 

WRLS algorithm has converged to generate the estimate 

w at time To. Then we can show that

讯To + k) 三 & 시 R t(To + k) x(T0 +k) R(T0 +1) 如, k A 0

(ID

If represents bias or improper initialization, not the 

actual change of the tap weight vector, or if 5w is small 

compared to the magnitude of impulse, then the first 

term in Eq. (11) would be the dominant factor on the in­

terval [To, To +p— 1 ]. Also in speech sequences, it is re­

asonable to assume that ll^wll < g2 for some vector norm, 

which makes the dominance of the first term clear. For k 

> p, the transient phenomenon caused by the impulsive 

input dies out, and then the second term in Eq. (11) be­

comes dominant in w(To +k) so that

w(T0 +k) = XkR-'(T0 +k)R(T0 +l)^w, k>p (12)

Eq. (12) shows the transient behavior of the excitation er­

ror. If the pitch period is long, then this excitation error 

would vanish as the exponential RLS algorithm converges 

prior to the next epoch. Assuming 8 kHz sampling rate 

and a pitch period of 10 msec (corresponding to 80 sam­

ples within a pitch period), the exponential RLS algor­

ithm wo니d have plenty of time to converge within a 

pitch period. For short pitch periods (as in female voice), 

the excitation error may not have enough time to die out 

and thus can contribute to the overall estimation error.
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3. Convergence of RLS algorithm

The convergence of the adaptive algorithms are closely 

related with the property of the input data sequence. One 

of the important properties is the persistent excitation 

condition[16]. Suppose that there exists a positive integer 

N>D and two real values m and M, 0<m< A/< oo, such 

that the persistent excitation condition is satisfied, i.e.,

n + N

OVmlM £ x(i —1) xT(i -1) MI< co (13)
i = n +1

for all w>0. With this persistent excitation condition, we 

can find asymptotic lower- and upper- bounds on P(n) 

such that (derivation is given in the Appendix)

/ 1-AN \ \ / 1-AN \
「福厂卩*目下記顷5 (14)

From Eq. (14), it is easy to see P(n)->0 as I-too. This 

phenomenon is compatible with the well-known “bursl” 

property of the RLS algorithm.

Let w(n) = w(n)—w(n) be the estimation error at time n, 

and Aw(n) = w(n) — w(n — 1) be the parameter's variation 

at time t. Then, from Eqns. (2) and (3), we can derive 

w(n) = [I —AP(n)x(n — 1) xT(n — 1)] -(w(n- 1) +Aw(n))

-XP(n) x(n -1) e(n) (15)

Using superposition, the estimation error, w(n), can be 

divided into three independent components, i.e. w(n)-w1 

(n) +w2(n) +w3(n), each of which characterizes the ef­

fects on the estimation error due to: (a) initial estimation 

error, (b) variations of the signal parameters, and (c) sto­

chastic error and satisfies the following equations" 기.

w1 (n) = AP(n) P-1 (n — 1) w1 (n — 1), w*(0) = w(0) (16a)

w2(n) = A.P(n)P-l(n — l)(w2(n — 1) +Aw(n)), w2(0) = 0

(16b)

w3(n) = XP(n) P~'(n —l)w3(n-l)-AP(n)x(n — 1) e(n), 

w3(0) = 0 (16c)

One can easily verify that the addition of three terms toge­

ther leads to Eq. (15). The convergence of both w l(n) and 

w3(n) could be verified using the usual analytic procedure 

shown previous works[6][10]. Thus, it is sufficient to ver­

ify the convergence of w2(n) to completely analyze the 

convergence of the exponential RLS algorithms for the 

abrupt parameter changes. Without loss of generality, sup­

pose that the estimation started at time t = — oo. This as­

sumption is valid only if the step change of parameters 

are sufficiently spaced so that the exponential RLS algor­

ithm have converged. Also assume that a change M in 

the parameter vector occurs at time instant T°+l, so 

that Aw(n) =(>w -(5(T0 +1), where <5( ,) is the Kroneker 

delta function. Since fully converged, we can assume that 

w2(T°) 드 0 and thus consider(5w as an initial estimation 

error of type-a for the estimation algorithm starting at 

time T()+1. To prove the convergence of w2(n), define a 

matrix norm by；

||w(n)||P-1(n)= wT(n) pi(n) w(n) (17)

Here, w(n) = w2(n) for the notational sim이icily. Then, 

using Eq. (3) and the matrix inversion lemma, it is straig­

htforward to show that

M(n) p— '(n) w(n)=人 | wT(n — 1) P" l(n — 1) w(n — 1)—

订「(n — I) x(n — 1) x「(n — 1)订(n —1))
1 -bxr(n - 1) P(n — 1) x(n — 1) /

so that, for n » To,

肝y(n 내 pT(n) =

Ap!w(n-l)||P-.(„_n ] +xT(n_I)p(n_1)x(n_1) ] (19)

and thus

w(T()+t) = T P(T()+t)PT(To)物

||w(n)||P-1(n)M A ||w(n - 1)||P >(n _】)M ||w(n - - (20)

Also, from Eq. (16b), we get by letting n = T()+t, t> 0

(21)

and

V 씨"*，MF Il^wll M llw(To +r)||
1 0 丿丿

5 스四竺끄*의 "I (22)

Now, from Eq. (14), we can derive the upper and lower 

bound on the maximum and minimum eigenvalues of P 

(n), respectively, such that

_______ 1________ mXN
WP(T0 +t)) 즈 I二对 and

1 —/N

사un(P(To+T)) 그 —— (23)
Ma
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so that Eq. (22) becomes

프_ +N_1 I|w(To+t)|| M
M "wll m

r+N-' (24)

From Eq. (24), we can conchide that the estimation er­

ror component due to the parameter step change conver­

ges exponentially to zero, and w2(T0 +r) arc changing 

within a strip, whose size is a function of the degree of 

persistent excitation of the input signal. Also, note that 

the size of this strip reduces exponentially. It is very deli­

cate to measure how a stochastic sequence is persistently 

excited[16]. However, one thing obvious is that an impul­

sive component at the same instant as that of parameter 

step change enhances the degree of persistent excitation 

of the input signal.

This could be seen at Figures 1 and 2. They show two 

trajectories, wj(n) and w2(n), which are linear predictive est­

imates of the signal generated by

x(n) = wi,k(n)x(n-l) +w2,k(n) x(n —2) +gk <5(n-kTo) +e(n)

(25)

where e(n) is a Gaussian noise sequence with variance 1, 

and To = 200. The filter weight are adjusted periodically 

according to Tabic 1. Fig. 1 corresponds to the case with 

gk=0 for all k, whereas Fig. 2 to those values in Table 1. 

The former one represents the parameter step change 

without accompanying impulsive inputs. In contrast, the 

latter one is with impulsive inputs. The exponential RLS 

algorithm with 人= 0.9833 and 0.9672 are used, and it is 

compared to the block covariance algorithm implemented 

by the sliding window covariance (SWC) RLS algorithm 

with window size 60. Values of A = 0.9833 and 0.9672 are 

related to the window size 60 in some analytic sense, that 

is, N = 1/(1 -Xi) and 人2 = (N - 1 )/(N + 1) [!이. One can 

clearly see that the exponential RLS algorithm converges 

much faster in the former case with impulsive inputs than 

the latter case. This is beca니se the existence of the impul-

Table 1. Filter parameters and gains used to generate the se­
quence x(n).

Index W|.k(n) w2, k(n) Gain, gk

1 -1.3125 0.75 100

2 -0.8525 0.55 80

3 -0.56 0.4 60

4 -0.39 0.3 40

5 -0.3125 0.25 20

Figure 1. Parameter trajectories of w】(n) and w2(n), when the exci­
tation signal is pure Gaussian noise sequence (without 
impulsive inputs).

WR1S

W 600 }t()0 10/)()

Figure 2. Parameter trajectories of wjn) and w2(n), when the exci­
tation signal is Gaussian noise sequence plus an impul- 
si ve inputs.
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sive inputs actually reduce the size of the strip given on 

the Eq. (24).

It could have been expected from the persistent exci­

tation condition in Eq. (13). When m is fixed, smaller N im­

plies faster convergence rate. Therefore, larger gain would 

decrease the value of N to satisfy this condition, and 

hence the convergence becomes much quicker. Therefore, 

we can conclude that the impulsive inputs en hances the 

convergence property of the RLS algorithm by increasing 

the degree of persistent excitation of the input signal.

4. Self Noise

Since the self noise is an internal problem from using an 

exponential windowing, it is dependent only on the for­

getting factor (or window length) and the input signal 

statistics. The excess MSE due to this self noise can be 

written by E[wT(n)R• w(n)]. Note that R, p, and w are 

assumed to be independent of time for the analys s of self 

noise. From the normal equations,

w(n)-R-'(n) L 시 x(k - l)e(k) (26)
k= I

Then the variance can be approximated as

do E N(n — k)

E[w(n)wT(n)] a——「-------  R 1 (27)

(E xn~k)2 

k= 1

Here, large value of n is assumed, so that, by the law of 

large numbers

R(n)a £ Xn~k(R +<5RJ (28)
k= t

and

E x2(n~k)x(k-l)xT(k-l) = £ 人"s(r *况)(29) 
k=i k=l

where the elements of c)R| and 이]2 have zero means and 

small variations compared to the elements of R. It is also 

assumed that ||ZR」| « ||R-i|| for some consistent ma­

trix norm, and ignore high order terms to g야

(R +SRi)i = RT +R '(R ! + 이罗) IL

=R~ +R <5Rr'R 1 (30)

Now, we have

1 — 1

QseiKn) =tr{RE[w(n)wT(n)|} p^o (31) 

Eq. (31) provides a quantitative insight to the excess MSE 

due to the exponential nature of the RLS estimators. 

Note 나lal if A = 1 the excess MSE due to the self noise 

vanishes.

5. Excitation Error

Assume that the true tap coefficient vector undergoes a 

step change at time T()+1 from w +(5w to w, followed by 

the corresponding changes in the autocorrelation matrix 

and the cross-corr이ation vector from R +(5R and p 

to R and p, respectively. For n ^To, R(w) and p(w) are as­

sumed to have been adjusted according to the old signal 

characteristics. Thus, al time To,

- i — Ji* +1

E[R(To)] = 一「一二一(R+》R) (32)
1 — A

and

, 1 — + I

E|p(To)| = 一-一-一(p+$p) (33)
1 — A

Using the same technique as in Eq, (30), we have

(34) 

where

-R (SRR 'p +R <5p (35)

and w = R 1 p. Note that it is further assume R(m) be or­

thogonal to w(n).

In Eq. (34), the high order term R-1(5RR 1 <5p is 

ignored. As we note, an extra error occurs、for n>T(), be­

cause the algorithm cannot adj니st. the coefficient vector 

from w 十to w instantly. The excess MSE error due to 

the excitation error defined by dxc(n)= E[ wr(n)Rw(n)| is 

equal to, at time n = To +1

Qexc(T()+1) = MTRM (36)

For n>To, we have

E[R(n)旧岑段 (37)

and

f)] 三므芋：흐 (38)
i — A.

Ignoring the higher order term during calculation, we have
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E[w(n)] = w +An'T,(5w (39)

so that

dc(l】)=A2(nF(5wTR(5w£/T(nFQqTo+l) (40)

This gives the time constant equal to 1/2(1 —A).

When a periodic pulse is added to the white-noise-driv­

ing process at the instant of coefficient change, the transi­

ent behavior of the exponential RLS algorithm becomes 

different. Assume that an impulse of amplitude g0 is ap­

plied to the filter synchronized to the step change of par­

ameter vector at time To +p +1. After the irregular effect 

of 나le impulsive input at 나ic interval [To + 1, Tft-p], the 

bias in the tap weight vector at time To +p is given ap- 

proximat이y by Eq. (12). Then the initial value of the ex­

citation error will be

Q海(To +p)-E[wT(To +p)Rw(T0 +p)l (41)

If we assume that the magnitude of the impulsive input 

is large enough, 나icn we have II R(To + p)II > !l R(TO)II for 

some consistent matrix norm so that

R - '(To +p) R(T0) IIR ~'(To +p)R(T0)ll < ll<5w||

(42)

From Eq. (40) it has been shown that the la망 error decays 

exponentially with the time constant 1/2(1—人)and the 

initi시 condition <)wR()w. Also, Eq. (42) 아lows that 나ic 

impulsive inp니t scales the initial value of the lag error 

approximately by the amount A2p ||R~l(T()+p)R(To)(>w||2. 

Therefore, together with the result in the convergence 

analysis (see Eq. (24)), we can conclude that an impulsive 

component synchronized to the parameter step change 

not only enhances the convergence characteristics, but 

also decrease the excitation error in a substantial degree.

HI. Conclusion

In this work, the performance of the exponential RLS 

algorithm is analyzed when it is applied to speech analy­

sis. The existence of a pec니liar so니rce of excess MSE, 

denoted as the excitation error, is discussed when the 

exponential RLS algorithm is applied to estimate ab­

ruptly changing signal parameters. For the analysis of the 

excitation error, a deterministic is first taken. Then, the 

convergence property of the exponential RLS algorithm 

for this particular situation is investigated, followed by 

the study on the excess MSE due to the excitation error. 

It has been theoretically shown in this paper that the im­

pulsive input (or error variance) synchronous to the ab­

rupt change of parameter vectors actually enhances the 

convergence of the RLS algorithm. The analysis has also 

been simulated on the synthetic speech signal. This result 

would provide a guide in understanding the reliability of 

parameter estimates provided by the exponential RLS al­

gorithm as well as in the design of a VFF-RLS algorithm.
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Appendix

Here we shall show upper- and lower-bound on the co­
variance matrix. Eq. (2) can be written as

pi(n) =人npj +£ 人i+顷(i-l)xT(i-l) (Al)
i = l

where Po1 = P~'(0) =(5I is the initial condition of the co­

variance matrix which is usually chosen to be a large 

number of 6. Since the covariance matrix P(n) is sym­

metric and positive definite, it satisfies

사讪(pi(n))스치nin ( £ An-i+lx(i-l)xT(i-l) j + …
\ i = n — N + I j

(
l-(r-l)N \

E An-i+1x(i-l)xT(i-l) (A2)
i = t ~ rN +1 /

where 入min(A) denotes the minimum eigenvalue of the squ­
are matrix A and r = [n/N] denotes the integer part of the 

quotient. Combining this with the persistent excitation 
condition, we can find an upper bound for P(n) given by；

足in(pi(n)) 그 mQN +EN + … + 人rN) (A3)
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Similarly, the lower bound can also be found from Eq. 

(27), which results

人“入min(P5') +M 人
j _ 人(r + l)N

i二i一

iMN丿
A"min(Pj) +mXN (A4)

for all t>0. Therefore, for n» 1, Eq. (A4) leads to Eq. 

(14).


