Browse > Article

Bacterial Communities in Microbial Fuel Cells Enriched with High Concentrations of Glucose and Glutamate  

Choo Yeng-Fung (Water Environment and Remediation Research Center, Korea Institute of Science and Technology (KIST))
Lee Ji-Young (Water Environment and Remediation Research Center, Korea Institute of Science and Technology (KIST))
Chang In-Seop (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Kim Byung-Hong (Water Environment and Remediation Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.9, 2006 , pp. 1481-1484 More about this Journal
Abstract
In this study, glucose and glutamate (copiotrophic conditions) were used to enrich electrochemically active bacteria (EAB) in a microbial fuel cell (MFC). The enriched population consisted primarily of ${\gamma}$-Proteobacteria (36.5%), followed by Firmicutes (27%) and O-Proteobacteria (15%). Accordingly, we compared our own enrichments done under many different conditions with those reported from the literature, all of which support the notion that electrochemically active bacteria are taxonomically very diverse. Enrichments with different types and levels of energy sources (fuels) have clearly yielded many different groups of bacteria.
Keywords
Microbial fuel cell (MFC); mediator-less; copiotrophic; glucose and glutamate; bacterial community;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 26  (Related Records In Web of Science)
연도 인용수 순위
1 Lee, J., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191   DOI   ScienceOn
2 Logan, B. E., C. Murano, K. Scott, N. D. Gray, and I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Wat. Res. 39: 942-952   DOI   ScienceOn
3 Phung, T. N., J. Lee, K. H. Kang, I. S. Chang, M. G. Gadd, and B. H. Kim. 2004. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol. Lett. 233: 77-82   DOI   ScienceOn
4 Chang, I. S., J. K. Jang, G C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron. 19: 607-613   DOI   ScienceOn
5 Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177   과학기술학회마을
6 Moon, H. S., I. S. Chang, and B. H. Kim. 2006. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresouce Technol. 97: 621-627   DOI   ScienceOn
7 Tender, L. M., C. E. Reimers, H. A. Stecher III, D. E. Holmes, D. R. Bond, D. A. Lowy, K. Pilobello, S. J. Fertig, and D. R. Lovley. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20: 821-825   DOI
8 Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of a Fe (Ill)-reducing bacterium, Shewanella putr'efaciens. J. Microbiol. Biotechnol. 9: 127-131
9 Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine-sediments. Science 295: 483-485   DOI   ScienceOn
10 Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681   DOI
11 Holmes, D. E., D. R. Bond, R. A. O'Neal, C. E. Reimers, L. R. Tender, and D. R. Lovley. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48: 178-190   DOI
12 Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 23:1357-1362
13 Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of the cathode reaction of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 14: 324-329   과학기술학회마을
14 Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541-545   DOI   ScienceOn