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ON UNICITY OF MEROMORPHIC SOLUTIONS OF
DIFFERENTIAL-DIFFERENCE EQUATIONS

PEI-CHU HU AND QIONG-YAN WANG

ABSTRACT. In this paper, we give a uniqueness theorem on meromorphic
solutions f of finite order of a class of differential-difference equations such
that solutions f are uniquely determined by their poles and two distinct
values.

1. Introduction and main results

Let M(C) be the fields of meromorphic functions on the complex plane C
and let Z (resp., Z*) denote the set of non-negative (resp., positive) integers.
Take two integers m € Z,, n € Z" and take n multi-indexes

ik = Ukos -2 Jkm) €ZP k=1,....n
associated to n elements
cr = (Cros--sChom) EC™TL E=1,... n.
We define a differential-difference operator D : M(C) — M (C) as follows:

(1) Df =3 iy (fi, )™ - (U
k=1

where ar, € M(C) — {0} for each k € {1,...,n}, and where the function f,
associated to f € M(C) and a constant c is defined by

fe(2) = flc+2), z€C.
Further, take two coprime polynomials over M(C)

(1.2) P(w) = Zbiwi, Q(w) = Z dw’
=0 1=0
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with b,d, # 0. We will study admissible meromorphic solutions of the different-
ial-difference equation

_ P
(1.3) Df_Q(f).

A meromorphic solution f of (1.3) is said to be admissible if f is non-constant
such that the Nevanlinna’s characteristic functions of f, ax, b;, d; satisfy

n p q
(14) ZT(Ta ak)+ZT(r7bi) +ZT(T3 dl) = S(Ta f)a
k=1 i=0 1=0
where S(r, f) denotes any function of r with the following property
(1.5) S(r, f) = o(T(r, f))
for all r outside of a possible exceptional set with finite logarithmic measure.
If (1.3) is only a differential equation, that is, ¢; = -+ = ¢, = 0, the

general Malmquist’s theorem shows that if (1.3) has an admissible meromorphic
solution f, then we must have

=0, p< max \
q 7p_1§k§n k>

where
(1.6) Ak = Weight(ji) := jro + 2jk1 + -+ + (M + 1) jrm.

More results related to this topic are referred to Tu [6], Brosch [1], Yang [7].
However, if (1.3) contains really differences, that is, c; # 0 for some k,
there are different results. For example, Li [3] notes that (1.3) has admissible
meromorphic solutions (or see Remarks below). Some works related to the
topics are referred to [2], [7].
Write

H[f] = Q(f)Df = P(f), A= A
k=1

In this paper, we prove the following main theorem:

Theorem 1.1. Let f be an admissible meromorphic solution of (1.3) and fur-
ther assume that the order of f is finite. Suppose that p < q = A and take two
distinct complex numbers ey, eq with

Hlea] 0, Hles] £0.
If g € M(C) and f share the values e1,ea and co CM, then f = g.

By definition, f and g are said to share a value e CM if f~1(e) = g '(e)
counting multiplicity. For the special case m =0, j; = --- = j, = 1, Lii, Han
and Li [5] proved Theorem 1.1 by applying main ideas due to [1].
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Remark 1.2. The number of shared values in Theorem 1.1 cannot be reduced.
For example, define a differential-difference operator D : M(C) — M(C) as
follows:

Df = fi+ fu

with ¢ = §,¢/ = —7, and take

P(H)=4(*+1? Q(f) = (f*-1)%
Obviously, we have
H[t1l]=-16, p=qg=A=4.

Equation (1.3) has an admissible meromorphic solution f(z) = - of order

1. However, the solution f and a different meromorphic function g(z) = tan z
share two values £1 CM.

Remark 1.3. The condition Hlei] # 0, H[ez] # 0 cannot be dropped. Take in
(1.3)

Df=fi, P(f)=2+2f* Q(f) = (f-1)°

with ¢ = 4, p = ¢ = A = 2, H[£i] = 0. Equation (1.3) has an admissible
meromorphic solution f(z) = tan z of order 1 such that f(z) and g(z) = —tan z
share the values +i and co CM, but f # g.

Remark 1.4. The condition p < q is sharp in the following meanings. Take in
(1.3)

Df = fefu, P(f)=f* Q(f) =1

withe= -1, =1,p=2,¢q=0, A =3, H[£1] = —1. Equation (1.3) has an
admissible entire solution f(z) = e* of order 1 such that f(z) and g(z) = e™*
share the values £1 and oo CM, but f # g.

Remark 1.5. The condition ¢ = A is necessary. Take in (1.3)

Df =—e*fo+ fl, P(f)=—¢*, Q(f) =1

with e = -1,/ =1,p=0,¢q =0, A = 3, H[0] = €2, H[2] = —e?. Equation
(1.3) has an admissible meromorphic solution f(z) = e* + 1 of order 1 such
that f(z) and g(z) = e™* + 1 share the values 0, 2 and co CM, but f # g.

Remark 1.6. The assumption that f is of finite order is necessary. Take in (1.3)
Df = fi—fi, P(f)z) =3¢ f(2) — e, Q(f) = f*

with e = —4,e = =3, p=1,q= A =4, H[0](z) = 4¢*, H[e](z) = 4e*—3e* 1.
Equation (1.3) has an admissible entire solution f(z) = e® of order oo, f(z)
and g(z) = e>~¢ share the values 0, e and co CM, but f # g.
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2. Preliminary

We assume that the reader is familiar with the standard notations and fun-
damental results in Nevanlinna theory, Refer to the book [4].
The following lemma is referred to Lemma 2.4 and Lemma 2.5 in [3].

Lemma 2.1. If f is a non-constant meromorphic function of finite order, then

(k)
m (r, fcf> =S(r, f)

Lemma 2.2. Let f be an admissible meromorphic solution of finite order to
the equation (1.3). If b € M(C) is a small function of f, that is,

T(T7 b) = S(T’ f):

holds for ce C,k € Z.

with H[b] # 0, then
1
(2.1) m <7"7 f—b) =5(r, f).

Proof. Substituting f = h + b into (1.3), we obtain

(2.2) A[h] + H[b] =0,
where
A[h] = H[h +b] — H[D] = > > cihil (R, )7 (RGP yim

1<ko k1, skm<n i

m—+1
Z+

in which i = (4, ..., %) runs on a finite set of — {0}, and ¢; is a combi-

nation of ag, b, di, be, o, - - b&k )m satisfying

T(r,c) = S(r, f).

Then, when |h(z)| <1 with |z| = r, we obtain an estimate

< Z Z lei(2 CkgO( z)

1<k0 kl, ,km<n i

io h(m) (2) im

Chpmm

‘A[h](Z)
h(z)

By using (2.2) and Lemma 2.1, it follows that
1\ 1 [b
n(rma) = (en) = (0 5) ()
_ Aln] 1
o (n )+ () =50

since T(r,h) = T(r, f) + S(r, f). When |h(z)| > 1 with |z| = r, we know

m(r, ﬁ) =m(r, %) S(r, f) is obvious. Hence Lemma 2.2 is proved. O
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Lemma 2.3. If f is an admissible meromorphic solution of finite order of the
equation (1.3) with p < g = A, then we have

(2.3) m(r, f) = S(r, f).
Proof. Put

dyy|T
2.4 d= max (1,2 .
(24) 1121a<q< dg )

Take z € C and write z = re®?. Set
(25)  Er:={0€(0,2n):|f(re”)| < d(re”)}, By :=[0,2m)\E;.

In the set E;, we have the following estimate

n G0 (m) |Tkm
|Df| < Z |akfjk0+jk1+"'+jkm| @ Clm
(2.6) =t d d
’ f (m) |Jkm
< d7 Cko Ckm ,
Zi =
where
7= max {Jko + jk1 + -+ Jkm}-
In the set Es, noting that
1
d 1T
[fl>d=2|==)
q
and hence
dq— < l
dqf 2!
for I =1,...,q, which means
QA = |dgfT +dgr [ + -+ di f + do|
|dg—1 |dg £
> \dgf{1— >
g 1= et ) > WU,
we also obtain an estimate
f) d
211~ G5 | < i S 17
(2.7)
bi| |f e b;
|d|2\ 577 < |d|2| -
Combing (2.6) and (2.7), we obtain a complete estimate
99 P n for Jk0 f(n:n) Jkm
\DfISWZIbiIerWZ\ak\ J?O : % ;
9" =0 k=1
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which yields immediately

(. Df) < (ot Dm (1 )+ Dm0 3 i)
‘1 i=0 1=0
)
+Zmrak +Zijym< >+O(1).
k=1v=0

Further, by using Lemma 2.1, it follows that
m(r,Df) = S(r, f)

since ay, b;, d; are small functions of f.
Theorem 2.2 of Chiang and Feng [2] implies

N(r, fer,) = N(r, f) + 5(r, f)
which further yields

N(r, f)) < (v + DN(r, fo,) = v+ DN(r, ) + 5(r, f).
It follows that

T(r,Df) =m(r,Df)+ N(r,Df) < ZZ Y+ S(r, f)
k=1v=0

IIM:

Z v+ DjeN(r, f) + S(r, f) = gN(r, ) + S(r, f).

On the other hand, it is well knew that

T(r,Df)=T (r, ggg) =qT(r,f)+ S(r, f).

Therefore, we have
m(r.f) = TR Df) = aN (. )} + S0, £),

and hence Lemma 2.3 follows. O

3. Proof of Theorem 1.1: special cases m <1

Now (1.3) has the following form

k() / ]klzw
(3.1) Df = Zak Jro(fl o

Since f is an admissible meromorphic solution of (3.1), it follows that f must
be non-constant. By using Theorem 5.25 in [8], we have

T(r,g) = {1+ o(1)}T(r, f)
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as r — 0o, which particularly implies that ¢ and f have the same order. Hence,
there exist two polynomials «, 8 satisfying
—e —e
(3.2) f-a =e?, f-e = el
g—¢a g—e2
Assume, to the contrary, that g # f. Then we obtain easily

e #1, P £1, e £ €

and

e —1 +( )ea—l
—e e] — eg)————
e’ —1 2 ! e 1

where v = 8 — a is not a constant (see Lemma 2.3). Thus one of a and 8 at
least is not constant. Moreover, by Lemma 2.2 and the first main theorem of
Nevanlinna, we have

(3.4) T(r,1) =N (r 2 ) + 50,
f—e
for 7 =1,2. If one of a and (3 is constant, it follows that

T(r, f)=S(r, )
This is a contradiction. Hence «, 8 are not constants.
Further, we claim

(3.5) d:=ord(f) = dega =deg = deg~y > 0.
The first main theorem due to Nevanlinna yields immediately
1
N (r g ) STOe) + 0,
e —

and the second main theorem applied to three values 0, 1, co implies

T(r,e*)=N (r, eal 1) + S(r,e”).

(3.3) f=e1+(e2—e1)

Note that

(36)  T(re?) <T(r )+ Tlrg) + O() < 2T(r, ) + S ).
We obtain

(3.7) T(r,e*)=N (T, eal_ 1> +S(r, f)

Similarly, we can obtain

(3.8) T(r,e?)=N (r, 651_ 1) + S(r, f),

and

(3.9) T(r,e?’) =N (r, eVl— 1) +S(r, f)
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It follows from (3.9) that
1
Tl ) = N )4 N (1 3) + 5(01),

where ¢ is an entire function determined by common zeros of e® —1 and e” — 1.
By using Lemma 2.3, we see

T(r,e”)=T(r, f)+ N (7"

Note that (3.8) and (3.4) yield

T(r,e’) =N (r, flel) +N (r, ;) +S(r, f)

=T(r,f)+ N (r, 2) +S(r, f).

2) +S(r, f).

Therefore, we have
T(r,e?) =T(r,e) + S(r, f)
which means

log T(r, e?
deg 8 = ord(e?) := limsup log T'(re”)

r—00 logr

=ord(e?) = degy > 0.

According to the arguments above, we can prove
T(r,e®)=T(r,e") + S(r, f)
and hence
deg o = deg~.
Now (3.6) implies
deg oo = ord(e”) < ord(f).
But, we also have
T(r,f) < T(r,e”) +2T(r,e”) + S(r, f) < 3T (r,e®) + S(r, f)
which means
ord(f) < ord(e®) = deg .

The claim (3.5) is proved.
Substituting the representation (3.3) of f into (3.1), we have

eP —1 !
Zbl {el%— €2 —eq) } Zdl [614- (e2 —e1) 7—1}

n ePero — 1 Iwo et — 1 ks
Z:lak |:el + (e2 — el)e%w — J (e2 —eq) (6”11)

(3.10)

Write
Bewo = B+ 8k05 Yero =Y + k05 Bews = B+ Sk1s Yerp =7 + k1
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for 1 < k <n, where skq, tko, Sk1,tk1 are polynomials of degrees < d — 1. Then
(3.10) becomes the following form

M N p  2q
(3.11) Z Z au7ve“ﬁ+”7 _ Z Z bmveuﬁﬂ)’y =0,

pn=0v=0 n=0v=0

where a, ,, (resp., by, ) are combinations of ay, d;, e5+°, e'x0, e5k1 et (resp., by,
etko | ete1) with polynomial coefficients (resp., constant coefficients) depending
on 3,4, sjq, ti.,, and where

M=q+ gggﬂ{yko +jki}, N =2¢— min {ji},

1<k<n
or further
M 2q
(3.12) Z Z Amveuﬁﬁw =0,
pn=0v=0

where A, , are completely determined by a, ,b, or 0. Moreover, it is not
difficult to show that
AO,O = H[eﬂ 7é 07

(313) A072q _ H[el] H ejkotko+2jk1tk1 7é 0.

k=1
We claim that

(3.14) deg(uB +vy) = deg(uB —vy) =d

for (p,v) € Z2 — {(0,0)}, which follows from (3.5) if one of 1 and v is zero.

Now we consider the cases pv # 0. First of all, assume, to the contrary, that
deg(uB +vvy) < d, so that the entire function U; = e*5¥7 is a small function
of e®. We have

T(r,Ue ) =T(r,e ")+ S(r,e*) = pT(r,e*) + S(r, f).
On the other hand, we also have
T(r,Ue #*)=T (7“, e(‘”'“)“’) =(u+v)T(r,e")
= (u+v)T(r,e*) + S(r, f).

So that v = 0. This is a contradiction. The first part of (3.14) is confirmed.
Next, assume, to the contrary, that deg(ufS — vy) < d, so that the entire
function Uy = e*B~7 is a small function of e*. Thus if 1> v, we have

T(r,Use ") =T(r,e %) + S(r,e*) = pT(r,e*) + S(r, f).
On the other hand, we also have
T(r,Use #*) =T (r, e(“_”)v) =(u—0v)T(r,e")
= (n—=v)T(r,e?) + 5(r, f),
and hence either 4 =0 (if g = v) or v =0 (if ;£ > v). This is a contradiction.
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If v > p, we can get 4 = 0 in the same way. This is also a contradiction.
Therefore, the claim (3.14) is confirmed completely.
By using (3.14), we find that each A, , satisfies the following estimate

(3.15) T(r,Apy) =S (r, e(u15+m>—<m+m>)

for two distinct elements (u1,v1) and (p2,v2) in Z3. Thus, by Theorem 1.51
in (8], we have A, , = 0. It contradicts to (3.13). Therefore, we complete the
proof of Theorem 1.1.

4. Proof of Theorem 1.1: general cases

We can copy completely the procedure of proof in last section up to the
claim (3.5). Now a change of proof is to substitute the representation (3.3) of
f into the general equation (1.3), so that we obtain

P 8 B _ 17!

e 1 e 1

Zbi[e1+(62—€1 7—1} Zdl[€1+ (€2 —e1) 7_1}

1=0

n e 1qdk0 m Bor 1y ]9
ePcko 1 e kv 1

> an {eﬁezeﬂemo_l} H[(><_1> ] '

k=1 v=1

(4.1)

Write
ﬁck,, = B + Sk, Yer, = 7 + tku

for 1 <k <n,0 <v < m, where sg,, tg, are polynomials of degrees < d — 1.
Then (4.1) becomes the following form

M N P 2
(4.2) Z Z ap e — Z Z by we"PHT =0,

pn=0v=0 pn=0v=0

where a,, , (resp., b,,.,) are combinations of ay, d;, e, e'* (resp., b;, €"*) with
polynomial coeflicients (resp., constant coefficients) depending on derivatives
Be,, and 7v.,,, and where

M =q+ 121@”{]% + gk + o+ Jem s

N =2q— 1glkign{jkl + 22+ + m.jkm};

or further

M 2q

(4.3) DN Appetttr =0,

pn=0v=0
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where A, , are completely determined by @, v,b,,, or 0. Moreover, it is not
difficult to show that

(4.4)

SO

(1]
2]
(3]
(4]
(5]
[6]
[7]

(8]

AO,O = H[EQ] 7é O,

A 2g = H[el] H eIrotko+2dk i1+ (m+1)jkmtrm £0.

k=1
Thus, according to the arguments in last section, we obtain a contradiction,
that the proof of Theorem 1.1 is completed.
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