References
- Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine-sediments. Science 295: 483-485 https://doi.org/10.1126/science.1066771
- Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177
- Chang, I. S., J. K. Jang, G C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron. 19: 607-613 https://doi.org/10.1016/S0956-5663(03)00272-0
- Holmes, D. E., D. R. Bond, R. A. O'Neal, C. E. Reimers, L. R. Tender, and D. R. Lovley. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48: 178-190 https://doi.org/10.1007/s00248-003-0004-4
- Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 23:1357-1362
- Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of a Fe (Ill)-reducing bacterium, Shewanella putr'efaciens. J. Microbiol. Biotechnol. 9: 127-131
- Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681 https://doi.org/10.1007/s00253-003-1412-6
- Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541-545 https://doi.org/10.1023/A:1022891231369
- Lee, J., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191 https://doi.org/10.1016/S0378-1097(03)00356-2
- Logan, B. E., C. Murano, K. Scott, N. D. Gray, and I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Wat. Res. 39: 942-952 https://doi.org/10.1016/j.watres.2004.11.019
- Moon, H. S., I. S. Chang, and B. H. Kim. 2006. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresouce Technol. 97: 621-627 https://doi.org/10.1016/j.biortech.2005.03.027
- Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of the cathode reaction of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 14: 324-329
- Phung, T. N., J. Lee, K. H. Kang, I. S. Chang, M. G. Gadd, and B. H. Kim. 2004. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol. Lett. 233: 77-82 https://doi.org/10.1016/j.femsle.2004.01.041
- Tender, L. M., C. E. Reimers, H. A. Stecher III, D. E. Holmes, D. R. Bond, D. A. Lowy, K. Pilobello, S. J. Fertig, and D. R. Lovley. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20: 821-825 https://doi.org/10.1038/nbt716