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SOME RESULTS ON MEROMORPHIC SOLUTIONS OF

Q-DIFFERENCE DIFFERENTIAL EQUATIONS

Lingyun Gao, Zhenguang Gao, and Manli Liu

Abstract. In view of Nevanlinna theory, we investigate the meromor-

phic solutions of q-difference differential equations and our results give the
estimates about counting function and proximity function of meromor-

phic solutions to these equations. In addition, some interesting results are
obtained for two general equations and a class of system of q-difference

differential equations.

1. Introduction and main results

We assume that the readers are familiar with the fundamental results and
standard notations of Nevanlinna theory (see [5,10,12,20]). Such as the Nevan-
linna characteristic function T (r, f), the proximity function m(r, f) and the
counting functions N(r, f), N(r, f). A meromorphic function φ is said to be a
small function of f if the Nevanlinna characteristic T (r, φ) satisfies T (r, φ) =
S(r, f), where S(r, f) denotes any quantity satisfying S(r, f) = o(T (r, f)),
r → ∞, possibly outside a set E of r with finite logarithmic measure. In
addition,

δ(a, f) = 1− lim sup
r→∞

N(r, 1
f−a )

T (r, f)
and Θ(a, f) = 1− lim sup

r→∞

N(r, 1
f−a )

T (r, f)
.

Complex differential equations and complex difference equations play an
important role in the complex analysis. In recent decades, the Nevanlinna
theory involving q-difference has been developed to study q-difference equations
and q-difference polynomials. Many papers have focused on complex difference,
giving many difference analogues in value distribution theory of meromorphic
functions (see [2, 3, 7–9,15,16,18,19]).

In 1993, the following theorem was given in [10].
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Theorem A ([10]). Let

(1.1)
∑

ai(z)f
i0(f ′)i1 · · · (f (n))in = R(z, f),

where R(z, f) is defined as R(z, f) =
∑k

i=0 ai(z)f
i(z)∑l

j=0 bj(z)fj(z)
. If equation (1.1) has a

transcendental meromorphic solution, then l = 0 and k ≤ min{∆, λ + µ(1 −
Θ(∞))}, where

∆ = max{
n∑

α=0

(1 + α)iα}, λ = max{
n∑

α=0

iα}, µ = max{
n∑

α=0

αiα}

and Θ(∞) = 1− lim sup
r→∞

N(r,f)
T (r,f) .

In 2010, Zheng and Chen [22] considered the growth of meromorphic solu-
tions of

n∑
j=1

aj(z)f(q
jz) = R(z, f) =

P (z, f)

Q(z, f)
,

and obtained some results (see, e.g., Theorem 2 in [22]). Later on, Wang et al.
[16] investigated the existence of solutions of non-linear q-difference differential
equation of the form

(1.2)
∑

αi(z)f
i0(f ′(q1z))

i1 · · · (f (n)(qnz))
in = R(z, f).

They showed the following Theorem B.

Theorem B ([16]). If equation (1.2) has a transcendental meromorphic solu-
tion with zero order, then l = 0 and k ≤ min{∆, λ+ µ(1−Θ(∞))}.

Recently, Laine and Latreuch [11] considered meromorphic solutions of delay-
differential equations

(1.3) L(z, f) :=

n∑
j=1

βj(z)f
(kj)(z + cj) =

P (z, f)

Q(z, f)

and

M(z, f) :=

n∏
j=1

f (kj)(z + cj) =
P (z, f)

Q(z, f)
.

A result below was given by Laine and Latreuch in [11].

Theorem C ([11]). Suppose f is a transcendental meromorphic solution of
hyper-order < 1 to equation (1.3). Then

d = max{p, q} ≤ 1 + (n− 1)(1 + δ(∞, f)) +K(1−Θ(∞, f)),

where K :=
∑n

j=1 kj. Furthermore, the following assertions hold:

(1) If d ≥ 2 or d = q = 1, then λ2

(
1
f

)
= ρ2(f).



SOME RESULTS ON MEROMORPHIC SOLUTIONS 595

(2) If φ(z) is a small function of f , not being a solution of (1.3), then
λ2(f − φ) = ρ2(f). In particular, if a0(z) ̸≡ 0, then λ2 (f) = ρ2(f).

Inspired by Laine and Latreuch [11], Zheng and Chen [22], and the references
therein, we will investigate two types of q-difference differential equations

(1.4) Ω(z, fq1 , fq2 , . . . , fqt) =
P (z, f)

Q(z, f)

and

(1.5) Φ(z, fq1 , fq2 , . . . , fqt) =
P (z, f)

Q(z, f)
,

where

P (z, f)

Q(z, f)
:=

α0(z) + α1(z)f + · · ·+ αm(z)fm

β0(z) + β1(z)f + · · ·+ βn(z)fn

with meromorphic coefficients αµ(z) (µ = 0, 1, . . . ,m), βν(z) (ν = 0, 1, . . . , n),
which are small functions of f .

For the convenience of readers, we give some notations below. We set

(1.6) Ω(z, fq1 , fq2 , . . . , fqt) :=

s∑
j=1

ηj(z)

t∏
i=1

f
αj

i,0
qi (f

′

qi)
αj

i,1 · · · (f (ki)
qi )

αj
i,ki

and

(1.7) Φ(z, fq1 , fq2 , . . . , fqt) :=
Ω1(z, fq1 , fq2 , . . . , fqt)

Ω2(z, fq1 , fq2 , . . . , fqt)
,

where ηj(z) are small functions of f , fqi ≡ f(qiz) (i = 1, 2, . . . , t), |qi| ̸= 0 and

ki, α
j
i,l (l = 0, 1, . . . , ki) are non-negative integers.

We also need to fix a collection of notations. The quantities

γi(Ω) := max
1≤j≤s

ki∑
l=0

αj
i,l, Γi(Ω) := max

1≤j≤s

ki∑
l=1

lαj
i,l, ∆i(Ω) := max

1≤j≤s

ki∑
l=0

(l + 1)αj
i,l

are called, respectively, the degree γi(Ω), the weight Γi(Ω) and the hyper-weight
∆i(Ω) of Ω(z, fq1 , fq2 , . . . , fqt) with respect to fqi . One can observe that

max{γi(Ω),Γi(Ω)} ≤ ∆i(Ω) ≤ γi(Ω) + Γi(Ω).

Moreover, the total degree, weight and hyper-weight of Ω(z, fq1 , fq2 , . . . , fqt)
are defined as

(1.8) γΩ :=

t∑
i=1

γi(Ω), ΓΩ :=

t∑
i=1

Γi(Ω), ∆Ω :=

t∑
i=1

∆i(Ω),
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and the classical total degree, weight and hyper-weight of Ω(z, fq1 , fq2 , . . . , fqt)
are usually defined as:

γ′
Ω := max

1≤j≤s
{

t∑
i=1

ki∑
l=0

αj
i,l},

Γ′
Ω := max

1≤j≤s
{

t∑
i=1

ki∑
l=1

lαj
i,l},

∆′
Ω := max

1≤j≤s
{

t∑
i=1

ki∑
l=0

(l + 1)αj
i,l},

respectively. Clearly, γ′
Ω ≤ γΩ, Γ

′
Ω ≤ ΓΩ and ∆′

Ω ≤ ∆Ω.
Similarly, the total degree, weight and hyper-weight of Φ(z, fq1 , fq2 , . . . , fqt)

are defined as

γΦ :=

t∑
i=1

γi(Φ), ΓΦ :=

t∑
i=1

Γi(Φ), ∆Φ :=

t∑
i=1

∆i(Φ),

where
γi(Φ) := max{γi(Ω1), γi(Ω2)},
Γi(Φ) := max{Γi(Ω1),Γi(Ω2)},
∆i(Φ) := max{∆i(Ω1),∆i(Ω2)}.

We can now state our main results.

Theorem 1.1. Suppose that f is a transcendental meromorphic solution of
zero order of equation (1.4). Then

(1.9) d = max{m,n} ≤ γ′
Ω + (γΩ − γ′

Ω)(1− δ(∞, f)) + ΓΩ(1−Θ(∞, f)).

Furthermore, the following assertions hold:

(1) If d ≥ γΩ, then f has infinity many poles.
(2) If n ≥ m, then d = n ≤ γΩ(1− δ(∞, f)) + ΓΩ(1−Θ(∞, f)).

Example 1.2 shows that the condition of zero order can not be removed.
Example 1.3 is given to justify the validity of inequality (1.9).

Example 1.2. The meromorphic function f(z) = tan z with order 1 solves

Ω(z, f(2z), f(3z)) : = tan′ 2z + tan 3z

=
−f7 − 6f6 + 5f5 − 10f4 − 7f3 − 2f2 + 3f + 2

−3f6 + 7f4 − 5f2 + 1
.

Here, d = 7, γΩ = γ′
Ω = 2, ΓΩ = 1 and Θ(∞, f) = 0. We observe that the

inequality (1.9) fails.

Let q ∈ C such that 0 < |q| < 1. Define

(1.10) Γq(x) :=
(q; q)∞
(qx; q)∞

(1− q)1−x,
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where (a; q)∞ =
∏∞

k=0(1 − aqk). (1.10) is a meromorphic function with poles
at x = −n± 2πik/ log q, where k and n are non-negative integers [1].

Example 1.3. Let f(z) := (1− q)x−1Γq(x), z = qx and f(0) := (q, q)∞. Then
f(z) is a meromorphic function of zero order with no zeros, having its poles at
{q−k}∞k=0. f(z) is a solution of

f(qz)f(q2z)

(1− qz)(1− z)2
= f2.

Here, d = 2, γΩ = γ′
Ω = 2 and ΓΩ = 0.

Theorem 1.4. Suppose that f is a transcendental meromorphic solution of
zero order of equation (1.5). Then

(1.11) d = max{m,n} ≤ min{γΦ + ΓΦ(1−Θ(∞, f)), ∆Φ}.

Moreover, if Ω1(z, 0, 0, . . . , 0)β0(z)−Ω2(z, 0, 0, . . . , 0)α0(z) ̸≡ 0, then δ(0, f) =
0.

We give an example below to show that the inequality (1.11) can occur.

Example 1.5. Let f(z) := (1− q)x−1Γq(x), z = qx and f(0) := (q, q)∞. Then
f(z) is a solution of

f2(qz) + f(q2z)

f(qz) + f2(q2z)
=

(1− z)f + (1− qz)

1 + (1− qz)2(1− z)f
.

Here, d = 1, γΦ = 4, ΓΦ(1−Θ(∞, f)) = 0, ∆Φ = 4.

Theorem 1.6. If equation (1.5) admits a transcendental meromorphic solution
of zero order with N(r, f) = S(r, f), then

m ≤ γ′
Ω1

and n ≤ γ′
Ω2

.

We proceed to consider a more general equation of form

(1.12) Ω(z, fq1 , fq2 , . . . , fqt) + ω(z)

(
f ′(z)

f(z)

)s1

=
P (z, f)

Q(z, f)
,

where s1 is a positive integer, ω(z) is a small function of f . We prove the
following theorem.

Theorem 1.7. If equation (1.12) admits a transcendental meromorphic solu-
tion of zero order, then

d = max{m,n} ≤ min{γΩ+ΓΩ(1−Θ(∞, f)),∆Ω}+2s1−s1Θ(∞, f)−s1Θ(0, f).

Furthermore, the following assertions hold:

(1) If d = ∆Ω + 2s1, then

T (r, f) = N(r, f) + S(r, f) = N

(
r,

1

f

)
+ S(r, f).
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(2) If Q(z, 0) ̸≡ 0, then

d ≤ min{γΩ + ΓΩ(1−Θ(∞, f)),∆Ω}+ s1(1−Θ(∞, f)).

For some related results, we refer the reader to [11, 17] and the reference
therein. Example 1.8 is given to illustrate the validity of the proposed results
in Theorem 1.7.

Example 1.8. Let f(z) := (1− q)x−1Γq(x), z = qx and f(0) := (q, q)∞. Then
f(z) is a solution of

f(qz)f(q2z) +
f ′(z)

f(z)
= (1− qz)(1− z)2f2 − (z, q)′∞

(q, q)∞
f.

Here, d = 2, s1 = 1, γΩ = ∆Ω = 2, ΓΩ = 0, Θ(∞, f) = 0 and Θ(0, f) = 1.

Some articles [4,11,14,15] focused on Malmquist-type systems of complex dif-
ferential, difference and delay-differential equations. We obtain a result about
the following system:

(1.13)

{
Φ1(z, gq1 , gq2 , . . . , gqt) = R1(z, f),

Φ2(z, fq1 , fq2 , . . . , fqt) = R2(z, g),

where Φ1(z, gq1 , gq2 , . . . , gqt) and Φ2(z, fq1 , fq2 , . . . , fqt) are defined as in (1.7).

R1(z, f) :=
a0(z)+a1(z)f+···+am1

(z)fm1

b0(z)+b1(z)f+···+bn1 (z)f
n1

and R2(z, g) :=
c0(z)+c1(z)g+···+cm2

(z)gm2

e0(z)+e1(z)g+···+en2 (z)g
n2

are irreducible rational functions of degrees d1 = max{m1, n1} and d2 =
max{m2, n2} in f and g, respectively.

Theorem 1.9. Suppose that (f, g) is a transcendental meromorphic solution
of zero order of equation (1.13). Then

d1d2 ≤ ∆Φ1
∆Φ2

.

Moreover, if N(r, f) = S(r, f), then

d1d2 ≤ γΦ1
γΦ2

.

Example 1.10 is given to illustrate the validity of the proposed results in
Theorem 1.9.

Example 1.10. As same as Example 1.3, let f(z) := (1− q)x−1Γq(x), z = qx,
f(0) := (q, q)∞, and g(z) := (1− z)f(z). Then (f(z), g(z)) is a solution of{

f2(qz)+f(q2z)
f(qz)+f2(q2z) =

g+(1−qz)
1+(1−qz)2g ;

g2(qz)+g(q2z)
g2(qz)−g(q2z) =

(1−qz)(1−z)f+(1−q2z)
(1−qz)(1−z)f−(1−q2z) .

Here, d1 = 1, d2 = 1, ∆Φ1
= 4, ∆Φ2

= 3.
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2. Some lemmas

Lemma 2.1 ([10]). Let f be a meromorphic function. Then for all irreducible
rational functions in f ,

R(z, f) =
P (z, f)

Q(z, f)
:=

a0(z) + a1(z)f + · · ·+ am(z)fm

b0(z) + b1(z)f + · · ·+ bn(z)fn

with meromorphic coefficients ai(z) (i = 0, 1, . . . ,m), bj(z) (j = 0, 1, . . . , n),
such that {

T (r, ai(z)) = S(r, f), i = 0, . . . ,m;

T (r, bj(z)) = S(r, f), j = 0, . . . , n,

the characteristic function of R(z, f(z)) satisfies

T (r,R(z, f)) = dT (r, f) + S(r, f),

where d = max{m,n}.

Lemma 2.2 ([2]). Let f(z) be a non-constant meromorphic function with zero
order and q ∈ C\{0}. Then

m

(
r,
f(qz)

f(z)

)
= S(r, f)

on a set of logarithmic density 1.

Lemma 2.3 ([21]). Let f(z) be a transcendental meromorphic function of zero
order and q be a nonzero constant. Then

T (r, f(qz)) = (1 + o(1))T (r, f)

and
N(r, f(qz)) = (1 + o(1))N(r, f)

on a set of logarithmic density 1.

Lemma 2.4. Let f be a non-constant meromorphic solution of zero order of
equation

Ω(z, fq1 , fq2 , . . . , fqt) :=

s∑
j=1

ηj(z)

t∏
i=1

f
αj

i,0
qi (f

′

qi)
αj

i,1 · · · (f (ki)
qi )

αj
i,ki = 0,

where |qi| ̸= 0 are distinct complex numbers, αj
i,l (l = 0, 1, . . . , ki) are non-

negative integers and the coefficients ηj(z) are small functions of f . If Ω(z, a) ̸≡
0 for some small meromorphic function a(z), then

m

(
r,

1

f − a

)
= S(r, f).

Proof of Lemma 2.4. Since g := f − a satisfies a similar q-difference differen-
tial equation. Without loss of generality, we assume that a(z) ≡ 0. Rewrite
Ω(z, fq1 , fq2 , . . . , fqt) as

Ω(z, fq1 , fq2 , . . . , fqt) = G(z) + Ω̃(z, fq1 , fq2 , . . . , fqt) = 0,
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where G(z) := Ω(z, 0, 0, . . . , 0) ̸≡ 0 and

Ω̃(z, fq1 , fq2 , . . . , fqt) =

s∑
j=1

η̃j(z)

t∏
i=1

f
α̃j

i,0
qi (f

′

qi)
α̃j

i,1 · · · (f (k̃i)
qi )

α̃j
i,ki

with coefficients η̃j(z) are small functions of f .
On the one hand, if |f(z)| > 1, we have

1

2π

∫
{z,|f(z)|<1}∩{z,|z|=r}

log+
1

|f |
dθ = 0.

On the other hand, if |f(z)| ≤ 1, then

1

|f |
≤ 1

|f |α
j
1,0+···+αj

1,k1
+···+αj

t,0+···+αj
t,kt

.

Hence, we obtain

1

|f |

∣∣∣∣ t∏
i=1

f
α̃j

i,0
qi (f

′

qi)
α̃j

i,1 · · · (f (k̃i)
qi )

α̃j

i,k̃i

∣∣∣∣ ≤ t∏
i=1

∣∣∣∣fqif
∣∣∣∣α̃

j
i,0
∣∣∣∣f ′

qi

f

∣∣∣∣α̃
j
i,1

· · ·
∣∣∣∣f (k̃i)

qi

f

∣∣∣∣α̃
j

i,k̃i

.

Applying the lemma of logarithmic derivative and Lemma 2.2, we get that

m(r, Ω̃
f ) = S(r, f). Thus,

m

(
r,

1

f

)
= m

(
r,
G

f
· 1

G

)
≤ m

(
r,
G

f

)
+m

(
r,

1

G

)
= m

(
r,
Ω̃

f

)
+m

(
r,

1

G

)
= S(r, f).

We finished the proof of Lemma 2.4. □

3. Proof of Theorem 1.1

In order to give the estimation of the Nevanlinna characteristics function of
Ω(z, fq1 , fq2 , . . . , fqt).

Firstly, we estimate the proximity function of Ω(z, fq1 , fq2 , . . . , fqt).

|Ω(z, fq1 , fq2 , . . . , fqt)|

=

∣∣∣∣ s∑
j=1

ηj(z)

t∏
i=1

f
αj

i,0
qi (f

′

qi)
αj

i,1 · · · (f (ki)
qi )

αj
i,ki

∣∣∣∣
≤

s∑
j=1

|ηj(z)|
t∏

i=1

|f(z)|
∑ki

l=0 αj
i,l

∣∣∣∣fqif
∣∣∣∣α

j
i,0
∣∣∣∣f ′

qi

f

∣∣∣∣α
j
i,1

· · ·
∣∣∣∣f (ki)

qi

f

∣∣∣∣α
j
i,ki

.

Define D1 = {z, |f(z)| < 1} ∩ {z, |z| = r} and D2 = {z, |z| = r}\D1.
If z ∈ D1, then we have

|Ω(z, fq1 , fq2 , . . . , fqt)|
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≤
s∑

j=1

|ηj(z)|
t∏

i=1

|f(z)|
∑ki

l=0 αj
i,l

∣∣∣∣fqif
∣∣∣∣α

j
i,0
∣∣∣∣f ′

qi

f

∣∣∣∣α
j
i,1

· · ·
∣∣∣∣f (ki)

qi

f

∣∣∣∣α
j
i,ki

≤
s∑

j=1

|ηj(z)|
t∏

i=1

∣∣∣∣fqif
∣∣∣∣α

j
i,0
∣∣∣∣f ′

qi

f

∣∣∣∣α
j
i,1

· · ·
∣∣∣∣f (ki)

qi

f

∣∣∣∣α
j
i,ki

.

If z ∈ D2, then we have

|Ω(z, fq1 , fq2 , . . . , fqt)|

≤
s∑

j=1

|ηj(z)|
t∏

i=1

|f(z)|
∑ki

l=0 αj
i,l

∣∣∣∣fqif
∣∣∣∣α

j
i,0
∣∣∣∣f ′

qi

f

∣∣∣∣α
j
i,1

· · ·
∣∣∣∣f (ki)

qi

f

∣∣∣∣α
j
i,ki

≤ |f(z)|γ
′
Ω

s∑
j=1

|ηj(z)|
t∏

i=1

∣∣∣∣fqif
∣∣∣∣α

j
i,0
∣∣∣∣f ′

qi

f

∣∣∣∣α
j
i,1

· · ·
∣∣∣∣f (ki)

qi

f

∣∣∣∣α
j
i,ki

.

By using the lemma of logarithmic derivative and Lemma 2.2, we obtain

(3.1)

m(r,Ω) =
1

2π

∫
D1

log+ |Ω(z, fq1 , fq2 , . . . , fqt)|dθ

+
1

2π

∫
D2

log+ |Ω(z, fq1 , fq2 , . . . , fqt)|dθ

≤ γ′
Ωm(r, f) + S(r, f).

Secondly, to estimate N(r,Ω), we consider

Ω(j)(z, fq1 , fq2 , . . . , fqt) = ηj(z)

t∏
i=1

f
αj

i,0
qi (f

′

qi)
αj

i,1 · · · (f (ki)
qi )

αj
i,ki ,

then we get that

n(r,Ω(j)) ≤ n(r, ηj) + αj
i,0n(r, fqi) + · · ·+ αj

i,ki
n(r, f (ki)

qi )

≤ n(r, ηj) +

ki∑
l=0

αj
i,ln(r, fqi) + · · ·+

ki∑
l=1

lαj
i,ln(r, fqi).

Thus, we have

(3.2)

n(r,Ω) ≤
s∑

j=1

n(r, ηj) +

t∑
i=1

max
1≤j≤s

{
ki∑
l=0

αj
i,ln(r, fqi)

}

+

t∑
i=1

max
1≤j≤s

{
ki∑
l=1

lαj
i,ln(r, fqi)

}

≤
s∑

j=1

n(r, ηj) + γΩn(r, fqi) + ΓΩn(r, fqi),
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where n(r, φ) stands for the order of the poles of φ and n(r, φ) stands for the
order of the poles of φ counted only once. Then, from (3.2) and ηj are small
functions of f , applying Lemma 2.3, we obtain

(3.3) N(r,Ω) ≤ S(r, f) + γΩN(r, f) + ΓΩN(r, f).

It follows from (3.1) and (3.3) that

(3.4)
T (r,Ω) ≤ γ′

Ωm(r, f) + γΩN(r, f) + ΓΩN(r, f) + S(r, f)

≤ γ′
ΩT (r, f) + (γΩ − γ′

Ω)N(r, f) + ΓΩN(r, f) + S(r, f).

Taking the Nevanlinna characteristic function of both sides of equation (1.4)
and applying Lemma 2.1, we obtain

(3.5)

dT (r, f) + S(r, f) = T

(
r,
P (z, f)

Q(z, f)

)
= T (r,Ω(z, fq1 , fq2 , . . . , fqt))

≤ γ′
ΩT (r, f) + (γΩ − γ′

Ω)N(r, f)

+ ΓΩN(r, f) + S(r, f),

which gives that

d = max{m,n} ≤ γ′
Ω + (γΩ − γ′

Ω)(1− δ(∞, f)) + ΓΩ(1−Θ(∞, f)).

If d ≥ γ′
Ω, it follows from (3.5) that

(3.6) (d− γ′
Ω)T (r, f) + S(r, f) ≤ (γΩ − γ′

Ω)N(r, f) + ΓΩN(r, f) + S(r, f),

which implies that f has infinity poles.
If n ≥ m, we may rewrite Q(z, f) as

Q(z, f) = βnf
n

(
β0

βnfn
+

β1

βnfn−1
+ · · ·+ βn−1

βnf
+ 1

)
.

Note that T (r, βν) = S(r, f), ν = 0, 1, . . . , n. As well as, T
(
r, 1

βν

)
= S(r, f).

Set

(3.7) |β(z)| := max
1≤ν≤n

{
1, 2

∣∣∣∣βn−ν

βn

∣∣∣∣ 1ν
}
.

We compute it is a proximity function, then we have

(3.8) m(r, β) ≤
n∑

ν=0

m(r, βν) +m(r,
1

βν
) +O(1) = S(r, f).

Divide the circle |z| = r into two parts:

E1 = {θ ∈ [0, 2π] : |f(reiθ)| ≤ |β(reiθ)|} and E2 = [0, 2π]\E1.

Firstly, we consider z = reiθ, here θ ∈ E1. We have

|Ω(z, fq1 , fq2 , . . . , fqt)|
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=

∣∣∣∣ s∑
j=1

ηj(z)

t∏
i=1

f
αj

i,0
qi (f

′

qi)
αj

i,1 · · · (f (ki)
qi )

αj
i,ki

∣∣∣∣
≤

s∑
j=1

|ηj(z)|
t∏

i=1

|fqi |α
j
i,0 |f

′

qi |
αj

i,1 · · · |f (ki)
qi |α

j
i,ki

≤
s∑

j=1

|ηj(z)|
t∏

i=1

|f |
∑ki

l=0 αj
i,l

∣∣∣∣fqif
∣∣∣∣α

j
i,0
∣∣∣∣f ′

qi

f

∣∣∣∣α
j
i,1

· · ·
∣∣∣∣f (ki)

qi

f

∣∣∣∣α
j
i,ki

≤ (2|β(z)|)γ
′(Ω)

s∑
j=1

|ηj(z)|
t∏

i=1

∣∣∣∣fqif
∣∣∣∣α

j
i,0
∣∣∣∣f ′

qi

f

∣∣∣∣α
j
i,1

· · ·
∣∣∣∣f (ki)

qi

f

∣∣∣∣α
j
i,ki

.

By the lemma of logarithmic derivative, Lemma 2.2, and (3.8), we get that

(3.9)
1

2π

∫
E1

log+ |Ω(z, fq1 , fq2 , . . . , fqt)|dθ = S(r, f).

Secondly, we consider z = reiθ, here θ ∈ E2. From (3.7), we have

|f(z)| > β(z) ≥ 2

∣∣∣∣βn−ν

βn

∣∣∣∣ 1ν .
Therefore,

∣∣∣∣βn−ν

βn

∣∣∣∣ < |f(z)|ν
2ν holds for all ν = 1, . . . , n. Then, we get that

(3.10)

|Q(z, f)| =
∣∣∣∣βnf

n

(
β0

βnfn
+

β1

βnfn−1
+ · · ·+ βn−1

βnf
+ 1

) ∣∣∣∣
≥ |βn||f |n

(
1−

n∑
ν=1

|βn−ν |
|βn||f |ν

)

≥ |βn||f |n
(
1−

n∑
ν=1

1

2ν

)
=

|βn||f |n

2n
.

It follows from (1.4) and (3.10) that

(3.11)

|Ω(z, fq1 , fq2 , . . . , fqt)| =
∣∣∣∣P (z, f)

Q(z, f)

∣∣∣∣ ≤ 2n

|βn||f |n
m∑

µ=0

|αµ(z)||f |µ

≤ 2n

|βn|

m∑
µ=0

|αµ(z)||f |µ−n.

From (3.7), note that |f | > |β(z)| ≥ 1. Recall that n ≥ m. Hence, (3.11) gives
that

(3.12)
1

2π

∫
E2

log+ |Ω(z, fq1 , fq2 , . . . , fqt)|dθ = S(r, f).
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By adding (3.9) to (3.12) together, it yields

(3.13) m(r,Ω) = S(r, f).

From (3.3) and (3.13), then (3.5) reduces to

dT (r, f) + S(r, f) ≤ γ′
ΩT (r, f) + (γΩ − γ′

Ω)N(r, f) + ΓΩN(r, f) + S(r, f)

≤ γΩN(r, f) + ΓΩN(r, f) + S(r, f),

which implies that d = n ≤ γΩ(1− δ(∞, f)) + ΓΩ(1−Θ(∞, f)).
Thus, we finished the proof of Theorem 1.1.

4. Characteristic function estimation of Φ(z, fq1 , fq2 , . . . , fqt)

Before proving Theorems 1.4, 1.6, 1.7 and 1.9, we need a sequence of prelim-
inary results. We show that the characteristic function estimation of Φ(z, fq1 ,
fq2 , . . . , fqt). The following lemma which can be obtained by similar proof of
Theorem 1 in [13].

Lemma 4.1. Let ηj, τj be small functions of f , q ̸= 0, 1 and

Ω1(z, fq1 , fq2 , . . . , fqt)

Ω2(z, fq1 , fq2 , . . . , fqt)
:=

s∑
j=1

ηj(z)

t∏
i=1

f
αj

i,0
qi (f

′

qi)
αj

i,1 · · · (f (ki)
qi )

αj
i,ki

s∑
j=1

τj(z)

t∏
i=1

f
αj

i,0
qi (f

′

qi)
αj

i,1 · · · (f (li)
qi )

αj
i,li

,

where αj
i,l (l = 0, 1, . . . , ki), αj

i,t (t = 0, 1, . . . , li) are positive integers and

Ω1(z, fq1 , fq2 , . . . , fqt) and Ω2(z, fq1 , fq2 , . . . , fqt) are q-difference differential
polynomials of the form (1.6). If f has a zero order, then

m(r,Φ) ≤ γΦm(r, f)−N(r,
1

Ω2
) +N(r,Ω2) + S(r, f).

Proof of Lemma 4.1. Let U(z) = max{|Ω1|, |Ω2|}. It follows from (1.7) that

log+ |Φ| = logU(z)− log |Ω2|.

By integration, this yields

m(r,Φ) =
1

2π

∫ 2π

0

log+ |Φ(reiθ)|dθ

=
1

2π

∫ 2π

0

logU(reiθ)dθ − 1

2π

∫ 2π

0

log |Ω2(re
iθ)|dθ.
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Note that (3.1) and γ′
Ω ≤ γΩ. Thus, we have

1

2π

∫ 2π

0

logU(reiθ)dθ =
1

2π

∫ 2π

0

logmax{|Ω1|, |Ω2|}dθ

≤
t∑

i=1

γi(Φ)m(r, f) + S(r, f)

= γΦm(r, f) + S(r, f).

Using Jensen’s formula, we get that

1

2π

∫ 2π

0

log |Ω2(re
iθ)|dθ = N

(
r,

1

Ω2

)
−N(r,Ω2) +O(1).

Hence, from the above equations, we obtain

m(r,Φ) ≤ γΦm(r, f)−N

(
r,

1

Ω2

)
+N(r,Ω2) + S(r, f).

□

Applying Lemma 4.1, we obtain Proposition 4.2 below, as the corresponding
proof of (see, e.g., Theorem 3 in [13] and Theorem 4.7 in [6]).

Proposition 4.2. Let Φ(z, fq1 , fq2 , . . . , fqt) be defined as in (1.7). If f is a
meromorphic function with zero order, then

T (r,Φ) ≤ min
{
γΦT (r, f) + ΓΦN(r, f),∆ΦT (r, f)

}
+ S(r, f).

Proposition 4.3. Suppose that f is a transcendental meromorphic solution of
(1.5) with zero order and n ≥ m. Then

m(r,Φ) = m

(
r,

1

Ω2

)
+ S(r, f).

Furthermore, if N(r, f) = S(r, f), we have

T (r,Φ) ≤ T

(
r,

1

Ω2

)
+ S(r, f).

Proof of Proposition 4.3. By the similar method as in the proof of Theorem
1.1.

If z ∈ E1, then we get that

(4.1)

1

2π

∫
E1

log+
∣∣∣∣Ω1(z, fq1 , fq2 , . . . , fqt)

Ω2(z, fq1 , fq2 , . . . , fqt)

∣∣∣∣dθ
≤ 1

2π

∫
E1

log+ |Ω1(z, fq1 , fq2 , . . . , fqt)|dθ

+
1

2π

∫
E1

log+
∣∣∣∣ 1

Ω2(z, fq1 , fq2 , . . . , fqt)

∣∣∣∣dθ
≤ 1

2π

∫
E1

log+
∣∣∣∣ 1

Ω2(z, fq1 , fq2 , . . . , fqt)

∣∣∣∣dθ + S(r, f).
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If z ∈ E2, then it follows from (3.7) that |f | > 2|β(z)| > 1. Recall that
n ≥ m. Similarly, we get that∣∣∣∣Ω1(z, fq1 , fq2 , . . . , fqt)

Ω2(z, fq1 , fq2 , . . . , fqt)

∣∣∣∣ = ∣∣∣∣P (z, f)

Q(z, f)

∣∣∣∣ ≤ 2n

|βn||f |n
m∑

µ=0

|αµ(z)||f |µ

≤ 2n

|βn|

m∑
µ=0

|αµ(z)||f |µ−n.

Thus

(4.2)
1

2π

∫
E2

log+
∣∣∣∣Ω1(z, fq1 , fq2 , . . . , fqt)

Ω2(z, fq1 , fq2 , . . . , fqt)

∣∣∣∣dθ = S(r, f).

From (4.1) and (4.2), we have

(4.3) m(r,Φ) = m

(
r,

1

Ω2

)
+ S(r, f).

Next, suppose that N(r, f) = S(r, f). Recall inequality (3.3), then we have

(4.4) N(r,Φ) ≤ N(r,Ω1) +N

(
r,

1

Ω2

)
= N

(
r,

1

Ω2

)
+ S(r, f).

It follows from (4.3) and (4.4) that

T (r,Φ) ≤ T

(
r,

1

Ω2

)
+ S(r, f).

This completes the proof of Proposition 4.3. □

5. Proof of Theorem 1.4-1.9

Proof of Theorem 1.4. Taking the Nevanlinna characteristic function of both
sides of equation (1.5). Applying Lemma 2.1 and Proposition 4.2, we obtain

dT (r, f) ≤ min
{
γΦT (r, f(z)) + ΓΦN(r, f(z)),∆ΦT (r, f(z))

}
+ S(r, f),

which implies that

d = max{p, n} ≤ min {γΦ + ΓΦ(1−Θ(∞, f)), ∆Φ} .

Rewrite (1.5) as

Y (z, f) := Ω1(z, fq1 , fq2 , . . . , fqt)Q(z, f)− Ω2(z, fq1 , fq2 , . . . , fqt)P (z, f) = 0.

Note that Ω1(z, 0, 0, . . . , 0)β0(z) − Ω2(z, 0, 0, . . . , 0)α0(z) ̸≡ 0. That is to say,

Y (z, 0) ̸≡ 0. By using Lemma 2.4, we have m
(
r, 1

f

)
= S(r, f). Thus, δ(0, f) =

0.
This completes the proof of Theorem 1.4. □
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Proof of Theorem 1.6. Firstly, we rewrite the quotient P (z,f)
Q(z,f) as

P (z, f)

Q(z, f)
= P1(z, f) +

P2(z, f)

Q(z, f)
,

where P1(z, f), P2(z, f) are polynomials in f such that

deg(P1(z, f)) = max{m− n, 0}, deg(P2(z, f)) < n.

Note that the coefficients of P1, P2 are small functions of f . Thus, (1.5) can be
written as

Ω1(z, fq1 , fq2 , . . . , fqt)− P1(z, f)Ω2(z, fq1 , fq2 , . . . , fqt)

Ω2(z, fq1 , fq2 , . . . , fqt)
=

P2(z, f)

Q(z, f)
.

Applying Proposition 4.3 and Lemma 2.1 to the above equation, we have

nT (r, f) ≤ T

(
r,
Ω1 − P1Ω2

Ω2

)
+ S(r, f) ≤ T

(
r,

1

Ω2

)
+ S(r, f).

Note that N(r, f) = S(r, f). By combining with (3.4), we obtain

nT (r, f) ≤ γ′
Ω2

T (r, f) + S(r, f),

which implies that n ≤ γ′
Ω2

.

Secondly, by using a similar method to Q(z,f)
P (z,f) . We can obtain m ≤ γ′

Ω1
.

This completes the proof of Theorem 1.6. □

Proof of Theorem 1.7. Taking the Nevanlinna characteristic function of both
sides of equation (1.12) and applying Proposition 4.2 and Lemma 2.1, we have

(5.1)

dT (r, f) ≤ min
{
γΩT (r, f) + ΓΩN(r, f),∆ΩT (r, f)

}
+ s1N(r, f) + s1N

(
r,

1

f

)
+ S(r, f),

which implies

d = max{m,n} ≤ min{γΩ+ΓΩ(1−Θ(∞, f)),∆Ω}+2s1−s1Θ(∞, f)−s1Θ(0, f).

If d = ∆Ω + 2s1, then it follows from (5.1) that

(d−∆Ω)T (r, f) ≤ s1N(r, f) + s1N

(
r,

1

f

)
+ S(r, f).

Then, we have

(d−∆Ω − s1)T (r, f) ≤ min

{
s1N(r, f), s1N

(
r,

1

f

)}
+ S(r, f),

which implies that T (r, f) = N(r, f) + S(r, f) = N
(
r, 1

f

)
+ S(r, f).

If Q(z, 0) ̸≡ 0, note that all zeros of f are not poles of P (z,f)
Q(z,f) . From (1.12), we

know that all zeros of f are not poles of Ω(z, fq1 , fq2 , . . . , fqt)+ω(z)
(

f ′(z)
f(z)

)s1
.

Hence, the poles of Ω(z, fq1 , fq2 , . . . , fqt) + ω(z)
(

f ′(z)
f(z)

)s1
appear only in the
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poles of Ω(z, fq1 , fq2 , . . . , fqt), the poles of ω(z) and the poles of f . Hence, we
have

N

(
r,Ω+ ω

(
f ′

f

)s1)
≤ N(r,Ω) +N(r, ω) + s1N(r, f)

≤ N(r,Ω) + s1N(r, f) + S(r, f).

By the same argument as above, we get that

dT (r, f) ≤ min{γΩT (r, f) + ΓΩN(r, f),∆ΩT (r, f)}+ s1N(r, f) + S(r, f),

which yields in

d ≤ min{γΩ + ΓΩ(1−Θ(∞, f)),∆Ω}+ s1(1−Θ(∞, f)).

This completes the proof of Theorem 1.7. □

Proof of Theorem 1.9. Suppose that (f, g) is a transcendental meromorphic so-
lution of zero order to (1.13). Taking the Nevanlinna characteristic function of
both sides of each equation of (1.13) and applying Proposition 4.2 and Lemma
2.1, we get that

d1T (r, f) + S(r, f) = T (r,Φ1) ≤ ∆Φ1T (r, g) + S(r, g),

d2T (r, g) + S(r, g) = T (r,Φ2) ≤ ∆Φ2T (r, f) + S(r, f).

Then we have

(d1 + o(1))T (r, f) ≤ (∆Φ1 + o(1))T (r, g),

(d2 + o(1))T (r, g) ≤ (∆Φ2 + o(1))T (r, f),

as r → ∞, outside of a possible set of finite logarithmic measure, we obtain

d1d2 ≤ ∆Φ1
∆Φ2

.

In particular, if N(r, f) = S(r, f), then by the same method, we have

d1T (r, f) + S(r, f) = T (r,Φ1) ≤ γΦ1
T (r, g) + S(r, g),

d2T (r, g) + S(r, g) = T (r,Φ2) ≤ γΦ2
T (r, f) + S(r, f).

Similarly, we obtain

d1d2 ≤ γΦ1
γΦ2

.

This completes the proof of Theorem 1.9. □
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