• Title/Summary/Keyword: differential-difference equations

Search Result 218, Processing Time 0.02 seconds

SOME RESULTS RELATED TO COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS OF CERTAIN TYPES

  • Liu, Kai;Dong, Xianjing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1453-1467
    • /
    • 2014
  • In this paper, we consider the growth and existence of solutions of differential-difference equations of certain types. We also consider the differential-difference analogues of Br$\ddot{u}$ck conjecture and give a short proof on a theorem given by Li, Yang and Yi [18]. Our additional purpose is to explore the similarity or difference on some problems in differential, difference and differential-difference fields.

SOME RESULTS ON MEROMORPHIC SOLUTIONS OF Q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • Lingyun Gao;Zhenguang Gao;Manli Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.593-610
    • /
    • 2023
  • In view of Nevanlinna theory, we investigate the meromorphic solutions of q-difference differential equations and our results give the estimates about counting function and proximity function of meromorphic solutions to these equations. In addition, some interesting results are obtained for two general equations and a class of system of q-difference differential equations.

GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS WITH COEFFICIENTS HAVING THE SAME LOGARITHMIC ORDER

  • Biswas, Nityagopal
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.473-481
    • /
    • 2021
  • In this paper, we investigate the relations between the growth of meromorphic coefficients and that of meromorphic solutions of complex linear differential-difference equations with meromorphic coefficients of finite logarithmic order. Our results can be viewed as the generalization for both the cases of complex linear differential equations and complex linear difference equations.

EXISTENCE AND UNIQUENESS RESULTS FOR SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INITIAL TIME DIFFERENCE

  • Nanware, J.A.;Dawkar, B.D.;Panchal, M.S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1035-1044
    • /
    • 2021
  • Existence and uniqueness results for solutions of system of Riemann-Liouville (R-L) fractional differential equations with initial time difference are obtained. Monotone technique is developed to obtain existence and uniqueness of solutions of system of R-L fractional differential equations with initial time difference.

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • CHEN, MIN FENG;GAO, ZONG SHENG
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.447-456
    • /
    • 2015
  • In this paper, we investigate the differential-difference equation $(f(z+c)-f(z))^2+P(z)^2(f^{(k)}(z))^2=Q(z)$, where P(z), Q(z) are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations $f(qz)^2+(f^{(k)}(z))^2=1$ and $(f(qz)-f(z))^2+(f^{(k)}(z))^2=1$. If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF