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Abstract

The set of admissible time-variations in the input signal can be separated into two categorics: slow parameter changes

and large parameler changes which occur infrequenily. A common approach used in the lracking of slowly time-varying
paramelers is the exponential recursive fcast-squares (RLS) algorithm. There have been a variety ol research works on the
error analysis of the exponential RLS algorithm for the slowly lime-varying parameters. In this paper, the focus has been

given 1o the error analysis of cxponential RLS algorithms for the inpul data with abrupt property changes. The voiced

speech signal is chosen as the principal application. In order to anadyze Lhe error performance of the exponential RLS al-

gornithm, delerministic properties of the exponential RLS algorithms is first analyzed for the case of abrupt paramcter
changes, the convergence of the algorithm are verificd und then related crrors are analyzed. It has been theorctically shown

that the impulsive inpul (or crror variance} synchronous to the abrupt change of parameter veciors aclually enhances the

convergence of the exponential RLS algorithm. The analysis has also been verified (hrough simutations on the synthelic

speech signal.

I. Introduction

The ability 10 track time-vanations in the signal model
is one of the main advantages of an adaptive filter, com-
pared with one with fixed paramelers. Estimation of time-
varying paramelers is therefore a key issue in adaptive
fillering. The sel of admissible lime-varialions in the in-
put signal can be separaled inlo two caiegorics  slow par-
amcter changes and large parameter changes which oceur
infrequently(1}.

A common approach used in the tracking ol slowly
time-varying parameless is (o introduee an exponential
forpetting lactor, AE (D, i}, 1o the input data, which leads
o the exponential recursive least-squares (RLS) algor-
ithm. In the exponential RLS algorithm (he dala are ex-
poncolially weighted and (he time constant of the data
weighling (i.¢e., roughly the number of significant data
points} is 1/(1-1). However, a fixed value of A together
with not persistently cxcited input data are known 1o
cause problems such as the exponential growth of the co-
variance matrix, which result in “burst™ phenomena (also
known as covariance wind-up problem)[2)]3]. This prob-
lem becomes a severe one il the parameler veclor descri-

bing the input data undergoes abrupt changes. One way
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1o overcome this problem is 1o vary the valuc of the for-
gelting tactor with time, where we deline an information
contenl of the dala and choose the forgelling factor at
cach ileration in such a way that this is kept constant.
This leads to the design of a variable forgelting factor
{VFF) RLS ulgorithm[4).

In this paper, the focus has been piven on the etror an-
alysis of exponential RLS algorithms for the mput data
with abrupl properly changes. Situations where the signal
paramelers experience abrupl changes could be found in
various applications. A sudden change of load variance
and a shift of operating point in a non-lincar system arc
examples in the adaptive control. In the signal processing,
the speech signal and heart cardiogram ave typical ex-
amples. [1 is inleresting that, in the laller examples, il is
reasonable to assume that the signal parameters vary in
the quasi-pericddic way and the sudden changes of the sys-
lem parameter often accompany a train of impulsive in-
put al the momenl of changes. The voiced speech signal
is chosen as the principal application in this work. The
determintstic property of the exponential RLS algorithms
is first analyzed lor the case of abrupl parameter changes.
The convergence of the algorithm are then verified and
related errors are analyzed. It has been theorelically
shown that (he impulsive input (or error variance) synchr-
onous ¢ the abrupt change of parameler vectors aclually

cohances the convergence of the exponential RLS algor-
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ithm using the idea of persistent excitation. The analysis
has also been verified through simulations on the syn-

thetic speech signal.
Il. Error Analysis of RLS Algorithm

Assume thal the inpul signal x(n) is characlerized by un
AR(p) process such that

dn)=wT(n)x(n =1} +e(n) (n

where wi(n—1}=Ix(n—1), -, x(n—p}] is an input data
vector, wi{n)=[w (n), ---, w(n)| is a vector for Lhe time-
varying filter weight, and the measurement error e{n) is a
centered white Gaussian sequence with variance ;. When
an RLS algorithm is uscd to estimale win) (this correspon-
ds 1o the Yincar prediction), the least squares estimate w(n)
with cxponcntial forgetting is defined by the lollowing
RLS struclure;

win}=w(n—1) +1P{n)x(n — 1) (x(n)—xT(n— ) win— )}
(2)
P '(n)=A(P "Mn—1) +x(n—1Dx"{(n—1) (3)

It starls from arbitrary initial valucs and then conver-
ges to its steady-slate, whose speed (i.e. convergence rate)
partially characterizes its performance. Convergence,
tracking, and estimation error represent different, though
relaled, properties of an exponential RES algoriihm. Thal
is, all adaptive filters experience losses in performance,
which are expressed through the excess mean-squared ee-
ror (MSE), and are a resull of two main sourcer. of error:
self noise and lag crror. Since they arc conflicting each
other, one should find a trade-off in terms of A among
the convergence speed, tracking efficiency, and the esti-
mation error. There have been numcrous theoretical
works for the derivalion of an opltimum {irade-off for &

for various applications, such as in [5-9].

1. Analysis of Speech Signal

An all-pole model such as in Eq. (1) has commonly
been adopled in the parametnc unalysis of the speech sig-
nal. Here, the speech signal is generated by exciling an
all-pole filter by either a white noise sequence or a quasi-
pertodic impulse train. Paramcters in this model are then
cstimated through the lincar prediction, which could be
realized by a block algorithm such as the auwlocorrelation
method or the covariance method[10][11] or by a sequen-
tial algorithm such as a class of RLS atgorithms|12f[13]).

The basic idea of block algorithms is that the model
paramelers remain stationary within the window length,
which usually encompasses several pitch penods. How-
ever, the speech signal is non-stationary and model
paramelers arc lime-varying. Therefore, a large window
size oflen ends up with a poor parameler estimates in the
block algorithms compared 1o the pilch synchronous co-
variance method{l4]. In the sequential cstimation, one
possible approach lor the lime-varying case would be as-
suming that the paramelers in Eq. {1) eilher undergoes an
abrupt parameler changes synchronously to cpoch lo-
cation or Lhe noise variance of Lhe assumed speech se-
quence shows a significant variance at the time ol epoch.
The basis ol the first assumption can be found on Lhe
pitch synchronous speech analysis method. 11 is known
that the pitch synchronous eslimation of the formant par-
ameler provides the most reliable cstimates among van-
ous block-ortented speech analysis methods. The second
assumption is also valid from the parametric model of a
voiced speech signal. Based on these assumptions, it s
guite natural (o assume that the speech signal in Eq. (1}
has guasi-periodsc parameter changes together with im-
pulsive inputs.

Either impulses al each epoch localion in ¢very voiced
sequence or lhe parameter change happening synchron-
ously with the beginnimg of a pilch period causes another
source ol error for the exponential RLS algorithm when
il is applied Lo speech processmg. Singe this error is due
to the variation of signal charactenstics, it might be
calegorized as a lracking error. However, il the elfecl of
these variations subsides fast enough as usually doces, say
within a pitch period of a specch signal, then its cffedd on
the final estimabion error would be negligible and thus it
is rcasomable (o categorize it scparalely. Therefore, we
could divide the ¢stimation error into throc parts;sclf
noise, lag error, and crror due lo sudden parameter vari-
alion. We define the third source of error as Lhe exci-
talion error, which is caused by the abrupt parameter

changes and impulsive input components.

2. Deterministic Error Analysis

In Lhis section, we first identify the source of the exct-
tation errot through a determimstic analysis based on the
previous assumptions. Letl the speech signal is slationary
over an interval of intercst, and thus be represented by
the constant parameter vector, w, and lel {h(n), n=0} be
the impulse response of the system represenied by w.
Now, assume that lwo impulses are applied (o the filter

at times & =0 and n=T, with magnitude g, and g, re-
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spectively. Then, the output speech sequence will be a

superposition of two impulse responses such as
x(n} =g, hin} +g:h(n—Ty) (4)

For n < Ty, the lcast-squares (LS) eslimate wys is the sol-

ution of the normal cqualions,
R(n) - wis = p(n) (5)

where R{(n) and p(n) are the sample correlation malrix und

cross-correlation vector, respeclively, given by

R(n) = i A kxin=1)x"(n—1) )

[

n

p(n)= hz' A% x{n =N x(n) N

To prove the exactness of the LS estimate, it is sul-
ficient to show that R(n)w = p(n). Then, by the uniqueness
of the solution under the assumplion that the sample au-
tocorrelation matrix R(n} is nonsingular, we have wis =w.
Form the normal cquations for linear prediction of he

form

i A" kx(k—1) i w-,x(k—i)=i AR x(k)x(k — 1),
1

[} b=

t=1,..p (8)

it is straightforward to show that the vector w cxactly
satisfies the normal equations. Hence, the LS estimale
becomes exact. This also holds for the interval n 2T, +p.
This result can be simply cxtended to the cqually spaced
multi-pulse case. As a result, we can conclude (hal the
normal equations generate the exact parameter vector es-
timate at times kTo +p<n<kTo— 1| and n>kTy +p lor

k = 0. That is, if the inpul sequence is a superposition of

an impulse response and ils delayed, weighled copies,
then the least-squares and thus the RLS algorithm can
produce an exact solution, provided that an exacl inilia-
lization scheme is employed and the rcal parameler vector
remains constant.

Analysis of the normal equations in the regions To<n
< Ty +p is ralher complicaled. Within this interval, the
normal equations do nol produce an exact solution.
When To s sufficiently large, then it is easy to show thal
the tap weight error vector, w(n) =w —w(n) at time To +k

could be approximated to

W(To +Kk) = g a* ' R™Ty +K)x(Ta—1), k21 @
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Eq. (9) describes a bias in the least-squares cstimation dve
to the impulsive inputs and could be categorized inlo an
excilation error. Note thal he deterministic bias is pro-
porfional Lo the magnilude of the impulsc. From (he
above analysis, il is clear that those paramcters respond
to the existence of the impulses quite sensitively, which
are reflected in sharp peaks on the parameter trajectories,
twi(n), n201".,. The exislence of this crror source could
be ulilized on the design of an event detector using a class
of RLS algorithms{15).

The excitation crror due 1o an impulse lasts only p iter-
ations after the impulse is applicd to the system. From
this exaclness of the LS estimates for n> To +p, we could
deduce thal

R Ty +k)x(To—-1)=0,, k=0 (10)

where 0, is a p-dimensional zero vector. Now, assume that
the undetlying parameter vector step-changes its vilue at
tme To +1 from w +dw 10 w. Also assume (hal the
WRLS algorithm has converged to generate the estimate
w +ow al time Ty. Then we can show that

W(To 4K} = g A~ R YTy +X)x(To + K R(Ty +1) 6w, k>0
an

If dw represents bias or improper initialization, not the
actual change of the tap weight vector, or if dw is small
compared to thc magnitude of impulse, then the first
term in Eq. (11) would be the dominani factor on the in-
terval [To, To +p—1]. Also in speech sequences, il is re-
asonable 1o assume that 8wl < g; for some vector norm,
which makes the dominance of the first term clear. For k
> p, the transient phenomenon caused by the impulsive
input dics oul, and then the sccond term in Eq. (11) be-
comes dominant in w(Tp +k) so that

#(To +k) = AR '(To +K)R(Ty +1)ow, k>p (12)

Eq. (12) shows the transicnt behavior of the excitation cr-
ror. Il the pitch period is long, then this excitation crror
would vanish as the exponential RLS algorithm converges
prior to the next cpoch. Assuming 8 kHz sampling rate
and a pilch period of 10 msec (corresponding to 80 sam-
ples within a pilch period), the exponential RLS algor-
ithm would bave plenty of time lo converge within a
pitch period. For shori pitch periods {as in female voice),
the excitation error may not have cnough time to dic out

and thus can contribute to the overall eslimation error.
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3. Convergence of RLS aigorithm

The convergence of the adaplive algorithms are closefy
related with the property of the inpul data scquence. One
of the important properties is the persislent ¢xcitation
condition|16]. Suppose that there cxists a positive inteper
NZ=p and two rcal values »2 and M, 0<n< M < o0, such
that the persistent excitation condition is satisiicd, i.c.,

nt+N

0<ml< } xG—-Dx'li-D<MI<x (13)
i=a it

tor all #>>0. With this persistent excitalion condition, we

can find asymptolic lower- and upper- bounds on P(n)

such that (derivation is given tn the Appendix)

N

1=
MaN

e

™A )IsP(n)s[

)I. as t— o0 (14)
From Eq. (14), it is casy lo see P(n)—0 as -+, This
phenomenon is compatible with the well-known “burst”™
property of the RLS algorithm.

Let w(n)=w(n) —w(n)} be the estimation error al time n,
and Aw(n)=w{n)—w(n—1) be the parameler’s variation
at time £, Then, from Eqns. (2) and (3), we can derive

win)=[1-AP(n)x{n = 1) x"(n — 1)]-(w(n ~ 1} + Aw(n}}
—AP(n) x(n — 1} e(n) {15)

Using superposition, the eslimation error, w{n), can be
divided into three independent components, i.e. win)=w!
(n) +w2{n) +w(n), cach of which characlerizes ihe ef-
fecls on the estimalion crror due to:(a) initial estimation
error, {b) variations of the signal paramcters, and (¢) sto-
chastic error and satisfies the following equations(17).

win)=AP(N) P "(n—1}w(n—1), w"{0)=w(0) (16a)

w2(n) = AP(N)P "(n— 1 (wx(n—1) +Awln)), w2%0)=0
{16h)

w3n)=AP(n)}P'"(n — Dw3(n=1)~aP{n)x(n— () c(n),
wi0)=0 (16¢c)

Onc can casily verify that the addition of three terms toge-
ther leads to Eq. (15). The convergence of both % '(n) and
w(n) could be verified using (he usual analytic procedure
shown previous works[6]{10). Thus, it is sufficient to ver-
ily the convergence of w2(a} to completely analyze the
convergence of the exponential RLS algorithms for the
abrupt parameter changes. Without loss of generality, sup-
pose that the estimation slarled at time 1= — . This as-

sumption is valid only il the step change of parameters
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are sufficienily spaced so that the exponential RLS algor-
ithm have converged. Also assume thal a change dw in
the paramecter veclor occurs al time nstant Ty +1, so
that Aw(n) =dw-8(To +1), where &(-) is the Kroneker
delta funclion. Since fully converged, we can assume Lhat
w2(Ty) =0 and thus consider dw as an initial estimation
error of 1ype-u for the cstimation algortthm stasting at
time To + 1. To prove the convergence of w2(n), define a

malrix norm by;
IW{n)ll =iy = W' (23) P~'(n} win) amn

Here, win) = w2(n) for the nolational simplicily. Then,
using Eq. {3) and the matnix inversion lemma, il is straig-

hitforward to show (hal

WP "M wn)=2|wTh—DP h—Dwin—1)-—

wiin—Dxtn—13x"(n—1)win—1)

1 +x"(n-1}Pln—1}x(n—1} {8)
so Lhal, for n >> Ty,
";V(n)[ll' o) =
A Fit = Dl — — = 1) xtn — 117 (19)
win P = 1) Pln— D x(n— 1}
and thus
Iw(mllp ym < 20w —Dllp v » < Iwn=Dllp o o, 202

Also, from Eq. (16b), we get by letting 0 =Ty t¢, t>0
w(To +0) = 2" P(Ty +1) P (To) dw (21)

and

N Al P(To +Y)!

ro BTy vl < Iw(To 40l

X

A l(‘ P(TO + 'lﬂ
Apun{P(To)}

[ Swil (22)

Now, from Eq. (14), we can derive the upper and lower
bound on the maximum and minimum cigenvalues of P

(n), respectively, such that

[ > maN
Amau( P{Tl] + t)) 11— aN

and

1 —aN
Ma

A4':1in(P(T[| +I)) = (23]
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so that Eq. (22} becomes

ﬂll-ﬁ-N—léw{M L[+N_I (24)

fowll T om

From Eq. {24), we can conclude that (he estimation cr-
ror componeni due to the parameler step change conver-
ges exponeutially 1o zero, and w(Ty +1) are changing
within a strip, whose size is a lunction of Lhe degree of
persistent excitation of the inpul signal. Also, note hat
the size of this strip reduces exponenbially. It is very deli-
cale to mecasure how a stochastic sequence 15 persistently
excited|16]. However, one thing obvious is thal an impul-
sive compencnt al the same inslant as that of purameter
slep change cnhances the degree ol persistent excilation
of the input signal.

This could be seen atl Figures 1 and 2. They show two
(rajectorics, wi{n) and win), which are linear predictive est-

imates of the signal generated by

x{n}=wian)x{n— 1) +w-{ndx(n =2} g, dln-—-kTo) +eln)
(25)

where e(n) s a Gaussian noise scyuence with variance |,
and Fo=200. The ftter weight are adjusted periodically
according 1o Table |. Fig. | corresponds to fhe case with
g =0 for all k, whereas Fig. 2 1o those vatues in Table ).
The former onc represents Lhe parameter slep change
withoul accompanying impulsive inpuls. In contrast, the
laltcr onc is with impulsive inputs. The exponential RLS
algorithm with A=0.9833 and 0.9672 are used, and it
compared to the block covanance algorithim implemented
by the sliding window covariance (SWC) RLS algorithm
with window size 60. Values ol A —0.9833 and 0.9672 arc
related 1o the window size 60 in some analylic sense, that
is, N=1/01—2x) and A2-={N - /(N +1}[18]. One can
clearly sce thal the exponenlial RLS algorithm converges
much fasler in the former case with impulsive wputs than

the latter case. This is because the exislence of (he impul-

Table 1. Filler paramelers and gains osed Lo pencrale the se-

quence x(n).

Index Wy i) W k) Gain, g,
i 13125 0.7% 100
2 -0.8525 055 |80
3 0.56 0.4 60
4 -0.39 03 40
5 03125 025 20
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Pgure 1. Paramcler trajectornies of wiln) and w{n), when (he exdi-
tation signal is pure Guussian noise sequence (without
impulsive inpuls).
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Figure 2. Parameter Lrajectories of win) and waln), when the exci-
tation signal is Gaussian noise sequence plus an impul-

SIVC Tnpuls.
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sive inputs acteally reduce the size of Lhe strip given on
the Eq. (24).

It could have been expecled from the persisient exci-
tation condition in Eq. (13). When m is fixed, smaller N im-
plies laster convergence rate. Therefore, larger gain would
decrease the vatue of N fto satisfy this condition, and
hence Lhe convergence becomes much quicker. Therefore,
we can conclude that the impulsive inputs cnhances the
convergence property of the RLS algorithm by increasing

Lhe degree of persislent excitation of the input signal.

4. Self Noise

Since the sclf noise ts an interaal problem from using an
exponential windowing, it is depeadent only on the for-
getling factor (or window length) and the inpnt signal
stalistics. The excess MSE duc (o This sell noise can be
written by E[w"(n)R-w(n)|. Notc that R, p, and w are
assumed to be independent of time for the analys's of sclf’

noise. From the normal cquations,

F)=Rn) T A xlk— Dek) (26)

k=1t

Then the variance can be approximated as

[

as Adn -kb

Efw(n)w(n)] = -“— R @n
(Z lu-l:)'l
k=1

Here, large value of 2 is assumced, so that, by the law of

large numbers

n

RM)= ¥ A% (R +8Ry) (28)

and

STk —1D)xTk—1)= Y AXV(R +5Ry) 29)
k=i k=1

where (he elements of ¢R; and JR: have zero means and
small variations compared to the elements of R. L is also
assumed that J5R (| << [|R *|| ! for some consistent ma-

trix norm, and ignorc high order terms 1o get

(R+6R)''=R'+R YR +IR;)R™
=R IR 'SR 'R’ (30)
Now, we have

-2,
3
Y pea in

Q) =tr i RE[win)w(n)]} =

Eq. (31} provides a quantilalive insighl 1o the excess MSE
duc to the cxponential pature of the RLS estimators.
Note that il A — | the cxcess MSE duc to the self noise

vanishes.

5. Excitation Error

Assume that the true tap coeflicient vector undergocs a
step change at time Ty + 1 [rom w -+ 5w to w, lollowed by
the correspending changes in the autocorrclation malrix
and the cross-correlalion vector from R -+ 3R and p 1 dp
to R and p, respectively. For n< Ty, RG2) and pin)} arc as-
sumed to have been adjusied according Lo the old signal

characteristics. Thus, al time Ta,

- Y PR3
E[R(Ty)] = l_l~ l (R +0R) (32)
and

. | ll' +1
Elp(ToH = T (p 1 op) (KR}]

Using the same technique as in Eq. {30), we have

Elw(Toll = w 1 dw (34)
where
dw=—R7'SRR'p +R"'Jp (35)

and w=R""'p. Nolc thal it is further assume R(7) be or-
thogonal to w(xn).

in Eq. (34), the high order term R 'SRR 'op is
ignored. As we nole, an extra error occurs for n> Ty, be-
cause the algorithm cannol adjust the coetlicient vector
from w + ow Lo w inslantly. The excess MSE crror duc to
the excitation error defined by Q,.(n) = E[w'(n) Rw(n)] is

eyual to, at time n="Ty +1
I)n.-u{lrl) Fly= ()‘WT Rdéw (3()}

For n 2> Ty, we have

- R 41" T5R
E(R(n)} = 1Y 20 o7
I -2
and
. p At Tsp
Elp(m) = 22220 (38)

Ignonng the higher order term during calculalion, we have
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Elw(n)=w +A1" " Teow (39)
s0 that
Qoadn) =27 EwT R w = 20T O (T, 1 1) (40)

‘This gives the lime constant equal to 1/2(1 —).

When a peniodic pulse is added (o the white-noise-driv-
ing process al the instant of coefficient change, the transi-
entl behavior of the exponential RLS algorithm becomes
different. Assume that an impulse of amplitude o is ap-
plied to the filter synchronized to the step change of par-
ameter veclor at hme Ty +p + 1. After the irregular cffect
of the impulsive inpul at the interval [Ty +1, To—pl, the
bias in the ap weight vector al time Ty +p is given ap-
proximately by I'iq. (12). Then Lhe initial value of the ex-

cilation error will be
ch;(Tll B P) =K [“V.'.(To +p) R\-V(To +p)| {41)

Il we assume that the magnitude of the impulsive inpul
is large enough, then we have |R(Ty +p)ll> IRCTO Tor

some consislenl malrix norm so that

AP R ~!(To +p) R(To) 5wl < A% IR ~'(To +p) R(To) 15wk < lowl]
42)

From Eq. (40) it has been shown that the lag error decays
exponentially with the time constant 1/2(1 -A) and the
initial condition dwRaéw. Also, Eq. (42) shows lhal the
impulsive nput scales the initial value of the lag error
approximately by the amount A2 IR “'(T, +p) RCTy) dwii?,
Therefore, together with the tesuit in the convergence
analysis (see Eq. (24)). we can conclude that an tmpulsive
component synchronized 1o the parameter step change
not only enhances the convergence characteristics, bul

also decrease the excilation error in a substantiak degree.
[I. Conclusion

In this work, the performance of the exponential RLS
algorithm is analyzed when it is applicd to speech analy-
sis. The existence of a pecubar source ol excess MSE,
denoted as the excilation error, 15 discussed when the
exponential RLS algorithm is applicd 10 estimale ab-
ruptly changing signal parameters. For the analysis of the
cxcitation error, a delerminislic is [irst taken. Then, Lhe
convergence properly of the exponential RLS algorithm

for this particular situation s mvestigated, lollowed by

The Journal of the Acoustical Society of Korea, Vol. 15. No. 3E {1996)

the sludy on the excess MSE due to the excilation error.
It has been [hearctically shown in this paper that the in-
puisive input {(or error vanance) synchronous (o the ab-
rupt change of parameter veclors aclually enhances the
convergence of the RLS algorithm. The analysis has also
been simuliated on the synthetic speech signul. This result
would provide a puide in understanding the reliability of
parameler estimales provided by the exponential RLS al-

gorithm as well as in the design of a VFF-RLS algorithm.
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Appendix

Here we shall show upper- and lower-bound on the co-
variance malrix. Eq. (2) can be written as

P n)=x"P,' + 3 2 *ix(i—1)xTi—1) (A1}
i=t

where Pg'=P~'(0) =41 is the initial condition of the co-

vanance matrix which is vsually chosen to be a large

number of &. Since he covariance matrix P(n) is sym-

metric and positive definite, it satisfies

a

Lnin(P - |(n)) 2 A.mm ( E

1=n—N +i

l""*"x(i-l)x'r(i-l)) + -

t—{e—-DN

+lmin{ E

i<t-rN +1|

l"'”"x(i—l)xT(i—l)] (A2)

where Amin(A) denotes the minimum eigenvalue of the squ-
are malrix A and r=[n/N] denotes the integer part of the
quotient. Combining this with thc persistent excitation
condition, we can find an upper bound for P(n} given hy;

Aeid( P70 2 MmN + 2N 4o 2N 2,7 P")  (A3)

Similarly, the lower bound can also be found from Eq.
(27), which results

[_lh +N
(}l"lmh(l’g') +Mar T ) I<P(n)<
1=y
(Aum-.,(l'a') Fmat g ) (A4)

for ail t> 0. Therefore, for n>>> 1, Eq. {A4) leads to Eq.
(14).
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