DOI QR코드

DOI QR Code

Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation

  • Kim, In-S. (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Chae, Kyu-Jung (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Choi, Mi-Jin (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Verstraete, Willy (Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University)
  • Published : 2008.06.28

Abstract

The increasing demand for energy in the near future has created strong motivation for environmentally clean alternative energy resources. Microbial fuel cells (MFCs) have opened up new ways of utilizing renewable energy sources. MFCs are devices that convert the chemical energy in the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions, and the reduction of a terminal electron acceptor, most preferentially oxygen, at the cathode. Due to the rapid advances in MFC-based technology over the last decade, the currently achievable MFC power production has increased by several orders of magnitude, and niche applications have been extended into a variety of areas. Newly emerging concepts with alternative materials for electrodes and catalysts as well as innovative designs have made MFCs promising technologies. Aerobic bacteria can also be used as cathode catalysts. This is an encouraging finding because not only biofouling on the cathode is unavoidable in the prolonged-run MFCs but also noble catalysts can be substituted with aerobic bacteria. This article discusses some of the recent advances in MFCs with an emphasis on the performance, materials, microbial community structures and applications beyond electricity generation.

Keywords

References

  1. Logan, B. E., and Regan, J. M., "Electricity-producing bacterial communities in microbial fuel cells," Trends Microbiol., 14(12), 512-518 (2006) https://doi.org/10.1016/j.tim.2006.10.003
  2. Schroder, U., "Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency," Phys. Chem. Chem. Phys., 9(21), 2619-2629 (2007) https://doi.org/10.1039/b703627m
  3. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., and Kim, B. H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell," Process Biochem., 39(8), 1007-1012 (2004) https://doi.org/10.1016/S0032-9592(03)00203-6
  4. You, S. J., Zhao, Q. L., Zhang, J. N., Jiang, J. Q., and Zhao, S. Q., "A microbial fuel cell using permanganate as the cathodic electron acceptor," J. Power Sources, 162(2), 1409-1415 (2006)
  5. Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., and Kim, H. J., "Operational parameters affecting the performance of a mediator-less microbial fuel cell," Biosens. Bioelectron., 18(4), 327-334 (2003) https://doi.org/10.1016/S0956-5663(02)00110-0
  6. Logan, B. E., Hamelers, B., Rozendal, R., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K., "Microbial fuel cells: Methodology and technology," Environ. Sci. Technol., 40(17), 5181-5192 (2006) https://doi.org/10.1021/es0605016
  7. Liu, H., Cheng, S., and Logan, B. E., "Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell," Environ. Sci. Technol., 39(2), 658-662 (2005) https://doi.org/10.1021/es048927c
  8. Liu, H., and Logan, B. E., "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environ. Sci. Technol., 38(14), 4040-4046 (2004) https://doi.org/10.1021/es0499344
  9. Oh, S., Min, B., and Logan, B. E., "Cathode performance as a factor in electricity generation in microbial fuel cells," Environ. Sci. Technol., 38(18), 4900-4904 (2004) https://doi.org/10.1021/es049422p
  10. Kim, G. T., Webster, G., Wimpenny, J. W. T., Kim, B. H., Kim, H. J., and Weightman, A. J., "Bacterial community structure, compartmentalization and activity in a microbial fuel cell," J. Appl. Microbiol., 101(3), 698-710 (2006)
  11. Jung, S., and Regan, J. M., "Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors," Appl. Microbiol. Biotechnol., 77(2), 393-402 (2007) https://doi.org/10.1007/s00253-007-1162-y
  12. Kim, J. R., Jung, S. H., Regan, J. M., and Logan, B. E., "Electricity generation and microbial community analysis of alcohol powered microbial fuel cells," Bioresour. Technol., 98(13), 2568-2577 (2007) https://doi.org/10.1016/j.biortech.2006.09.036
  13. Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J., and Phung, N. T., "Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell," Appl. Microbiol. Biotechnol., 63(6), 672-681 (2004) https://doi.org/10.1007/s00253-003-1412-6
  14. Phung, N. T., Lee, J., Kang, K. H., Chang, I. S., Gadd, G. M., and Kim, B. H., "Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences," FEMS Microbiol. Lett., 233(1), 77-82 (2004) https://doi.org/10.1016/j.femsle.2004.01.041
  15. Logan, B. E., Murano, C., Scott, K., Gray, N. D., and Head, I. M., "Electricity generation from cysteine in a microbial fuel cell," Water Res., 39(5), 942-952 (2005) https://doi.org/10.1016/j.watres.2004.11.019
  16. Rabaey, K., and Verstraete, W., "Microbial fuel cells: novel biotechnology for energy generation," Trends Biotechnol., 23(6), 291-298 (2005) https://doi.org/10.1016/j.tibtech.2005.04.008
  17. Chang, I. S., Moon, H., Bretschger, O., Jang, J. K., Park, H. I., Nealson, K. H., and Kim, B. H., "Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells," J. Microbiol. Biotechnol., 16(2), 163-177 (2006)
  18. Lovley, D. R., "Microbial fuel cells: novel microbial physiologies and engineering approaches," Curr. Opin. Biotechnol., 17(3), 327-332 (2006) https://doi.org/10.1016/j.copbio.2006.04.006
  19. Lovley, D. R., "Bug juice: harvesting electricity with microorganisms," Nat. Rev. Microbiol., 4(7), 497-508 (2006) https://doi.org/10.1038/nrmicro1442
  20. Pham, T. H., Rabaey, K., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Boon, N., and Verstraete, W., "Microbial fuel cells in relation to conventional anaerobic digestion technology," Eng. Life Sci., 6(3), 285-292 (2006) https://doi.org/10.1002/elsc.200620121
  21. Kim, B. H., Chang, I. S., and Gadd, G. M., "Challenges in microbial fuel cell development and operation," Appl. Microbiol. Biotechnol., 76(3), 485-494 (2007) https://doi.org/10.1007/s00253-007-1027-4
  22. Du, Z. W., Li, H. R., and Gu, T. Y., "A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy," Biotech. Adv., 25(5), 464-482 (2007) https://doi.org/10.1016/j.biotechadv.2007.05.004
  23. Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R., "Electrode-reducing microorganisms that harvest energy from marine sediments," Science, 295(5554), 483-485 (2002) https://doi.org/10.1126/science.1066771
  24. Park, D. H., and Zeikus, J. G., "Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation," J. Bacteriol., 181(8), 2403-2410 (1999)
  25. Rabaey, K., Lissens, G., Siciliano, S. D., and Verstraete, W., "A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency," Biotechnol. Lett., 25(18), 1531-1535 (2003) https://doi.org/10.1023/A:1025484009367
  26. Freguia, S., Rabaey, K., Yuan, Z., and Keller, J., "Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation," Environ. Sci. Technol., 41(8), 2915-2921 (2007) https://doi.org/10.1021/es062611i
  27. Min, B., Cheng, S., and Logan, B. E., "Electricity generation using membrane and salt bridge microbial fuel cells," Water Res., 39(9), 1675-1686 (2005) https://doi.org/10.1016/j.watres.2005.02.002
  28. Cheng, S., Liu, H., and Logan, B. E., "Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells," Environ. Sci. Techol., 40(1), 364-369 (2006) https://doi.org/10.1021/es0512071
  29. Moon, H., Chang, I. S., Jang, J. K., and Kim, B. H., "Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation," Biochem. Eng. J., 27(1), 59-65 (2005) https://doi.org/10.1016/j.bej.2005.02.010
  30. Clauwaert, P., Van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., and Verstraete, W., "Open air biocathode enables effective electricity generation with microbial fuel cells," Environ. Sci. Technol., 41(21), 7564-7569 (2007) https://doi.org/10.1021/es0709831
  31. Chaudhuri, S. K., and Lovley, D. R., "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells," Nat. Biotechnol., 21(10), 1229-1232 (2003) https://doi.org/10.1038/nbt867
  32. Park, D. H., and Zeikus, J. G., "Improved fuel cell and electrode designs for producing electricity from microbial degradation," Biotechnol. Bioeng., 81(3), 348-355 (2003) https://doi.org/10.1002/bit.10501
  33. Niessen, J., Schroder, U., Rosenbaum, M., and Scholz, F., "Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells," Electrochem. Commun., 6(6), 571-575 (2004) https://doi.org/10.1016/j.elecom.2004.04.006
  34. Sharma, A. L., Annapoorni, S., and Malhotra, B. D., "Characterization of electrochemically synthesized poly(2-fluoroaniline) film and its application to glucose biosensor," Current Applied Physics, 3(2-3), 239-245 (2003) https://doi.org/10.1016/S1567-1739(02)00209-2
  35. Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H., and Lovley, D. R., "Harvesting energy from the marine sedimentwater interface II. Kinetic activity of anode materials," Biosens. Bioelectron., 21(11), 2058-2063 (2006) https://doi.org/10.1016/j.bios.2006.01.033
  36. Freguia, S., Rabaey, K., Yuan, Z., and Keller, J., "Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells," Electrochim. Acta, 53(2), 598-603 (2007) https://doi.org/10.1016/j.electacta.2007.07.037
  37. Tartakovsky, B., and Guiot, S. R., "A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors," Biotechnol. Prog., 22(1), 241-246 (2006) https://doi.org/10.1021/bp050225j
  38. He, Z., and Angenent, L. T., "Application of bacterial biocathodes in microbial fuel cells," Electroanalysis, 18(19-20), 2009-2015 (2006) https://doi.org/10.1002/elan.200603628
  39. Kim, J. R., Cheng, S., Oh, S. E., and Logan, B. E., "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells," Environ. Sci. Technol., 41(3), 1004-1009 (2007) https://doi.org/10.1021/es062202m
  40. Rozendal, R. A., Hamelers, H. V. M., Molenkmp, R. J., and Buisman, J. N., "Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes," Water Res., 41(9), 1984-1994 (2007) https://doi.org/10.1016/j.watres.2007.01.019
  41. Chae, K. J., Choi, M., Ajayi, F. F., Park, W., Chang, I. S., and Kim, I. S., "Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells," Energy Fuels, 22(1), 169-176 (2008) https://doi.org/10.1021/ef700308u
  42. Rozendal, R. A., Hamelers, H. V. M., and Buisman, C. J. N., "Effects of membrane cation transport on pH and microbial fuel cell performance," Environ. Sci. Technol., 40(17), 5206-5211 (2006) https://doi.org/10.1021/es060387r
  43. Bard, A. J., and Faulkner, L. R., Electrochemical methods: fundamentals and applications, Wiley, New York (1980)
  44. Larminie, J., and Dicks, A., Fuel Cell Systems Explained, Wiley, New York (2003)
  45. Liu, H., Cheng, S. A., and Logan, B. E., "Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration," Environ. Sci. Techol., 39(14), 5488-5493 (2005) https://doi.org/10.1021/es050316c
  46. Cheng, S., Liu, H., and Logan, B. E., "Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing," Environ. Sci. Technol., 40(7), 2426-2432 (2006) https://doi.org/10.1021/es051652w
  47. Pham, T. H., Jang, J. K., Chang, I. S., and Kim, B. H., "Improvement of cathode reaction of a mediatorless microbial fuel cell," J. Microbiol. Biotechnol., 14(2), 324-329 (2004)
  48. Schroder, U., Niessen, J., and Scholz, F., "A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude," Angew. Chem., Int. Ed., 42 (25), 2880-2883 (2003) https://doi.org/10.1002/anie.200350918
  49. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., and Verstraete, W., "Biofuel cells select for microbial consortia that self-mediate electron transfer," Appl. Environ. Microbiol., 70(9), 5373-5382 (2004) https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  50. Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W., "Tubular microbial fuel cells for efficient electricity generation," Environ. Sci. Technol., 39(20), 8077-8082 (2005) https://doi.org/10.1021/es050986i
  51. Zhao, F., Harnisch, F., Schrorder, U., Scholz, F., Bogdanoff, P., and Herrmann, I., "Challenges and constraints of using oxygen cathodes in microbial fuel cells," Environ. Sci. Techol., 40(17), 5193-5199 (2006) https://doi.org/10.1021/es060332p
  52. Moon, H., Chang, I. S., and Kim, B. H., "Continuous electricity production from artificial wastewater using a mediator- less microbial fuel cell," Bioresour. Technol., 97(4), 621-627 (2006) https://doi.org/10.1016/j.biortech.2005.03.027
  53. Oh, S. E., and Logan, B. E., "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells," Appl. Microbiol. Biotechnol., 70(2), 162-169 (2006) https://doi.org/10.1007/s00253-005-0066-y
  54. Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., and Verstraete, W., "Continuous electricity generation at high voltages and currents using stacked microbial fuel cells," Environ. Sci. Technol., 40(10), 3388-3394 (2006) https://doi.org/10.1021/es0525511
  55. Bond, D. R., and Lovley, D. R., "Electricity production by Geobacter sulfurreducens attached to electrodes," Appl. Environ. Microbiol., 69(3), 1548-1555 (2003) https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  56. Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H., and Fredrickson, J. K., "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms," Proc. Natl. Acad. Sci. U. S. A., 103(30), 11358-11363 (2006)
  57. Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R., "Extracellular electron transfer via microbial nanowires," Nature, 435(7045), 1098-1101 (2005) https://doi.org/10.1038/nature03661
  58. Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., and Lovley, D. R., "Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells," Appl. Environ. Microbiol., 72(11), 7345-7348 (2006) https://doi.org/10.1128/AEM.01444-06
  59. Reimers, C. E., Stecher, H. A., Westall, J. C., Alleau, Y., Howell, K. A., Soule, L., White, H. K., and Girguis, P. R., "Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton," Appl. Environ. Microbiol., 73(21), 7029-7040 (2007) https://doi.org/10.1128/AEM.01209-07
  60. Holmes, D. E., Bond, D. R., O'Neill, R. A., Reimers, C. E., Tender, L. R., and Lovley, D. R., "Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments," Microbial Ecol., 48(2), 178-190 (2004) https://doi.org/10.1007/s00248-003-0004-4
  61. Jong, B. C., Kim, B. H., Chang, I. S., Liew, P. W. Y., Choo, Y. F., and Kang, G. S., "Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell," Environ. Sci. Technol., 40(20), 6449-6454 (2006) https://doi.org/10.1021/es0613512
  62. Aelterman, P., Rabaey, K., Clauwaert, P., and Verstraete, W., "Microbial fuel cells for wastewater treatment," Water Sci. Technol., 54(8), 9-15 (2006)
  63. Choo, Y. F., Lee, J., Chang, I. S., and Kim, B. H., "Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate," J. Microbiol. Biotechnol., 16(9), 1481-1484 (2006)
  64. DiChristina, T. J., Moore, C. M., and Haller, C. A., "Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene," J. Bacteriol., 184(1), 142-151 (2002) https://doi.org/10.1128/JB.184.1.142-151.2002
  65. Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J., and Buisman, C. J. N., "Principle and perspectives of hydrogen production through biocatalyzed electrolysis," Int. J. Hydrogen Energy, 31(12), 1632-1640 (2006) https://doi.org/10.1016/j.ijhydene.2005.12.006
  66. Liu, H., Grot, S., and Logan, B. E., "Electrochemically assisted microbial production of hydrogen from acetate," Environ. Sci. Technol., 39(11), 4317-4320 (2005) https://doi.org/10.1021/es050244p
  67. Cheng, S., and Logan, B. E., "Sustainable and efficient biohydrogen production via electrohydrogenesis," Proc. Natl. Acad. Sci. U. S. A., 104(47), 18871-18873 (2007)
  68. Nath, K., and Das, D., "Hydrogen from biomass," Current Science, 85(3), 265-271 (2003)
  69. Holzman, D. C., "Microbe power!," Environ. Health Perspect., 113(11), A754-A757 (2005) https://doi.org/10.1289/ehp.113-a754
  70. Min, B., and Logan, B. E., "Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell," Environ. Sci. Technol., 38(21), 5809-5814 (2004) https://doi.org/10.1021/es0491026
  71. Chang, I. S., Moon, H., Jang, J. K., and Kim, B. H., "Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors," Biosens. Bioelectron., 20(9), 1856-1859 (2005) https://doi.org/10.1016/j.bios.2004.06.003
  72. Oh, S. E., and Logan, B. E., "Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies," Water Res., 39(19), 4673-4682 (2005) https://doi.org/10.1016/j.watres.2005.09.019
  73. Zuo, Y., Maness, P. C., and Logan, B. E., "Electricity production from steam-exploded corn stover biomass," Energy Fuels, 20(4), 1716-1721 (2006) https://doi.org/10.1021/ef060033l
  74. Min, B., Kim, J. R., Oh, S. E., Regan, J. M., and Logan, B. E., "Electricity generation from swine wastewater using microbial fuel cells," Water Res., 39(20), 4961-4968 (2005) https://doi.org/10.1016/j.watres.2005.09.039
  75. Liu, H., Ramnarayanan, R., and Logan, B. E., "Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell," Environ. Sci. Technol., 38(7), 2281-2285 (2004) https://doi.org/10.1021/es034923g
  76. Gregory, K. B., Bond, D. R., and Lovley, D. R., "Graphite electrodes as electron donors for anaerobic respiration," Environ. Microbiol., 6(6), 596-604 (2004) https://doi.org/10.1111/j.1462-2920.2004.00593.x
  77. Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaire, L., Ham, T. H., Boeckx, P., Boon, N., and Verstraete, W., "Biological denitrification in microbial fuel cells," Environ. Sci. Technol., 41(9), 3354-3360 (2007) https://doi.org/10.1021/es062580r
  78. Gregory, K. B., and Lovley, D. R., "Remediation and recovery of uranium from contaminated subsurface environments with electrodes," Environ. Sci. Technol., 39(22), 8943-8947 (2005) https://doi.org/10.1021/es050457e
  79. Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., and Kim, H. J., "Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell," Biotechnol. Lett., 25(7), 541-545 (2003) https://doi.org/10.1023/A:1022891231369
  80. Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., and Kim, B. H., "Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor," Biosens. Bioelectron., 19(6), 607-613 (2004) https://doi.org/10.1016/S0956-5663(03)00272-0
  81. Logan, B. E., and Regan, J. M., "Microbial challenges and applications," Environ. Sci. Technol., 40(17), 5172-5180 (2006) https://doi.org/10.1021/es0627592
  82. Delaney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. D., Stirling, J. L., and Thurston, C. F., "Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations," J. Chem. Technol. Biotechnol., 34 B(1), 13-27 (1984)
  83. Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., and Jones-Meehan, J. M., "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10," Environ. Sci. Technol., 40(8), 2629-2634 (2006) https://doi.org/10.1021/es052254w
  84. Min, B. K., Cheng, S. A., and Logan, B. E., "Electricity generation using membrane and salt bridge microbial fuel cells," Water Res., 39(9), 1675-1686 (2005) https://doi.org/10.1016/j.watres.2005.02.002
  85. Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K., and Chang, H. I., "A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell," Anaerobe, 7(6), 297-306 (2001) https://doi.org/10.1006/anae.2001.0399
  86. Vega, C. A., and Fernandez, I., "Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens," Bioelectrochemistry, 17(2), 217-222 (1987) https://doi.org/10.1016/0302-4598(87)80026-0
  87. Logan, B., Cheng, S., Watson, V., and Estadt, G., "Graphite fiber brush anodes for increased power production in aircathode microbial fuel cells," Environ. Sci. Technol., 41(9), 3341-3346 (2007) https://doi.org/10.1021/es062644y
  88. Cheng, S., Liu, H., and Logan, B. E., "Increased performance of single-chamber microbial fuel cells using an improved cathode structure," Electrochem. Commun., 8(3), 489-494 (2006) https://doi.org/10.1016/j.elecom.2006.01.010
  89. Cheng, S. A., and Logan, B. E., "Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells," Electrochem. Commun., 9(3), 492-496 (2007) https://doi.org/10.1016/j.elecom.2006.10.023
  90. HaoYu, E., Cheng, S., Scott, K., and Logan, B., "Microbial fuel cell performance with non-Pt cathode catalysts," J. Power Sources, 171(2), 275-281 (2007)
  91. Biffinger, J. C., Pietron, J., Ray, R., Little, B., and Ringeisen, B. R., "A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes," Biosens. Bioelectron., 22(8), 1672-1679 (2007) https://doi.org/10.1016/j.bios.2006.07.027
  92. Rabaey, K., Boon, N., Hofte, M., and Verstraete, W., "Microbial phenazine production enhances electron transfer in biofuel cells," Environ. Sci. Technol., 39(9), 3401-3408 (2005) https://doi.org/10.1021/es048563o
  93. Reimers, C. E., Tender, L. M., Fertig, S., and Wang, W., "Harvesting energy from the marine sediment-water interface," Environ. Sci. Technol., 35(1), 192-195 (2001) https://doi.org/10.1021/es001223s
  94. Kim, B. H., Park, D. H., Shin, P. K., Chang, I. S., and Kim, H. J., "Mediator-less biofuel cell," US Patent 5976719 (1999)
  95. Park, D. H., and Zeikus, J. G., "Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens," Appl. Microbiol. Biotechnol., 59(1), 58-61 (2002) https://doi.org/10.1007/s00253-002-0972-1
  96. Tanisho, S., Kamiya, N., and Wakao, N., "Microbial fuel cell using Enterobacter aerogenes," Bioelectrochem. Bioenerg., 21(1), 25-32 (1989) https://doi.org/10.1016/0302-4598(89)87003-5
  97. He, Z., Minteer, S. D., and Angenent, L. T., "Electricity generation from artificial wastewater using an upflow microbial fuel cell," Environ. Sci. Technol., 39(14), 5262-5267 (2005) https://doi.org/10.1021/es0502876
  98. Rabaey, K., Ossieur, W., Verhaege, M., and Verstraete, W., "Continuous microbial fuel cells convert carbohydrates to electricity," Water Sci. Technol., 52(1-2), 515-523 (2005) https://doi.org/10.2166/wst.2005.0561
  99. Sell, D., Krämer, P., and Kreysa, G., "Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell," Appl. Microbiol. Biotechnol., 31(2), 211-213 (1989) https://doi.org/10.1007/BF00262465
  100. Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., and Herrmann, I., "Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells," Electrochem. Commun., 7(12), 1405-1410 (2005) https://doi.org/10.1016/j.elecom.2005.09.032
  101. Venkata Mohan, S., Saravanan, R., Raghavulu, S. V., Mohanakrishna, G., and Sarma, P. N., "Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte," Bioresour. Technol., 99(3), 596-603 (2008) https://doi.org/10.1016/j.biortech.2006.12.026

Cited by

  1. Effect of Exposure Concentration and Time of Fuel Additives on the Indigenous Microbial Community in Forests vol.34, pp.5, 2008, https://doi.org/10.5668/JEHS.2008.34.5.387
  2. Bifunctional Silver Nanoparticle Cathode in Microbial Fuel Cells for Microbial Growth Inhibition with Comparable Oxygen Reduction Reaction Activity vol.45, pp.12, 2011, https://doi.org/10.1021/es2000326
  3. Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells vol.14, pp.38, 2012, https://doi.org/10.1039/c2cp42571h
  4. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters vol.2, pp.4, 2012, https://doi.org/10.1039/C1RA00839K
  5. Recent Advances in Microbial Fuel Cells Integrated with Sludge Treatment vol.35, pp.10, 2012, https://doi.org/10.1002/ceat.201200132
  6. Bioelectricity production using a new electrode in a microbial fuel cell vol.35, pp.7, 2012, https://doi.org/10.1007/s00449-012-0709-1
  7. Treatment of Alcohol Distillery Wastewater Using a Bacteroidetes-Dominant Thermophilic Microbial Fuel Cell vol.46, pp.5, 2012, https://doi.org/10.1021/es203861v
  8. Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell vol.18, pp.4, 2013, https://doi.org/10.4491/eer.2013.18.4.277
  9. Microbial Communities of the Microbial Fuel Cell Using Swine Wastewater in the Enrichment Step with the Lapse of Time vol.35, pp.12, 2013, https://doi.org/10.4491/KSEE.2013.35.12.973
  10. Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems vol.97, pp.1, 2013, https://doi.org/10.1007/s00253-012-4473-6
  11. Using electrical signals of microbial fuel cells to detect copper stress on soil microorganisms vol.66, pp.2, 2014, https://doi.org/10.1111/ejss.12215
  12. Effect of zeolite-coated anode on the performance of microbial fuel cells vol.90, pp.1, 2014, https://doi.org/10.1002/jctb.4290
  13. Microbial fuel cells – Applications for generation of electrical power and beyond pp.1549-7828, 2014, https://doi.org/10.3109/1040841X.2014.905513
  14. Development of cation exchange resin-polymer electrolyte membranes for microbial fuel cell application vol.50, pp.19, 2015, https://doi.org/10.1007/s10853-015-9167-x
  15. Nanocomposite for Oxygen Reduction Reaction in Microbial Fuel Cells vol.8, pp.7, 2016, https://doi.org/10.1021/acsami.5b11198
  16. In Situ Bioremediation Using Sediment Microbial Fuel Cell vol.21, pp.2, 2017, https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000339
  17. An Overview of Electron Acceptors in Microbial Fuel Cells vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00643
  18. Improved petroleum refinery wastewater treatment and seawater desalination performance by combining osmotic microbial fuel cell and up-flow microbial desalination cell pp.1479-487X, 2017, https://doi.org/10.1080/09593330.2017.1410580
  19. Usage of Ti-TiO2 Electrode in Microbial Fuel Cell to Enhance the Electricity Generation and its Biocompatibility vol.404, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.404.371
  20. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen vol.7, pp.8, 2013, https://doi.org/10.1038/ismej.2013.40
  21. Effect of COD and HRT Changes in Submerged Microbial Fuel Cells on Nitrogen Removal at the Level of Domestic Wastewater vol.40, pp.8, 2018, https://doi.org/10.4491/KSEE.2018.40.8.314
  22. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing vol.87, pp.6, 2010, https://doi.org/10.1007/s00253-010-2680-6
  23. Nitrogen removal and electrochemical characteristics depending on separators of two-chamber microbial fuel cells vol.24, pp.3, 2018, https://doi.org/10.4491/eer.2018.211
  24. A Solar-Powered Microbial Electrolysis Cell with a Platinum Catalyst-Free Cathode To Produce Hydrogen vol.43, pp.24, 2009, https://doi.org/10.1021/es9022317
  25. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes vol.102, pp.5, 2011, https://doi.org/10.1016/j.biortech.2010.12.036
  26. Metabolic Roles of Carotenoid Produced by Non-Photosynthetic Bacterium Gordonia alkanivorans SKF120101 vol.22, pp.11, 2008, https://doi.org/10.4014/jmb.1207.07038
  27. Direct electron transfer in E. coli catalyzed MFC with a magnetite/MWCNT modified anode vol.3, pp.37, 2013, https://doi.org/10.1039/c3ra42257g
  28. Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial desalination cells. vol.36, pp.7, 2015, https://doi.org/10.1080/09593330.2014.964333
  29. Carbon‐Based Microbial‐Fuel‐Cell Electrodes: From Conductive Supports to Active Catalysts vol.29, pp.8, 2008, https://doi.org/10.1002/adma.201602547
  30. Microbial fuel cells potential of marine actinobacteria Actinoalloteichus sp. MHA15 from the Havelock island of the Andamans, India vol.3, pp.1, 2019, https://doi.org/10.1016/j.biori.2019.01.003
  31. Development of a Consolidated Anaerobic Digester and Microbial Fuel Cell to Produce Biomethane and Electricity from Cellulosic Biomass Using Bovine Rumen Microorganisms vol.9, pp.2, 2008, https://doi.org/10.4236/jsbs.2019.92002
  32. Effect of Reactor Width and HRT on Simultaneous Removal of Organic Compounds and Nitrogen in Flat-Type Air-Cathode Microbial Fuel Cell vol.41, pp.2, 2008, https://doi.org/10.4491/ksee.2019.41.2.69
  33. 하폐수처리에서 질소 제거를 위한 미생물 전기화학 기술의 동향 vol.34, pp.5, 2008, https://doi.org/10.11001/jksww.2020.34.5.345
  34. Enhanced power generation from algal biomass using multi‐anode membrane‐less sediment microbial fuel cell vol.45, pp.2, 2021, https://doi.org/10.1002/er.5894
  35. Effects of a Hydraulic Series Connection and Flow Direction on Electricity Generation in a Stack Connected with Different Volume MFCs vol.11, pp.3, 2021, https://doi.org/10.3390/app11031019
  36. Fungal-mediated electrochemical system: Prospects, applications and challenges vol.2, pp.None, 2021, https://doi.org/10.1016/j.crmicr.2021.100041
  37. Scalability of microbial electrochemical technologies: Applications and challenges vol.345, pp.None, 2008, https://doi.org/10.1016/j.biortech.2021.126498
  38. A review on recent advancements in bioenergy production using microbial fuel cells vol.288, pp.p2, 2008, https://doi.org/10.1016/j.chemosphere.2021.132512