• Title/Summary/Keyword: digitally controlled

Search Result 107, Processing Time 0.024 seconds

Digitally controlled phase-locked loop with tracking analog-to-digital converter (Tracking analog-to-digital 변환기를 이용한 digital phase-locked loop)

  • Cha, Soo-Ho;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.35-40
    • /
    • 2005
  • A digitally controlled phase-locked loop (DCPLL) is described. The DCPLL has basically the same structure as a conventional analog PLL except for a tracking analog-to-digital converter (ADC). The tracking ADC generates the control signal for voltage controlled oscillator. Since the DCPLL employs neither digitally controlled oscillator nor time-to-digital converter-the key building blocks of digital PLL (DPLL), there is no need for the 03de-off between jitter, power consumption and silicon area. The DCPLL was implemented in a $0.18\mu$m CMOS process and the active area is 1mm $\times$0.35 mm The DCPLL consumes S9mW during the normal opuation and $984\{mu}W$ during the power-down mode from a 1.8V supply. The DCPLL shows 16.8ps ms jitter.

Efficiency Improvement of Power Amplifier Using a Digitally-Controlled Dynamic Bias Switching for LTE Base Station (Digitally-Controlled Dynamic Bias Switching을 이용한 LTE 기지국용 전력증폭기의 효율 개선)

  • Seo, Mincheol;Lee, Sung Jun;Park, Bonghyuk;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.795-801
    • /
    • 2014
  • This paper presents an efficiency enhancement for the high power amplifier using DDBS(Digitally-controlled Dynamic Bias Switching) method which dynamically provides the power amplifier with two bias voltage levels according to the input envelope signal. It is quite easy to adjust the control signal by using a digital processing. The fabricated DDBS PA was evaluated using an 64 QAM FDD LTE signal, which has a center frequency of 2.6 GHz, a bandwidth of 10 MHz and a PAPR of 9.5 dB. The DDBS increases the power amplifier's PAE(Power-Added Efficiency) from 40.9 % to 48 %, at an average output power level of 43 dBm.

Design of a Digitally Controlled LC Oscillator Using DAC for WLAN Applications (WLAN 응용을 위한 DAC를 이용한 Digitally Controlled LC Oscillator 설계)

  • Seo, Hee-Teak;Park, Jun-Ho;Kwon, Duck-Ki;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Dithering scheme has been widely used to improve the resolution of DCO(Digitally Controlled Oscillator) in conventional ADPLLs(All Digital Phase Locked Loop). In this paper a new resolution improvement scheme is proposed where a simple DAC is employed to overcome the problems of dithering scheme. A 2.4GHz LC-based DCO has been designed in a $0.13{\mu}m$ CMOS process with an enhanced frequency resolution for wireless local area network applications. It has a frequency tuning range of 900MHz and a resolution of 58.8Hz. The frequencies are controled by varactors in coarse, fine, and DAC bank. The DAC bank consists of an inversion mode NMOS varactor. The other varactor banks consist of PMOS varactors. Each varactor bank is controlled by 8bit digital signal. The designed DCO exhibits a phase noise of -123.8dBc/Hz at 1MHz frequency offset. The DCO core consumes 4.2mA from 1.2V supply.

A PVT-compensated 2.2 to 3.0 GHz Digitally Controlled Oscillator for All-Digital PLL

  • Kavala, Anil;Bae, Woorham;Kim, Sungwoo;Hong, Gi-Moon;Chi, Hankyu;Kim, Suhwan;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.484-494
    • /
    • 2014
  • We describe a digitally controlled oscillator (DCO) which compensates the frequency variations for process, voltage, and temperature (PVT) variations with an accuracy of ${\pm}2.6%$ at 2.5 GHz. The DCO includes an 8 phase current-controlled ring oscillator, a digitally controlled current source (DCCS), a process and temperature (PT)-counteracting voltage regulator, and a bias current generator. The DCO operates at a center frequency of 2.5 GHz with a wide tuning range of 2.2 GHz to 3.0 GHz. At 2.8 GHz, the DCO achieves a phase noise of -112 dBc/Hz at 10 MHz offset. When it is implemented in an all-digital phase-locked loop (ADPLL), the ADPLL exhibits an RMS jitter of 8.9 ps and a peak to peak jitter of 77.5 ps. The proposed DCO and ADPLL are fabricated in 65 nm CMOS technology with supply voltages of 2.5 V and 1.0 V, respectively.

Digitally Current Controlled DC-DC Switching Converters Using an Adjacent Cycle Sampling Strategy

  • Wei, Tingcun;Wang, Yulin;Li, Feng;Chen, Nan;Wang, Jia
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.227-237
    • /
    • 2016
  • A novel digital current control strategy for digitally controlled DC-DC switching converters, referred to as Adjacent Cycle Sampling (ACS), is proposed in this paper. For the ACS current control strategy, the available time interval from sampling the current to updating the duty ratio, is approximately one switching cycle. In addition, it is independent of the duty ratio. As a result, the contradiction between the processing speed of the hardware and the transient response speed can be effectively relaxed by using the ACS current control strategy. For digitally controlled buck DC-DC switching converters with trailing-edge modulation, digital current control algorithms with the ACS control strategy are derived for three different control objectives. These objectives are the valley, average, and peak inductor currents. In addition, the sub-harmonic oscillations of the above current control algorithms are analyzed and eliminated by using the digital slope compensation (DSC) method. Experimental results based on a FPGA are given, which verify the theoretical analysis results very well. It can be concluded that the ACS control has a faster transient response speed than the time delay control, and that its requirements for hardware processing speed can be reduced when compared with the deadbeat control. Therefore, it promises to be one of the key technologies for high-frequency DC-DC switching converters.

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator

  • Park, Hyung-Gu;Kim, SoYoung;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.198-206
    • /
    • 2013
  • This paper presents a wide band, fine-resolution digitally controlled oscillator (DCO) with an on-chip 3-D solenoid inductor using the 0.13 ${\mu}m$ digital CMOS process. The on-chip solenoid inductor is vertically constructed by using Metal and Via layers with a horizontal scalability. Compared to a spiral inductor, it has the advantage of occupying a small area and this is due to its 3-D structure. To control the frequency of the DCO, active capacitor and active inductor are tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO with solenoid inductor is fabricated in 0.13 ${\mu}m$ process and the die area of the solenoid inductor is 0.013 $mm^2$. The DCO tuning range is about 54 % at 4.1 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The measured phase noise of the DCO output at 5.195 GHz is -110.61 dBc/Hz at 1 MHz offset.

Wide-Band Fine-Resolution DCO with an Active Inductor and Three-Step Coarse Tuning Loop

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Moon, Yeon-Kug;Kim, Su-Ki;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper presents a wide-band fine-resolution digitally controlled oscillator (DCO) with an active inductor using an automatic three-step coarse and gain tuning loop. To control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO tuning range is 58% at 2.4 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The phase noise of the DCO output at 2.4 GHz is -120.67 dBc/Hz at 1 MHz offset.

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

An Adaptive Equalizer with the Digitally Controlled Active Variable Capacitor (디지털 능동형 가변 축전기를 사용한 적응형 이퀄라이저)

  • Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1053-1060
    • /
    • 2016
  • This paper proposes an adaptive equalizer with the digitally controlled active variable capacitor. An equalizing amplifier consists of a main amplifier and a source degeneration RC filter which is implemented using the digitally controlled active variable capacitor for area efficiency and linear loss compensation. The active capacitor changes its capacitance by the amplifier gain control, which is based on miller effect. In the simulated results, the proposed equalizer compensates the high frequency loss and extends the data eye width from 0.31 UI to 0.64 UI.

Study on Induction Motor Drive using Digitally Controlled Push-Pull Converter (디지털적으로 제어되는 푸쉬풀 컨버터를 사용하는 유도 전동기 드라이브에 대한 연구)

  • Kim, N.H.;Baik, W.S.;Choi, K.H.;Won, J.S.;Hwang, D.H.;Kim, M.H.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.478-480
    • /
    • 2008
  • On this paper, digitally controlled push-pull dc-dc converter and dc-ac inverter for induction motor control are presented, which is used one DSP(digital signal processor). This system has 12V battery input for the push-pull converter, and the push-pull converter generates 300V output for induction motor inverter input. In order to compensate the push-pull converter, the transfer function of push-pull converter is derived and digital PI compensator is adapted. Through bode diagram, stability of digital controlled push-pull converter is analyzed. To verify the proposed system, digital simulation of the induction motor drive using digital push-pull converter are performed.

  • PDF