Browse > Article

Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell  

Yoon, Seok-Min (Department of Microbial Engineering, University of Konkuk)
Choi, Chang-Ho (Department of Microbial Engineering, University of Konkuk)
Kim, Mi-A (Department of Microbiology, Pusan National University)
Hyun, Moon-Sik (Korea BioSystems Co.)
Shin, Sung-Hye (Department of Microbial Engineering, University of Konkuk)
Yi, Dong-Heui (Department of Microbial Engineering, University of Konkuk)
Kim, Hyung-Joon (Department of Microbial Engineering, University of Konkuk)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 110-115 More about this Journal
Abstract
Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.
Keywords
Electrochemical enrichment; electrochemically active bacteria; three-electrode electrochemical cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Caccavo, F. Jr, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. Mcinerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60: 3752-3759
2 Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177   과학기술학회마을
3 Choi, Y., J. Song, S. Jung, and S. Kim. 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11: 863- 869
4 Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152   DOI   ScienceOn
5 Myers, C. R. and J. M. Myers. 1992. Localization of cytochromes to the outer membranes of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429- 3438   DOI
6 Nealson, K. H. and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311-343   DOI   ScienceOn
7 Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297-306   DOI   ScienceOn
8 Wilen, B. M., J. L. Nielsen, K. Keiding, and P. H. Nielsen. 2000. Influence of microbial activity on the stability of activated sludge flocs. Colloids Surf. B Biointerfaces 18: 145-156   DOI   ScienceOn
9 Bakst, M. and B. Howarth Jr. 1975. SEM preparation and observations of the hen's oviduct. Anat. Rec. 181: 211-225   DOI   ScienceOn
10 James, L. and D. Andrew. 2000. Fuel Cell Systems Explained, pp. 63-81. 2nd Ed. John Wiley & Sons. Ltd, Chichester
11 Kim, B. H., T. Ikeda, H. S. Park, H. J. Kim, M. S. Hyun, K. Kano, K. Takagi, and H. Tatsumi. 1999. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech. 13: 475-478   DOI
12 Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel cell. Appl. Biochem. Biotechnol. 39/40: 24-40
13 Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672- 681   DOI   ScienceOn
14 Green, C. D., A. R. Stone, R. H. Turner, and S. A. Clark. 1975. Preparation of nematodes for scanning electron microscopy. J. Microsc. 103: 89-99   DOI
15 Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. Practical field application of a novel BOD monitoring system. J. Environ. Monit. 5: 640-643   DOI   ScienceOn
16 Kang, K. H., J. K. Jang, T. H. Pham, H. S. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25: 1357-1361   DOI   ScienceOn
17 DiChristina, T. J. and E. F. DeLong. 1994. Isolation of anaerobic respiratory mutants of Shewanella putrefaciens and genetic analysis of mutants deficient in anaerobic growth on $Fe^{3+}$. J. Bacteriol. 176: 1468-1474   DOI
18 Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cell. Nat. Biotechnol. 21: 1229-1232   DOI   ScienceOn
19 Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127- 131
20 Kim, H. J., M. S. Hyun, I. S. Chang, and B. H. Kim. 1999. A microbial fuel cell type lactate biosensor using a metalreducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365-367
21 Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biochemical oxygen demand) sensor using a mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541-545   DOI   ScienceOn
22 Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand sensor using a microbial fuel cell type biosensor. Biosens. Bioelectron. 17: 607-613
23 Ieropoulos, I., J. Greenman, C. Melhuish, and J. Hart. 2005. Energy accumulation and improved performance in microbial fuel cells. J. Power Sources 145: 253-256   DOI   ScienceOn
24 Greene, A. C., B. K. C. Patel, and A. J. Sheehy. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47: 505- 509   DOI   ScienceOn
25 Lovley, D. R., S. J. Giovannoni, D. C. White, J. E. Champine, E. J. Phillips, Y. A. Gorby, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159: 336-344   DOI   ScienceOn
26 Moon, H., I. S. Chang, J. K. Jang, K. S. Kim, J. Lee, R. W. Lovitt, and B. H. Kim. 2005. On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 15: 192-196   과학기술학회마을
27 Seeliger, S., R. Cord-Ruwisch, and B. Schink. 1998. A periplasmic and extracellular c-type cytochromes of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J. Bacteriol. 180: 3686-3691
28 Kim, G. T., G. Webster, J. W. T. Wimpenny, B. H. Kim, H. J. Kim, and A. J. Weightman. 2006. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. [In press]
29 Lovely, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287