Browse > Article
http://dx.doi.org/10.4491/eer.2008.13.2.051

Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation  

Kim, In-S. (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Chae, Kyu-Jung (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Choi, Mi-Jin (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Verstraete, Willy (Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University)
Publication Information
Abstract
The increasing demand for energy in the near future has created strong motivation for environmentally clean alternative energy resources. Microbial fuel cells (MFCs) have opened up new ways of utilizing renewable energy sources. MFCs are devices that convert the chemical energy in the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions, and the reduction of a terminal electron acceptor, most preferentially oxygen, at the cathode. Due to the rapid advances in MFC-based technology over the last decade, the currently achievable MFC power production has increased by several orders of magnitude, and niche applications have been extended into a variety of areas. Newly emerging concepts with alternative materials for electrodes and catalysts as well as innovative designs have made MFCs promising technologies. Aerobic bacteria can also be used as cathode catalysts. This is an encouraging finding because not only biofouling on the cathode is unavoidable in the prolonged-run MFCs but also noble catalysts can be substituted with aerobic bacteria. This article discusses some of the recent advances in MFCs with an emphasis on the performance, materials, microbial community structures and applications beyond electricity generation.
Keywords
Bacterial community; Energy; Electricity; Electrochemically active bacteria; Microbial fuel cells;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 He, Z., Minteer, S. D., and Angenent, L. T., "Electricity generation from artificial wastewater using an upflow microbial fuel cell," Environ. Sci. Technol., 39(14), 5262-5267 (2005)   DOI   ScienceOn
2 Rabaey, K., Ossieur, W., Verhaege, M., and Verstraete, W., "Continuous microbial fuel cells convert carbohydrates to electricity," Water Sci. Technol., 52(1-2), 515-523 (2005)   DOI
3 Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., and Verstraete, W., "Continuous electricity generation at high voltages and currents using stacked microbial fuel cells," Environ. Sci. Technol., 40(10), 3388-3394 (2006)   DOI   ScienceOn
4 Bond, D. R., and Lovley, D. R., "Electricity production by Geobacter sulfurreducens attached to electrodes," Appl. Environ. Microbiol., 69(3), 1548-1555 (2003)   DOI
5 Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K., and Chang, H. I., "A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell," Anaerobe, 7(6), 297-306 (2001)   DOI   ScienceOn
6 Vega, C. A., and Fernandez, I., "Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens," Bioelectrochemistry, 17(2), 217-222 (1987)   DOI   ScienceOn
7 Logan, B., Cheng, S., Watson, V., and Estadt, G., "Graphite fiber brush anodes for increased power production in aircathode microbial fuel cells," Environ. Sci. Technol., 41(9), 3341-3346 (2007)   DOI   ScienceOn
8 Cheng, S., Liu, H., and Logan, B. E., "Increased performance of single-chamber microbial fuel cells using an improved cathode structure," Electrochem. Commun., 8(3), 489-494 (2006)   DOI   ScienceOn
9 HaoYu, E., Cheng, S., Scott, K., and Logan, B., "Microbial fuel cell performance with non-Pt cathode catalysts," J. Power Sources, 171(2), 275-281 (2007)
10 Logan, B. E., and Regan, J. M., "Microbial challenges and applications," Environ. Sci. Technol., 40(17), 5172-5180 (2006)   DOI   ScienceOn
11 Delaney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. D., Stirling, J. L., and Thurston, C. F., "Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations," J. Chem. Technol. Biotechnol., 34 B(1), 13-27 (1984)
12 Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., and Jones-Meehan, J. M., "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10," Environ. Sci. Technol., 40(8), 2629-2634 (2006)   DOI   ScienceOn
13 Min, B. K., Cheng, S. A., and Logan, B. E., "Electricity generation using membrane and salt bridge microbial fuel cells," Water Res., 39(9), 1675-1686 (2005)   DOI   ScienceOn
14 Logan, B. E., Murano, C., Scott, K., Gray, N. D., and Head, I. M., "Electricity generation from cysteine in a microbial fuel cell," Water Res., 39(5), 942-952 (2005)   DOI   ScienceOn
15 Chang, I. S., Moon, H., Bretschger, O., Jang, J. K., Park, H. I., Nealson, K. H., and Kim, B. H., "Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells," J. Microbiol. Biotechnol., 16(2), 163-177 (2006)   과학기술학회마을
16 Lovley, D. R., "Bug juice: harvesting electricity with microorganisms," Nat. Rev. Microbiol., 4(7), 497-508 (2006)   DOI   ScienceOn
17 Kim, B. H., Chang, I. S., and Gadd, G. M., "Challenges in microbial fuel cell development and operation," Appl. Microbiol. Biotechnol., 76(3), 485-494 (2007)   DOI
18 Kim, B. H., Park, D. H., Shin, P. K., Chang, I. S., and Kim, H. J., "Mediator-less biofuel cell," US Patent 5976719 (1999)
19 Clauwaert, P., Van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., and Verstraete, W., "Open air biocathode enables effective electricity generation with microbial fuel cells," Environ. Sci. Technol., 41(21), 7564-7569 (2007)   DOI   ScienceOn
20 Rabaey, K., Boon, N., Hofte, M., and Verstraete, W., "Microbial phenazine production enhances electron transfer in biofuel cells," Environ. Sci. Technol., 39(9), 3401-3408 (2005)   DOI   ScienceOn
21 Park, D. H., and Zeikus, J. G., "Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens," Appl. Microbiol. Biotechnol., 59(1), 58-61 (2002)   DOI
22 Biffinger, J. C., Pietron, J., Ray, R., Little, B., and Ringeisen, B. R., "A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes," Biosens. Bioelectron., 22(8), 1672-1679 (2007)   DOI   ScienceOn
23 Choo, Y. F., Lee, J., Chang, I. S., and Kim, B. H., "Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate," J. Microbiol. Biotechnol., 16(9), 1481-1484 (2006)   과학기술학회마을
24 DiChristina, T. J., Moore, C. M., and Haller, C. A., "Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene," J. Bacteriol., 184(1), 142-151 (2002)   DOI
25 Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J., and Buisman, C. J. N., "Principle and perspectives of hydrogen production through biocatalyzed electrolysis," Int. J. Hydrogen Energy, 31(12), 1632-1640 (2006)   DOI   ScienceOn
26 Liu, H., and Logan, B. E., "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environ. Sci. Technol., 38(14), 4040-4046 (2004)   DOI   ScienceOn
27 Cheng, S., and Logan, B. E., "Sustainable and efficient biohydrogen production via electrohydrogenesis," Proc. Natl. Acad. Sci. U. S. A., 104(47), 18871-18873 (2007)
28 Nath, K., and Das, D., "Hydrogen from biomass," Current Science, 85(3), 265-271 (2003)
29 Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., and Kim, B. H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell," Process Biochem., 39(8), 1007-1012 (2004)   DOI   ScienceOn
30 Jung, S., and Regan, J. M., "Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors," Appl. Microbiol. Biotechnol., 77(2), 393-402 (2007)   DOI
31 Phung, N. T., Lee, J., Kang, K. H., Chang, I. S., Gadd, G. M., and Kim, B. H., "Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences," FEMS Microbiol. Lett., 233(1), 77-82 (2004)   DOI   ScienceOn
32 Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., and Kim, H. J., "Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell," Biotechnol. Lett., 25(7), 541-545 (2003)   DOI   ScienceOn
33 Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., and Kim, B. H., "Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor," Biosens. Bioelectron., 19(6), 607-613 (2004)   DOI   ScienceOn
34 Cheng, S. A., and Logan, B. E., "Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells," Electrochem. Commun., 9(3), 492-496 (2007)   DOI   ScienceOn
35 Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., and Verstraete, W., "Biofuel cells select for microbial consortia that self-mediate electron transfer," Appl. Environ. Microbiol., 70(9), 5373-5382 (2004)   DOI   ScienceOn
36 Reimers, C. E., Tender, L. M., Fertig, S., and Wang, W., "Harvesting energy from the marine sediment-water interface," Environ. Sci. Technol., 35(1), 192-195 (2001)   DOI   ScienceOn
37 Freguia, S., Rabaey, K., Yuan, Z., and Keller, J., "Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells," Electrochim. Acta, 53(2), 598-603 (2007)   DOI   ScienceOn
38 Kim, J. R., Cheng, S., Oh, S. E., and Logan, B. E., "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells," Environ. Sci. Technol., 41(3), 1004-1009 (2007)   DOI   ScienceOn
39 Holmes, D. E., Bond, D. R., O'Neill, R. A., Reimers, C. E., Tender, L. R., and Lovley, D. R., "Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments," Microbial Ecol., 48(2), 178-190 (2004)   DOI
40 Holzman, D. C., "Microbe power!," Environ. Health Perspect., 113(11), A754-A757 (2005)   DOI   ScienceOn
41 Min, B., and Logan, B. E., "Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell," Environ. Sci. Technol., 38(21), 5809-5814 (2004)   DOI   ScienceOn
42 Oh, S. E., and Logan, B. E., "Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies," Water Res., 39(19), 4673-4682 (2005)   DOI   ScienceOn
43 Zuo, Y., Maness, P. C., and Logan, B. E., "Electricity production from steam-exploded corn stover biomass," Energy Fuels, 20(4), 1716-1721 (2006)   DOI   ScienceOn
44 Gregory, K. B., and Lovley, D. R., "Remediation and recovery of uranium from contaminated subsurface environments with electrodes," Environ. Sci. Technol., 39(22), 8943-8947 (2005)   DOI   ScienceOn
45 Liu, H., Cheng, S., and Logan, B. E., "Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell," Environ. Sci. Technol., 39(2), 658-662 (2005)   DOI   ScienceOn
46 Tanisho, S., Kamiya, N., and Wakao, N., "Microbial fuel cell using Enterobacter aerogenes," Bioelectrochem. Bioenerg., 21(1), 25-32 (1989)   DOI   ScienceOn
47 Oh, S., Min, B., and Logan, B. E., "Cathode performance as a factor in electricity generation in microbial fuel cells," Environ. Sci. Technol., 38(18), 4900-4904 (2004)   DOI   ScienceOn
48 Kim, G. T., Webster, G., Wimpenny, J. W. T., Kim, B. H., Kim, H. J., and Weightman, A. J., "Bacterial community structure, compartmentalization and activity in a microbial fuel cell," J. Appl. Microbiol., 101(3), 698-710 (2006)
49 Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., and Kim, H. J., "Operational parameters affecting the performance of a mediator-less microbial fuel cell," Biosens. Bioelectron., 18(4), 327-334 (2003)   DOI   ScienceOn
50 Logan, B. E., Hamelers, B., Rozendal, R., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K., "Microbial fuel cells: Methodology and technology," Environ. Sci. Technol., 40(17), 5181-5192 (2006)   DOI   ScienceOn
51 Logan, B. E., and Regan, J. M., "Electricity-producing bacterial communities in microbial fuel cells," Trends Microbiol., 14(12), 512-518 (2006)   DOI   ScienceOn
52 Schroder, U., "Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency," Phys. Chem. Chem. Phys., 9(21), 2619-2629 (2007)   DOI   ScienceOn
53 Kim, J. R., Jung, S. H., Regan, J. M., and Logan, B. E., "Electricity generation and microbial community analysis of alcohol powered microbial fuel cells," Bioresour. Technol., 98(13), 2568-2577 (2007)   DOI   ScienceOn
54 Du, Z. W., Li, H. R., and Gu, T. Y., "A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy," Biotech. Adv., 25(5), 464-482 (2007)   DOI   ScienceOn
55 Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J., and Phung, N. T., "Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell," Appl. Microbiol. Biotechnol., 63(6), 672-681 (2004)   DOI
56 Park, D. H., and Zeikus, J. G., "Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation," J. Bacteriol., 181(8), 2403-2410 (1999)
57 Rabaey, K., Lissens, G., Siciliano, S. D., and Verstraete, W., "A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency," Biotechnol. Lett., 25(18), 1531-1535 (2003)   DOI   ScienceOn
58 Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R., "Electrode-reducing microorganisms that harvest energy from marine sediments," Science, 295(5554), 483-485 (2002)   DOI   ScienceOn
59 Lovley, D. R., "Microbial fuel cells: novel microbial physiologies and engineering approaches," Curr. Opin. Biotechnol., 17(3), 327-332 (2006)   DOI   ScienceOn
60 Rabaey, K., and Verstraete, W., "Microbial fuel cells: novel biotechnology for energy generation," Trends Biotechnol., 23(6), 291-298 (2005)   DOI   ScienceOn
61 Niessen, J., Schroder, U., Rosenbaum, M., and Scholz, F., "Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells," Electrochem. Commun., 6(6), 571-575 (2004)   DOI   ScienceOn
62 You, S. J., Zhao, Q. L., Zhang, J. N., Jiang, J. Q., and Zhao, S. Q., "A microbial fuel cell using permanganate as the cathodic electron acceptor," J. Power Sources, 162(2), 1409-1415 (2006)
63 Sharma, A. L., Annapoorni, S., and Malhotra, B. D., "Characterization of electrochemically synthesized poly(2-fluoroaniline) film and its application to glucose biosensor," Current Applied Physics, 3(2-3), 239-245 (2003)   DOI   ScienceOn
64 Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H., and Lovley, D. R., "Harvesting energy from the marine sedimentwater interface II. Kinetic activity of anode materials," Biosens. Bioelectron., 21(11), 2058-2063 (2006)   DOI   ScienceOn
65 Chaudhuri, S. K., and Lovley, D. R., "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells," Nat. Biotechnol., 21(10), 1229-1232 (2003)   DOI   ScienceOn
66 Freguia, S., Rabaey, K., Yuan, Z., and Keller, J., "Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation," Environ. Sci. Technol., 41(8), 2915-2921 (2007)   DOI   ScienceOn
67 Min, B., Cheng, S., and Logan, B. E., "Electricity generation using membrane and salt bridge microbial fuel cells," Water Res., 39(9), 1675-1686 (2005)   DOI   ScienceOn
68 Cheng, S., Liu, H., and Logan, B. E., "Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells," Environ. Sci. Techol., 40(1), 364-369 (2006)   DOI   ScienceOn
69 Moon, H., Chang, I. S., Jang, J. K., and Kim, B. H., "Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation," Biochem. Eng. J., 27(1), 59-65 (2005)   DOI   ScienceOn
70 Zhao, F., Harnisch, F., Schrorder, U., Scholz, F., Bogdanoff, P., and Herrmann, I., "Challenges and constraints of using oxygen cathodes in microbial fuel cells," Environ. Sci. Techol., 40(17), 5193-5199 (2006)   DOI   ScienceOn
71 Moon, H., Chang, I. S., and Kim, B. H., "Continuous electricity production from artificial wastewater using a mediator- less microbial fuel cell," Bioresour. Technol., 97(4), 621-627 (2006)   DOI   ScienceOn
72 Oh, S. E., and Logan, B. E., "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells," Appl. Microbiol. Biotechnol., 70(2), 162-169 (2006)   DOI
73 Pham, T. H., Rabaey, K., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Boon, N., and Verstraete, W., "Microbial fuel cells in relation to conventional anaerobic digestion technology," Eng. Life Sci., 6(3), 285-292 (2006)   DOI   ScienceOn
74 Schroder, U., Niessen, J., and Scholz, F., "A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude," Angew. Chem., Int. Ed., 42 (25), 2880-2883 (2003)   DOI   ScienceOn
75 Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W., "Tubular microbial fuel cells for efficient electricity generation," Environ. Sci. Technol., 39(20), 8077-8082 (2005)   DOI   ScienceOn
76 Chae, K. J., Choi, M., Ajayi, F. F., Park, W., Chang, I. S., and Kim, I. S., "Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells," Energy Fuels, 22(1), 169-176 (2008)   DOI   ScienceOn
77 Rozendal, R. A., Hamelers, H. V. M., and Buisman, C. J. N., "Effects of membrane cation transport on pH and microbial fuel cell performance," Environ. Sci. Technol., 40(17), 5206-5211 (2006)   DOI   ScienceOn
78 Bard, A. J., and Faulkner, L. R., Electrochemical methods: fundamentals and applications, Wiley, New York (1980)
79 Liu, H., Cheng, S. A., and Logan, B. E., "Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration," Environ. Sci. Techol., 39(14), 5488-5493 (2005)   DOI   ScienceOn
80 Larminie, J., and Dicks, A., Fuel Cell Systems Explained, Wiley, New York (2003)
81 Tartakovsky, B., and Guiot, S. R., "A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors," Biotechnol. Prog., 22(1), 241-246 (2006)   DOI   ScienceOn
82 Park, D. H., and Zeikus, J. G., "Improved fuel cell and electrode designs for producing electricity from microbial degradation," Biotechnol. Bioeng., 81(3), 348-355 (2003)   DOI   ScienceOn
83 Aelterman, P., Rabaey, K., Clauwaert, P., and Verstraete, W., "Microbial fuel cells for wastewater treatment," Water Sci. Technol., 54(8), 9-15 (2006)
84 Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R., "Extracellular electron transfer via microbial nanowires," Nature, 435(7045), 1098-1101 (2005)   DOI   ScienceOn
85 Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., and Lovley, D. R., "Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells," Appl. Environ. Microbiol., 72(11), 7345-7348 (2006)   DOI   ScienceOn
86 Reimers, C. E., Stecher, H. A., Westall, J. C., Alleau, Y., Howell, K. A., Soule, L., White, H. K., and Girguis, P. R., "Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton," Appl. Environ. Microbiol., 73(21), 7029-7040 (2007)   DOI   ScienceOn
87 Jong, B. C., Kim, B. H., Chang, I. S., Liew, P. W. Y., Choo, Y. F., and Kang, G. S., "Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell," Environ. Sci. Technol., 40(20), 6449-6454 (2006)   DOI   ScienceOn
88 Cheng, S., Liu, H., and Logan, B. E., "Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing," Environ. Sci. Technol., 40(7), 2426-2432 (2006)   DOI   ScienceOn
89 Pham, T. H., Jang, J. K., Chang, I. S., and Kim, B. H., "Improvement of cathode reaction of a mediatorless microbial fuel cell," J. Microbiol. Biotechnol., 14(2), 324-329 (2004)   과학기술학회마을
90 Liu, H., Grot, S., and Logan, B. E., "Electrochemically assisted microbial production of hydrogen from acetate," Environ. Sci. Technol., 39(11), 4317-4320 (2005)   DOI   ScienceOn
91 Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H., and Fredrickson, J. K., "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms," Proc. Natl. Acad. Sci. U. S. A., 103(30), 11358-11363 (2006)
92 Min, B., Kim, J. R., Oh, S. E., Regan, J. M., and Logan, B. E., "Electricity generation from swine wastewater using microbial fuel cells," Water Res., 39(20), 4961-4968 (2005)   DOI   ScienceOn
93 Liu, H., Ramnarayanan, R., and Logan, B. E., "Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell," Environ. Sci. Technol., 38(7), 2281-2285 (2004)   DOI   ScienceOn
94 He, Z., and Angenent, L. T., "Application of bacterial biocathodes in microbial fuel cells," Electroanalysis, 18(19-20), 2009-2015 (2006)   DOI   ScienceOn
95 Gregory, K. B., Bond, D. R., and Lovley, D. R., "Graphite electrodes as electron donors for anaerobic respiration," Environ. Microbiol., 6(6), 596-604 (2004)   DOI   ScienceOn
96 Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaire, L., Ham, T. H., Boeckx, P., Boon, N., and Verstraete, W., "Biological denitrification in microbial fuel cells," Environ. Sci. Technol., 41(9), 3354-3360 (2007)   DOI   ScienceOn
97 Chang, I. S., Moon, H., Jang, J. K., and Kim, B. H., "Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors," Biosens. Bioelectron., 20(9), 1856-1859 (2005)   DOI   ScienceOn
98 Rozendal, R. A., Hamelers, H. V. M., Molenkmp, R. J., and Buisman, J. N., "Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes," Water Res., 41(9), 1984-1994 (2007)   DOI   ScienceOn
99 Sell, D., Krämer, P., and Kreysa, G., "Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell," Appl. Microbiol. Biotechnol., 31(2), 211-213 (1989)   DOI
100 Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., and Herrmann, I., "Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells," Electrochem. Commun., 7(12), 1405-1410 (2005)   DOI   ScienceOn
101 Venkata Mohan, S., Saravanan, R., Raghavulu, S. V., Mohanakrishna, G., and Sarma, P. N., "Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte," Bioresour. Technol., 99(3), 596-603 (2008)   DOI   ScienceOn