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SOME RESULTS RELATED TO COMPLEX

DIFFERENTIAL-DIFFERENCE EQUATIONS

OF CERTAIN TYPES

Kai Liu and Xianjing Dong

Abstract. In this paper, we consider the growth and existence of solu-
tions of differential-difference equations of certain types. We also consider
the differential-difference analogues of Brück conjecture and give a short
proof on a theorem given by Li, Yang and Yi [18]. Our additional purpose
is to explore the similarity or difference on some problems in differential,
difference and differential-difference fields.

1. Introduction

We assume that the reader is familiar with standard symbols and fundamen-
tal results of Nevanlinna theory [12, 21], which is an efficient tool in considering
the growth and existence of solutions of differential equations [15]. Recently,
difference analogues of Nevanlinna theory were established, such as [7, 9, 10],
which can be used to consider the growth and existence of solutions of difference
equations, such as [4, 5, 7, 10, 11].

In this paper, f(z+c) is the shift of f(z) and f(z+c)−f(z) is the difference
of f(z). If an equation includes derivatives, shifts or differences of f(z), then
the equation is called differential-difference equation, which can be called DDE
for short. Hence, it is interesting to consider the applications of Nevanlinna
theory in the growth and existence of solutions of DDE. Combining the lemma
of logarithmic derivatives [12, 21] with difference analogue of the lemma of loga-
rithmic derivatives [11, Theorem 5.6], the key result for meromorphic functions
with finite order is easily obtained,

(1) m

(
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f(z + c)
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≤ m
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+m
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where S(r, f) is used to denote any quantity satisfies S(r, f) = o(T (r, f)), and
r → ∞ outside of a possible exceptional set of finite logarithmic measure. The
equation (1) takes an important part in considering the value distribution of
solutions of DDE.

This paper is organized as follows. In Section 2, we will consider which
types of DDE can admit transcendental entire solutions. In Section 3, we will
consider different types DDE of certain forms. In Section 4, we will consider
the differential-difference analogues of Brück conjecture.

2. Existence of solutions of differential-difference equations

The Malmquist-Yosida theorem [15, Theorem 10.2] states that if the differ-
ential equation

(2) f ′(z) = R(z, f(z))

admits a transcendental meromorphic solution f(z), then it should be reduced
into a Riccati differential equation f ′(z) = a(z) + b(z)f(z) + c(z)f(z)2, if (2)
admits a transcendental entire solution f(z), it should be reduced into linear
differential equation f ′(z) = a(z) + b(z)f(z), where a(z), b(z), c(z) are small
functions with respect to f(z).

Similar results in difference, we recall the following theorem, which also be
reconsidered in [7, Theorem 9.1] with a different proof.

Theorem A ([13, Proposition 8]). Let c1, . . . , cn ∈ C\{0}. If the difference

equation

n
∑

i=1

f(z + ci) = R(z, f(z)) =
a0(z) + a1(z)f(z) + · · ·+ ap(z)f(z)

p

b0(z) + b1(z)f(z) + · · ·+ bq(z)f(z)q

with small coefficients ai(z), bj(z) with respect to f , admits a transcendental

meromorphic solution with finite order, then max{p, q} ≤ n.

We should see that Theorem A is not valid for meromorphic functions with
infinite order, which can be seen by f(z) = ee

z

satisfying f(z + ln p) = f(z)p,
where p ≥ 2 is an integer. The fundamental reason is the difference analogue of
logarithmic derivative lemma is not valid for meromorphic functions of infinite
order, thus

(3) T (r, f(z + c)) = T (r, f) + S(r, f)

may not true. Using the difference analogues of logarithmic derivative lemma
[7, 9], the equation (3) is true for meromorphic functions with finite order. It
can be stated as follows.

Lemma 2.1. Let f(z) be a transcendental meromorphic function of finite or-

der. Then

(4) T (r, f(z + c)) = T (r, f) + S(r, f).
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The Valiron-Mohon’ko theorem plays an important part in proving Theorem
A and in the following, which can be stated as follows.

Lemma 2.2 ([15, Theorem 2.2.5]). Let f be a meromorphic function. For all

irreducible rational functions in f ,

R(z, f) =
P (z, f)

Q(z, f)
=

∑p

i=0 ai(z)f
i

∑q

j=0 bj(z)f
j
,

with meromorphic coefficients ai(z), bj(z) such that T (r, ai(z)) = S(r, f) and

T (r, bj(z))=S(r, f), then T (r, R(z, f))=dT (r, f)+S(r, f), where d=max{p, q}.

But we cannot obtain T (r, R(z, f(z+ c))) = dT (r, f)+S(r, f) for meromor-
phic functions with infinite order, which can be seen by the function f(z) =
ee

z

+ 1
ee

z , where ec = 1
2 , here T (r, f(z+ c)2) = T (r, f)+S(r, f). In fact, for the

function f(z) = ee
z

, we have T (r, f(z + c)) = ecT (r, f) + S(r, f), where ec can
be an arbitrarily constant. However, for finite order meromorphic functions,
we can obtain a similar result as Theorem A in DDE. It seems that we can
consider the following two different types DDE
(5)

n
∑

k=1

f (k)(z) = R(z, f(z + c)) =
a0(z) + a1(z)f(z + c) + · · ·+ ap(z)f(z + c)p

b0(z) + b1(z)f(z + c) + · · ·+ bq(z)f(z + c)q

and

(6)
n
∑

i=1

f(z+ci) = R(z, f (k)(z)) =
a0(z) + a1(z)f

(k)(z) + · · ·+ ap(z)f
(k)(z)p

b0(z) + b1(z)f (k)(z) + · · ·+ bq(z)f (k)(z)q
,

where the right-hand side of above are rational in both arguments, ai(z), bj(z),
(i = 1, . . . , p, j = 1, . . . , q) are small functions with respect to f and c, ci
are non-zero constants. Remark that above two equations just have a little
difference with (2), it is natural to explore the difference or similarity among
(2), (5) and (6).

Theorem 2.3. Let k be a positive integer. If (5) admits a transcendental

meromorphic solution of finite order, then max{p, q} ≤ k + 1. If (5) admits a

transcendental entire solution of finite order, then max{p, q} ≤ 1.

Proof. Assume that f is a transcendental meromorphic solution of finite order,
using Lemma 2.2, then we have

max{p, q}T (r, f(z + c)) = T (r,

n
∑

k=1

f (k)(z)) + S(r, f)

≤ m(r,

n
∑

k=1

f (k)(z)) +N(r,

n
∑

k=1

f (k)(z)) + S(r, f)

≤ m(r, f) + (k + 1)N(r, f) + S(r, f)

≤ (k + 1)T (r, f) + S(r, f).
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Combining above with Lemma 2.1, we have max{p, q} ≤ k + 1. Obviously, if
f(z) is entire, then max{p, q} ≤ 1. �

Example 1. The function f(z) = ez and c1 = iπ and c2 = 2iπ, thus f(z +
c1) + f(z + c2) ≡ 0, but R(z, f (k)(z)) 6≡ 0, otherwise T (r, f (k)) = S(r, f (k)),
which is impossible.

Remark 1. Example 1 shows that there is no a similar result as Theorem A
or Theorem 2.3 for DDE (6). From the following two examples, we see that
Theorem 2.3 is not valid for meromorphic functions with infinite order.

Example 2. The function f(z) = ee
z

is an entire solution of equation

f ′(z) = ezf(z + c)p,

where ec = 1
p
, p ≥ 3 is a positive integer.

Example 3. The function f(z) = ee
z

− 1
ee

z is an entire solution of equation

f ′(z) = 2ez + ezf(z + c)2,

where ec = 1
2 .

In what follows, we will consider the existence of solutions of another type
DDE, we need the next lemma. We assume ai(i = 0, 1, . . . , p), bj(j = 1, . . . , q)
are small periodic functions with period c with respect to f(z) in the following.

Lemma 2.4. If f(z) is a transcendental entire function with finite order, then

T (r, f(z)n[apf(z + c)p + · · ·+ a1f(z + c) + a0])

= (n+ p)T (r, f) + S(r, f).(7)

Proof. From Lemma 2.1, we get

T (r, f(z)n[apf(z + c)p + · · ·+ a1f(z + c) + a0])

≤ nT (r, f) + pT (r, f(z + c)) +O(1)

= (n+ p)T (r, f) + S(r, f).(8)

On the other hand,

(n+ p)T (r, f)

= (n+ p)m(r, f)

≤ m(r, f(z)n[apf(z)
p + · · ·+ a1f(z) + a0])

= m

(

r, f(z)n[apf(z + c)p + · · ·+ a0]
apf(z)

p + · · ·+ a0
apf(z + c)p + · · ·+ a0

)

≤ m(r, f(z)n[apf(z + c)p + · · ·+ a0]) +m

(

r,
apf(z)

p + · · ·+ a0
apf(z + c)p + · · ·+ a0

)

≤ T (r, f(z)n[apf(z + c)p + · · ·+ a0]) + S(r, f).

Combining above with (8), then (7) follows. �
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From above proof, we see that f(z)n can be replaced by a polynomial of
f(z) of degree n. However, Lemma 2.4 is not valid for meromorphic functions
with finite order, which can be seen by the following two examples.

Example 4. The function f(z) = 1+ez

1−ez
, ec = −1. Then

f(z)[f(z + c) + 1] =
2

1− ez
,

hence T (r, f(z)[f(z + c) + 1]) = T (r, f) + S(r, f). In addition, it is easy to get
af(z)f(z + c) = a, thus T (r, af(z)f(z + c)) = O(1), where a is a non-zero
constant.

Example 5. The function f(z) = tan z, c 6= mπ
2 , where m ∈ N+. Then

f(z)[f(z + c) tan c+ 1] = f(z + c)− tan c, thus

T (r, f(z)[f(z + c) tan c+ 1]) = T (r, f) + S(r, f).

Using Lemma 2.4, we have the following result.

Theorem 2.5. There are no transcendental entire solutions f(z) satisfying

(9) (anf(z + c)n + · · ·+ a1f(z + c))f (k)(z) = P (z),

where P (z) is a non-zero polynomial, n ∈ N+.

Proof. Assume that f is a transcendental entire solution, from Lemma 2.4,
then

(n+ 1)T (r, f) = T (r, f(z)(anf(z + c)n + . . .+ a1f(z + c))) + S(r, f)

= T

(

r,
f(z)

f (k)(z)

)

+ S(r, f) +O(log r)

= T

(

r,
f (k)(z)

f(z)

)

+ S(r, f) +O(log r)

≤ T (r, f) + S(r, f),(10)

which is impossible. �

Lemma 2.6. Let f(z) be a transcendental entire function with finite order and

Let F (z) = f(z)n
apf(z+c)p+···+a1f(z+c)+a0

bqf(z+c)q+···+b1f(z+c)+b0
. If n+ p ≥ q, then

(n+ p− q)T (r, f) ≤ T (r, F (z))

≤ (n+ d)T (r, f) + S(r, f).(11)

If n+ p < q, then

(q − n)T (r, f) ≤ T (r, F (z))

≤ (n+ d)T (r, f) + S(r, f),(12)

where d = max{p, q}.
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Proof. Using Lemma 2.2, we get

T (r, F ) ≤ (n+ d)T (r, f) + S(r, f).

On the other hand, if n+ p ≥ q, from Lemma 2.4, we obtain

(n+ p+ q)T (r, f) = T (r, f(z)n[apf(z + c)p + · · ·+ a0][bqf(z)
q + · · ·+ b0])

≤ T (r, F [bqf(z + c)q + · · ·+ b0][bqf(z)
q + · · ·+ b0])

≤ T (r, F ) + 2qT (r, f) + S(r, f).(13)

Thus, T (r, F ) ≥ (n+ p− q)T (r, f) + S(r, f).

If n+ p < q, let G = f(z + c)n
apf(z+c)p+···+a1f(z+c)+a0

bqf(z+c)q+···+b1f(z+c)+b0
. Thus, we have

qT (r, f) = T (r,G) + S(r, f)

≤ T (r, F ) + T (r,
f(z)n

f(z + c)n
) +O(log r)

≤ T (r, F ) + nT (r, f) + S(r, f).(14) �

Remark 2. We hope to get T (r, F ) = (n + d)T (r, f) + S(r, f) in Lemma 2.6,
if F is an irreducible rational function in f(z) and f(z + c). For example,

for a very simple function F (z) = f(z)[f(z+c)−1]
f(z+c)+1 is irreducible, can we get

T (r, F ) = 2T (r, f)+S(r, f)? However, the following function shows that above
question is false. If f(z) = − cos2 z and c = π

2 , thus F (z) = 1 + sin2 z. Then
we have T (r, F (z)) = T (r, f) = 2T (r, sin z) + S(r, f).

Using the similar method as the proofs of Theorem 2.5 and Lemma 2.6, we
have the next result.

Theorem 2.7. If |n−m| > 2, then there are no transcendental entire solutions

with finite order f(z) satisfying

(15)
anf(z + c)n + · · ·+ a1f(z + c)

bmf(z + c)m + · · ·+ b1f(z + c)
f ′(z) = P (z),

where P (z) is a non-zero polynomial, n ∈ N+.

3. Some results on f ′(z) = a(z)f(g(z)) + b(z)f(z) + c(z)

In this section, we will consider a generally DDE of certain form

(16) f ′(z) = a(z)f(g(z)) + b(z)f(z) + c(z),

which ever be considered by Li and Saleeby [17], also can be seen as the discrete
version of scalar linear equation u′(t)+a1u(t)+a2u(t+w) = 0. They obtained
the following result.

Theorem B ([17, Theorem 2.4]). Suppose that f(z) is a transcendental mero-

morphic function and g(z) is an entire function satisfying (16), where a(z) 6≡ 0,
b(z), c(z) are polynomials. Then g(z) must be linear.
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From Theorem B, we know that g(z) can be written as g(z) = az+ b, where
a is a non-zero constant, b is a constant. Here, we will give the following result
of the solutions of (16).

Theorem 3.1. Suppose that f(z) is a finite order transcendental entire func-

tion of (16) and g(z) is an entire function. If c(z) 6≡ 0, then λ(f) = σ(f), if
c(z) ≡ 0 and λ(f) < σ(f), then σ(f) = 1.

Proof. Assume that λ(f) < σ(f) provided that c(z) 6≡ 0, then f(z) can be
stated as f(z) = h(z)ep(z), where p(z) is a polynomial with deg(p(z)) = p and
σ(h) = λ(f) < σ(f) < +∞. Substituting f(z) into (16), we have

(17) [h′(z) + h(z)p′(z)− b(z)h(z)]ep(z) − a(z)h(az + b)ep(az+b) = c(z).

Set f1(z) :=
[h′(z)+h(z)p′(z)−b(z)h(z)]ep(z)

c(z) and f2(z) :=
−a(z)h(az+b)ep(az+b)

c(z) . Thus,

we have f1(z) + f2(z) = 1. From the second main theorem, we have

T (r, f1) ≤ N(r, f1) +N(r,
1

f1
) +N(r,

1

f2
) + S(r, f1) = S(r, f1),

which is impossible. Thus, λ(f) = σ(f).
If c(z) ≡ 0, from (17), we have p(az + b) − p(z) should be a constant, for

avoiding a contradiction, p(z) = z + b follows, thus σ(f) = 1. �

The differential-difference (or delay-differential) equation f ′(x) = f(x− k),
k > 0 is well known and extensively studied in real analysis, some results can
be found in the book [2]. However, it seems that we have little understanding
on meromorphic solutions of complex differential-difference equation

(18) f ′(z) = f(z + c),

where c is a non-zero complex constant. As we all know that the solution
of f ′(z) = f(z) is of the form f(z) = Aez, where A is a constant and the
solution of f(z) = f(z + c) can be seen as a periodic function with period c.
The solutions of (18) exist, for example, f(z) = ez is a solution of (18), where
c = 2kiπ, k is an integer and f(z) = sin z or f(z) = cos z are also solutions of
(18) for suitable c. Noticing that above three functions are of order one, it is
reasonable to expect the order of (18) is equal to one. Obviously, the equation
(18) has no rational solutions. Using the following lemma, Theorem 3.3 can be
obtained immediately.

Lemma 3.2 ([1]). Let f(z) be a transcendental meromorphic function of order

σ(f) < 1, h > 0. Then there exists an ε-set E such that

f ′(z + c)

f(z + c)
→ 0 and

f(z + c)

f(z)
→ 1 as z → ∞ in C \ E,

uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z 6∈ E,

the function f has no zeros or poles in |ζ − z| ≤ h.
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Theorem 3.3. The order of meromorphic solutions of (18) must be satisfy

σ(f) ≥ 1.

Before stating another result of the entire solutions of (18), we need the
following lemma.

Lemma 3.4. Let p(z), q(z) be non-constant polynomials. If f(z) is a finite

order solution of equation

(19) f(z + c) = ep(z)(f ′(z) + q(z)f(z)),

then σ(f) ≥ deg(p(z)) + 1.

Proof. From (19), we have f(z+c)
f(z) = ep(z)[ f

′(z)
f(z) +q(z)]. Since the lemma of loga-

rithmic derivatives [12, 21] and difference analogue of the lemma of logarithmic
derivatives [7, Corollary 2.6],

m

(

r,
f ′(z)

f(z)

)

= O(log r)

and

m

(

r,
f(z + c)

f(z)

)

= O(rσ(f)−1+ε).

We have

m(r, ep(z)) = O(rdeg(p(z))) ≤ O(rσ(f)−1+ε) +O(log r),

which implies that σ(f) ≥ deg(p(z)) + 1. �

Theorem 3.5. If f(z) is an entire solution of (18) and λ(f) < σ(f) < +∞,

then σ(f) = 1. Furthermore, one of the following three cases holds:

(i) f(z) = (b1z + b0)e
ez+B, where b1 is a non-zero constant and c = 1

e
.

(ii) f(z) = b0e
Az+B, where c = ln |A|+i(argA+2kiπ)

A
and A is a non-zero

constant.

(iii) f(z) = g(z)eAz+B, where g(z) is a transcendental entire function and

satisfies g′(z) = A[g(z+ c)− g(z)] and σ(g) < 1, where A is a non-zero

constant.

Proof. Since λ(f) < σ(f), then 0 is a Borel exceptional value of f(z). Thus f(z)
must have positive integer order [21, p. 106, Corollary]. Assume that σ(f) = q,
q is a positive integer, then the transcendental entire function f(z) can be
written as f(z) = g(z)eQ(z), where Q(z) is a polynomial with deg(Q(z)) = q
and σ(g) = λ(f) < σ(f) < +∞. From (18), we have the follows,

(20) [g′(z) + g(z)Q′(z)]eQ(z) = g(z + c)eQ(z+c).

From Lemma 3.4, we have Q(z + c) − Q(z) = D, where D is a constant,
otherwise σ(g) = σ(f), a contradiction. Thus, we have Q(z) = Az + B, where
A is a non-zero constant, B is a constant. Thus Ac = D and σ(g) < 1. From
(20), we have

(21) g′(z) +Ag(z) = eDg(z + c).
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From Lemma 3.2, we have

(22)
g′(z)

g(z)
+A = eD

g(z + c)

g(z)
,

which implies that A = eD. Thus, (21) changes into

(23) g′(z)−A[g(z + c)− g(z)] = 0.

If g(z) is a polynomial, then we assume that g(z) = bnz
n + bn−1z

n−1 + · · · +
b1z + b0. For avoiding a contradiction with (23), we have g(z) = b1z + b0
and Ac = 1, where b1 is a non-zero constant or g(z) = b where b is a non-
zero constant. If g(z) = b1z + b0, then D = 1 and A = e and c = 1

e
, thus

f(z) = (b1z+b0)e
Az+B. If g(z) = b0, then eAc = A, thus c = ln |A|+i(argA+2kiπ)

A

and f(z) = b0e
Az+B. �

The Borel exceptional polynomial p(z) of f(z) is satisfying

λ(f(z)− p(z)) = lim sup
r→∞

log+ N(r, 1
f(z)−p(z) )

log r
< σ(f),

where λ(f(z)− p(z)) is the exponent of convergence of zeros of f(z)− p(z). If
f(z)− p(z) has no zeros, then p(z) is a Picard exceptional polynomial of f(z).

Theorem 3.6. If f(z) is a finite order entire solution of (18), then f(z) has

no non-zero Borel exceptional polynomial.

Proof. Suppose that p(z) 6≡ 0 is a Borel exceptional polynomial of f(z), from
Hadamard’s factorization theorem, we have f(z) = p(z) + h(z)eq(z), where
σ(h) = λ(f − p) < σ(f) < +∞. From (18), we have

(24) [h′(z) + h(z)q′(z)]eq(z) − h(z + c)eq(z+c) = p(z + c)− p′(z),

It is easy to see that p(z + c)− p′(z) 6≡ 0. Set f1(z) :=
[h′(z)+h(z)p′(z)]eq(z)

p(z+c)−p′(z) and

f2(z) :=
−h(z+c)eq(z+c)

p(z+c)−p′(z) . Thus, f1(z)+f2(z) = 1 follows. Using the second main

theorem, we have

T (r, f1) ≤ N(r, f1) +N(r,
1

f1
) +N(r,

1

f2
) + S(r, f1) = O(rσ(f)−ε) + S(r, f1),

ε is a positive number, which is impossible. Thus, p(z) ≡ 0. Hence f(z) has
no non-zero Borel exceptional polynomial. �

4. Differential-difference analogue of Brück conjecture

Let us recall the Brück conjecture [3] and some results on the conjecture.

Conjecture. If f is a non-constant entire function with hyper-order σ2(f) <
+∞, where σ2(f) is not a positive integer, and if f and f ′ share one finite value
a CM, then f − a = c(f ′ − a) for some constant c 6= 0.
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The cases a = 0 or a 6= 0 with the condition N(r, 1
f ′
) = S(r, f) were proved

by Brück [3]. The case of f is finite order entire function was proved by
Gundersen and Yang [8]. Later on, for functions of infinite order, Chen and
Shon [6] proved that the conjecture holds if σ2(f) <

1
2 . Recently, some results

on difference analogues of Brück conjecture were considered in [14, 16, 18, 19,
20]. Here, we recall the following result with small changes.

Theorem C ([14, Theorem 1]). Let f be an entire function of order σ(f) < 2.
If f(z) and f(z + c) share the value a CM, then

(25)
f(z + c)− a

f(z)− a
= τ

for a non-zero constant τ .

Remark that (25) also can be seen a difference equation, Li, Yang and Yi
[18, Theorem 1.1] considered the growth of solutions of the difference equations
related on the difference analogue of Brück conjecture which can be stated as
follows.

Theorem D. Suppose that f(z) is an entire solution of equation

(26) f(z + c)− a(z) = eP (z)(f(z)− a(z)),

where P (z) is a polynomial and a(z) is an entire function with σ(a) < σ(f) <
+∞. If λ(f(z)− a) < σ(f), then σ(f) = 1 + deg(P ).

However, the proof of Theorem D in [18] is complicated, we will give a short
and different proof of Theorem D. We need the following lemma. Remark that
the equation (27) has a small changes with the original version, but the proof
can be given words by words in [7, Theorem 9.2].

Lemma 4.1. Let A0(z), . . . , An(z) be entire functions such that there exists

an integer l, 0 ≤ l ≤ n, such that σ(Al) > maxj 6=l{σ(Aj)}. If f(z) is a

meromorphic solution to

(27) An(z)f(z + cn) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = 0,

then σ(f) > σ(Al) + 1.

Proof of Theorem D. Since that λ(f − a) < σ(f), then from the Hadamard’s
factorization theorem, we have f(z)−a(z) = h(z)eQ(z), where σ(h) = λ(f(z)−
a) < σ(f) = deg(Q(z)) = q, where Q(z) is a polynomial. Hence

f(z + c)− a(z) = h(z + c)eQ(z+c) + a(z + c)− a(z).

From (26), we have

(28) h(z + c)eQ(z+c) + a(z + c)− a(z) = h(z)eP (z)+Q(z).

If a(z + c)− a(z) ≡ 0, we have h(z + c) = h(z)eP (z)+Q(z)−Q(z+c). Remark that
deg(Q(z)−Q(z+ c)) = q−1 and deg(P (z)) ≤ deg(Q(z)), we discuss two cases:
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Case 1: If q = 1, it implies that σ(f) = 1, then deg(P (z)) = 1 or deg(P (z)) =
0. If deg(P (z)) = 1, from Lemma 4.1, we have σ(h) ≥ 2, which is impossible.
If deg(P (z)) = 0, then σ(f) = 1 + deg(P ) follows.

Case 2: If q ≥ 2, assume that deg(P ) 6= q − 1, then σ(h) ≥ q follows
from Lemma 4.1, which is impossible. Thus deg(P ) = q − 1, implies that
σ(f) = 1 + deg(P ).

If a(z + c)− a(z) 6≡ 0, we have

(29)
h(z + c)eQ(z+c)

a(z)− a(z + c)
−

h(z)eP (z)+Q(z)

a(z)− a(z + c)
= 1,

which can be defined by f1(z) + f2(z) = 1. From the follows

(30)
f(z + c)− a(z + c)

a(z)− a(z + c)
= f1(z),

we have T (r, f1) = T (r, f(z + c)) + S(r, f) = T (r, f) + S(r, f) which implies
that σ(f) = σ(f1). Thus, from the second main theorem, we have

T (r, f1) ≤ N(r, f1) +N(r,
1

f1
) +N(r,

1

f1 − 1
) + S(r, f1)

≤ N

(

r,
1

a(z)− a(z + c)

)

+N

(

1

h(z + c)

)

+N

(

r,
1

h(z)

)

+ S(r, f1)

≤ 2T (r, a) + 2T (r, h) + S(r, f1),(31)

which implies that σ(f1) = q ≤ max{σ(a), σ(h)}, it is a contradiction with the
assumptions. Thus, we have completed the proof of Theorem D. �

Remark 3. From the proof above, we see that a(z) in Theorem D should be a
periodic function with period c.

Finally, we will consider the differential-difference analogue of Brück conjec-
ture. Brück [3] proved that if f(z) is a transcendental entire function and f(z)
and f ′(z) share 0 CM, then f ′(z) = Af(z). Heittokangas etc. [14] obtained
that if f(z) is a transcendental meromorphic function with ρ(f) < 2 and f(z)
and f(z + c) share 0 CM, then f(z) = Af(z + c). However, taking f(z) = ee

z

and ec = 1, thus we have f(z+c)
f ′(z) = e−z. Thus, if f ′(z) and f(z+c) share 0 CM,

the equation f ′(z) = Af(z + c) is also not valid. However, from the next two
examples, it seems that for finite order entire functions, we can get a similar
result.

Example 6. If f(z) = ez − 1 and ec = 2, thus f ′(z) and f(z + c) share the

value 1 CM, and f ′(z)−1
f(z+c)−1 = 1

2 .
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Example 7. If f(z) = ez and ec = 2, thus f ′(z) and f(z + c) share 0 CM,

then f(z+c)
f ′(z) = 2.

From the above examples, it is interesting to explore the problem if f ′(z)

and f(z + c) share a constant a CM, can we get f ′(z)−a

f(z+c)−a
= A, where A is a

non-zero constant. For the proof of our result, we need the following lemma,
which dues to Yang and Yi, see [21]:

Lemma 4.2 ([21, Theorem 1.56]). Let f1, f2, f3 be meromorphic functions such

that f1 is not a constant. If f1 + f2 + f3 = 1 and if

3
∑

j=1

N(r, 1/fj) + 2

3
∑

j=1

N(r, fj) < (λ+ o(1))T (r),

where λ < 1 and T (r) := max1≤j≤3 T (r, fj), then either f2 = 1 or f3 = 1.

Theorem 4.3. Let f(z) be a transcendental entire function with finite order.

Suppose that f(z) has a Picard exceptional value d and f ′(z) and f(z + c)

share the constant a CM, then
f ′(z)−a

f(z+c)−a
= A, where A is a non-zero constant.

Furthermore, if a 6= 0, then A = a
a−d

.

Proof. Since f(z) has a Picard exceptional value d, then we obtain that f(z) =
d+eh(z), where ρ(f) = deg(h(z)) and h(z) is a non-constant polynomial. Thus,

f(z + c) = d+ eh(z+c)

and

f ′(z) = h′(z)eh(z).

Since that f ′(z) and f(z + c) share the constant a CM, then f ′(z)−a

f(z+c)−a
= ep(z),

where p(z) is a polynomial and deg p(z) ≤ deg(h(z)). Thus, we have

(32) h′(z)eh(z) − (d− a)ep(z) − ep(z)+h(z+c) = a.

Case 1: a = 0. Then (32) implies that

(33) h′(z)eh(z) − dep(z) − ep(z)+h(z+c) = 0.

If d = 0, then h′(z)eh(z) = ep(z)+h(z+c). Thus, h′(z) has no zeros, so h(z) is
a polynomial with deg(h(z)) = 1, then p(z) should be a constant.

If d 6= 0, then (33) changes into

(34)
h′(z)eh(z)−p(z)

d
−

eh(z+c)

d
= 1.

Define f1(z) = h′(z)eh(z)−p(z)

d
and f2(z) = eh(z+c)

d
. Hence, f1(z) − f2(z) = 1.

Using the second main theorem, we have

(35) T (r, f2) ≤ N(r,
1

f2
) +N(r,

1

f2 + 1
) +N(r, f2) + S(r, f2) = S(r, f2),
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which is a contradiction. Thus, we have if a = 0, then d = 0 and p(z) reduces
to a constant.

Case 2: a 6= 0 and a 6= d. From Lemma 4.2 and (32), −ep(z)+h(z+c) = a and
h′(z)eh(z)− (d−a)ep(z) = 0 or −(d−a)ep(z) = a follows. In the former case, we
have h(z) is a polynomial with degree one and p(z) + h(z + c) and p(z)− h(z)
are constants simultaneously, thus p(z) should be a constant, then we have
h(z) should be a constant, which is a contradiction with h(z) is a polynomial
of degree one. In the second case, ep(z) = a

a−d
, then p(z) is a constant. If a 6= 0

and a = d, from (32), we get easily a contradiction. Thus, we have completed
the proof of Theorem 4.3. �

Using the similar method as the proof of Theorem B, we also can obtain the
following result.

Theorem 4.4. Suppose that f(z) is an entire solution of equation

(36) f ′(z)− a(z) = ep(z)(f(z + c)− a(z)),

where p(z) is a polynomial and a(z) is an entire function with σ(a) < σ(f). If

λ(f(z)− a(z)) < σ(f), then σ(f) = 1 + deg(p(z)).

Proof. Since that λ(f − a) < σ(f), then from the Hadamard’s factorization
theorem, we have f(z) − a(z) = h(z)eQ(z), where σ(h) = λ(f(z) − a(z)) <
σ(f) = deg(Q(z)) = q and Q(z) is a polynomial. Hence

f(z + c)− a(z) = h(z + c)eQ(z+c) + a(z + c)− a(z),

and

f ′(z)− a(z) = [h′(z) + h(z)Q′(z)]eQ(z) + a′(z)− a(z).

From (36), we have

[h′(z) + h(z)Q′(z)]eQ(z) − h(z + c)eP (z)+Q(z+c)

− eP (z)(a(z + c)− a(z)) = a(z)− a′(z).(37)

We will discuss two cases in the following.

Case 1. a(z)− a′(z) ≡ 0. Then (37) changes into

[h′(z) + h(z)Q′(z)]eQ(z) − h(z + c)eP (z)+Q(z+c)

− eP (z)(a(z + c)− a(z)) = 0.(38)

Assume that a(z + c)− a(z) 6≡ 0, from (38), then we have

[h′(z) + h(z)Q′(z)]eQ(z)−P (z)

a(z + c)− a(z)
−

h(z + c)eQ(z+c)

a(z + c)− a(z)
= 1,

combining above with the second main theorem, we can get a contradiction.
Assume that a(z + c)− a(z) ≡ 0, we have

[h′(z) + h(z)Q′(z)] = h(z + c)eP (z)+Q(z+c)−Q(z).
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Remark that deg(Q(z + c) − Q(z)) = q − 1, if deg(P (z)) 6= q − 1, then from
Lemma 3.4, we have σ(h) ≥ q, which is a contradiction with σ(h) < q. Thus,
deg(P (z)) = q − 1 follows, it implies that σ(f) = 1 + deg(p(z)).

Case 2. a(z) − a′(z) 6≡ 0. It is easy to get [h′(z) + h(z)Q′(z)]eQ(z) is not a
constant.

Assume that a(z + c)− a(z) 6≡ 0, from (37) and Lemma 4.2, if

−h(z + c)eP (z)+Q(z+c)

a(z)− a′(z)
≡ 1,

thus [h′(z) + h(z)Q′(z)]eQ(z) ≡ eP (z)(a(z + c)− a(z)). Hence, we obtain

eQ(z)+Q(z+c) =
[a(z)− a′(z)][a(z + c)− a(z)]

−h(z + c)[h′(z) + h(z)Q′(z)]
.

Remark that deg[Q(z)+Q(z+c)] = deg(Q(z)), the above equation implies that
σ(f) ≤ max{σ(h), σ(a)}, it is a contradiction with the condition of Theorem

4.4. If −eP (z)(a(z+c)−a(z))
a(z)−a′(z) ≡ 1, from (37), we have

[h′(z) + h(z)Q′(z)] = h(z + c)eP (z)+Q(z+c)−Q(z).

The similar discussions in Case 1, we have σ(f) = 1 + deg(p(z)).
Assume that a(z + c) − a(z) ≡ 0, from (37) and the second main theorem

for three small functions [12, Theorem 2.5], we can get a contradiction. Thus,
the proof of Theorem 4.4 is completed. �
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