Browse > Article
http://dx.doi.org/10.4014/jmb.1008.08019

Characterization of Microbial Fuel Cells Enriched Using Cr(VI)-Containing Sludge  

Ryu, Eun-Yeon (BIO-IT Fusion Technology Research Institute, Pusan National University)
Kim, Mi-A (Department of Microbiology, Pusan National University)
Lee, Sang-Joon (Department of Microbiology, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.2, 2011 , pp. 187-191 More about this Journal
Abstract
Microbial fuel cells (MFCs) were successfully enriched using sludge contaminated with Cr(VI) and their characteristics were investigated. After enrichment, the charge of the final 10 peaks was 0.51 C ${\pm}$ 1.16%, and the anodic electrode was found to be covered with a biofilm. The enriched MFCs removed 93% of 5 mg/l Cr(VI) and 61% of 25 mg/l Cr(VI). 16S rDNA DGGE profiles from the anodic electrode indicated that ${\beta}$-Proteobacteria, Actinobacteria, and Acinetobacter sp. dominated. This study is the first to report that electrochemically active and Cr(VI)-reducing bacteria could be enriched in the anode compartment of MFCs using Cr(VI)-containing sludge and demonstrates the Cr(VI) removal capability of such MFCs.
Keywords
Microbial fuel cell; hexavalent chromium; Cr(VI) reduction; microbial diversity; denaturing gradient gel electrophoresis (DGGE); electrochemically active bacteria;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Narayanan, N. V. and M. Ganesan. 2008. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation. J. Hazard. Mater. 161: 575-580.
2 Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297-306.   DOI   ScienceOn
3 Quintelas, C., E. Sousa, F. Silva, S. Neto, and T. Tavares. 2006. Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium(VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem. 41: 2087-2091.   DOI   ScienceOn
4 Martins, M., M. L. Faleiro, S. Chaves, R. Tenreiro, E. Santos, and M. C. Costa. 2010. Anaerobic bio-removal of uranium(VI) and chromium(VI): Comparison of microbial community structure. J. Hazard. Mater. 176: 1065-1072.   DOI
5 Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, NewYork.
6 Lowe, K. L., W. Straube, B. Little, and J. Jones-Meehan. 2003. Aerobic and anaerobic reduction of Cr(VI) by Shewanella oneidensis: Effects of cationic metals, sorbing agents and mixed microbial cultures. Acta Biotechnol. 23: 161-178.   DOI   ScienceOn
7 Mohan, D. and C. U. Pittman Jr. 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137: 762-811.   DOI   ScienceOn
8 Molokwane, P. E., K. C. Meli, and E. M. Nkhalambayausi-Chirwa. 2008. Chromium(VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res. 42: 4538-4548.   DOI   ScienceOn
9 Min, B., J. R. Kim, S. E. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968.   DOI   ScienceOn
10 Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 125-152.   DOI   ScienceOn
11 Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. Practical field application of a novel BOD monitoring system. J. Environ. Monitor. 5: 640-643.   DOI   ScienceOn
12 Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177.
13 Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232.   DOI   ScienceOn
14 Costa, M. 2003. Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl. Pharmacol. 118: 1-5.
15 Creager, S. 2007. Solvents and supporting electrolytes, pp. 57-71. In C. G. Zoski (ed.). Handbook of Electrochemistry. Elsevier, Oxford.
16 Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464-482.   DOI   ScienceOn
17 Srivastava, S. and I. S. Thakur. 2007. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18: 637-646.   DOI   ScienceOn
18 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI   ScienceOn
19 Vieira, R. H. and B. Volesky. 2000. Biosorption: A solution to pollution? Int. Microbiol. 3: 17-24.
20 Wang, G., L. Huang, and Y. Zhang. 2008. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotech. Lett. 30: 1959-1966.   DOI   ScienceOn
21 Zakaria, Z. A., Z. Zakaria, S. Surif, and W. A. Ahmad. 2007. Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus. J. Hazard. Mater. 148: 164-171.   DOI
22 Barnhart, J. 1997. Occurrences, uses, and properties of chromium. Reg. Toxicol. Pharmacol. 26: S3-S7.   DOI   ScienceOn
23 Cervantes, C., J. Campos-Garcia, S. Devars, F. Gutierrez-Corona, H. Loza-Tavera, J. C. Torres-Guzman, and R. Moreno-Sanchez. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335-347.   DOI   ScienceOn
24 Ahluwalia, S. S. and D. Goyal. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98: 2243-2257.   DOI   ScienceOn
25 Anderson, D. K., B. J. Condike, and M. D. Piwoni. 1998. 3500-Cr chromium, pp. 3066-3067. In A. E. Greenberg, L. S. Clesceri, and A. D. Eaton (eds.). Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, NW Washington, DC.