• Title/Summary/Keyword: electrochemically active bacteria

Search Result 18, Processing Time 0.024 seconds

Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell

  • Yoon, Seok-Min;Choi, Chang-Ho;Kim, Mi-A;Hyun, Moon-Sik;Shin, Sung-Hye;Yi, Dong-Heui;Kim, Hyung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2007
  • Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.

Bacterial Communities in Microbial Fuel Cells Enriched with High Concentrations of Glucose and Glutamate

  • Choo Yeng-Fung;Lee Ji-Young;Chang In-Seop;Kim Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1481-1484
    • /
    • 2006
  • In this study, glucose and glutamate (copiotrophic conditions) were used to enrich electrochemically active bacteria (EAB) in a microbial fuel cell (MFC). The enriched population consisted primarily of ${\gamma}$-Proteobacteria (36.5%), followed by Firmicutes (27%) and O-Proteobacteria (15%). Accordingly, we compared our own enrichments done under many different conditions with those reported from the literature, all of which support the notion that electrochemically active bacteria are taxonomically very diverse. Enrichments with different types and levels of energy sources (fuels) have clearly yielded many different groups of bacteria.

Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2592-2596
    • /
    • 2012
  • Cysteine capped silver nanoparticles (Cys-AgNPs) have been synthesized by employing electrochemically active biofilm (EAB), $AgNO_3$ as precursor and sodium acetate as electron donor in aqueous solution at $30^{\circ}C$. Cys-AgNPs of 5-10 nm were synthesized and characterized by UV-Vis, FT-IR, XRD and TEM. Capping of the silver nanoparticles with cysteine provides stability to nanoparticles by a thiolate bond between the amino acid and the nanoparticle surface and hydrogen bonding among the Cys-AgNPs. In addition, the antibacterial effects of as-synthesized Cys-AgNPs have been tested against two pathogenic bacteria Escherichia coli (O157:H7) and Pseudomonas aeruginosa (PAO1). The results demonstrate that the as-synthesized Cys-AgNPs can proficiently inhibit the growth and multiplication of E. coli and P. aeruginosa.

Microbial Fuel Cells: Principles and Applications to Environmental Health (미생물 연료전지의 원리 및 환경보건 분야로의 응용)

  • Han, Sun-Kee
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.83-94
    • /
    • 2012
  • The research on microbial fuel cells (MFCs) needs various knowledge of different fields such as electrochemistry, microbiology, environmental engineering, and material engineering. Although electrochemically active bacteria are very diverse, the performance of MFCs is affected primarily by the structure of the reactor system. Thus, the development in the system architecture is critical to lower internal resistance and increase power generation for commercialization. This paper summarizes the principles of MFCs and demonstrates the infinite potential of MFCs in various applications including wastewater treatment, biosensors, biohydrogen production, remote power sources, implantable medical devices, etc.

Characterization of Microbial Fuel Cells Enriched Using Cr(VI)-Containing Sludge

  • Ryu, Eun-Yeon;Kim, Mi-A;Lee, Sang-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • Microbial fuel cells (MFCs) were successfully enriched using sludge contaminated with Cr(VI) and their characteristics were investigated. After enrichment, the charge of the final 10 peaks was 0.51 C ${\pm}$ 1.16%, and the anodic electrode was found to be covered with a biofilm. The enriched MFCs removed 93% of 5 mg/l Cr(VI) and 61% of 25 mg/l Cr(VI). 16S rDNA DGGE profiles from the anodic electrode indicated that ${\beta}$-Proteobacteria, Actinobacteria, and Acinetobacter sp. dominated. This study is the first to report that electrochemically active and Cr(VI)-reducing bacteria could be enriched in the anode compartment of MFCs using Cr(VI)-containing sludge and demonstrates the Cr(VI) removal capability of such MFCs.

Comparison of Electricity Generation and Microbial Community Structure in MFCs Fed with Different Substrates (미생물연료전지에서 공급기질에 따른 전기발생량 및 미생물 군집구조 비교)

  • Yu, Jaecheul;Cho, Haein;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.608-613
    • /
    • 2010
  • Electricity generation of microbial fuel cells (MFC) is greatly affected by the kind of feed substrates because substrates would change microbial community of electrochemically active bacteria (EAB) able to transfer electrons to electrode. The effect of different substrates on electricity generation and microbial community of MFC was investigated. Two-chamber MFCs fed with acetate (A-MFC), butyrate (B-MFC), propionate (P-MFC), glucose (G-MFC) and a mixture (M-MFC) of the 4 substrates (acetate : butyrate : propionate : glucose = 1 : 1 : 1 : 1 as $COD_{Cr}$ base) were operated under continuous mode. The maximum power density was found from the M-MFC ($190W/m^3$) which showed the lowest internal resistance ($89{\Omega}$). The maximum power densities of the pure substrates feed MFCs were in order of A-MFC ($25W/m^3$), P-MFC ($21W/m^3$), B-MFC ($20W/m^3$) and G-MFC ($9W/m^3$). In DGGE analysis, the microbial community structure in suspension was quite different from each others depending on feed substrates, while the community structure in the biofilm was relatively similar regardless of the substrates. This result suggests that the feed substrates would affect the microbial community of suspended growth bacteria than attached growth bacteria resulting in difference of electricity generation in MFCs.

Development of a Biosensor Using Electrochemically-Active Bacteria [EAB] for Measurements of BOD [Biochemical Oxygen Demand] (전기화학적 활성 미생물을 이용한 BOD 측정용 바이오센서의 개발)

  • Yoon, Seok-Min;Choi, Chang-Ho;Kwon, Kil-Koang;Jeong, Bong-Geun;Hong, Seok-Won;Choi, Yong-Su;Kim, Hyung-Joo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.438-442
    • /
    • 2007
  • A biosensor using electrochemically-active bacteria (EAB) enriched in three-electrode electrochemical cell, was developed for the determination of biochemical oxygen demand (BOD) in wastewater. In the electrochemical cell, the positively poised working electrode with applying a potential of 0.7 V was used as an electron acceptor for the EAB. The experimental results using artificial and raw wastewater showed that the current pattern generated by the biosensor and its Coulombic yield were proportional to the concentration of organic matter in wastewater. The correlation coefficients of BOD vs Coulombic yield and $BOD_5$ vs Coulombic yield were 0.99 and 0.98, respectively. These results indicate that the biosensor enriched with the EAB capable of transferring electrons directly toward the electrode can be utilized as a water-quality monitoring system due to a quick and accurate response.

Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation

  • Kim, In-S.;Chae, Kyu-Jung;Choi, Mi-Jin;Verstraete, Willy
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.51-65
    • /
    • 2008
  • The increasing demand for energy in the near future has created strong motivation for environmentally clean alternative energy resources. Microbial fuel cells (MFCs) have opened up new ways of utilizing renewable energy sources. MFCs are devices that convert the chemical energy in the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions, and the reduction of a terminal electron acceptor, most preferentially oxygen, at the cathode. Due to the rapid advances in MFC-based technology over the last decade, the currently achievable MFC power production has increased by several orders of magnitude, and niche applications have been extended into a variety of areas. Newly emerging concepts with alternative materials for electrodes and catalysts as well as innovative designs have made MFCs promising technologies. Aerobic bacteria can also be used as cathode catalysts. This is an encouraging finding because not only biofouling on the cathode is unavoidable in the prolonged-run MFCs but also noble catalysts can be substituted with aerobic bacteria. This article discusses some of the recent advances in MFCs with an emphasis on the performance, materials, microbial community structures and applications beyond electricity generation.