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ON UNICITY OF MEROMORPHIC SOLUTIONS OF

DIFFERENTIAL-DIFFERENCE EQUATIONS

Pei-Chu Hu and Qiong-Yan Wang

Abstract. In this paper, we give a uniqueness theorem on meromorphic

solutions f of finite order of a class of differential-difference equations such
that solutions f are uniquely determined by their poles and two distinct

values.

1. Introduction and main results

Let M(C) be the fields of meromorphic functions on the complex plane C
and let Z+ (resp., Z+) denote the set of non-negative (resp., positive) integers.
Take two integers m ∈ Z+, n ∈ Z+ and take n multi-indexes

jk = (jk0, . . . , jkm) ∈ Zm+1
+ , k = 1, . . . , n

associated to n elements

ck = (ck0, . . . , ckm) ∈ Cm+1, k = 1, . . . , n.

We define a differential-difference operator D :M(C) −→M(C) as follows:

(1.1) Df =

n∑
k=1

akf
jk0
ck0

(f ′ck1)jk1 · · · (f (m)
ckm

)jkm ,

where ak ∈ M(C) − {0} for each k ∈ {1, . . . , n}, and where the function fc
associated to f ∈M(C) and a constant c is defined by

fc(z) = f(c+ z), z ∈ C.
Further, take two coprime polynomials over M(C)

(1.2) P (w) =

p∑
i=0

biw
i, Q(w) =

q∑
l=0

dlw
l

Received June 5, 2017; Revised August 29, 2017; Accepted September 5, 2017.
2010 Mathematics Subject Classification. Primary 30D35; Secondary 34M05, 39A10,

39B32.
Key words and phrases. differential-difference equation, unicity, meromorphic solution,

Nevanlinna theory.
The work of the first author was partially supported by NSFC of China (no.11271227)

and PCSIRT (no.IRT1264).

c©2018 Korean Mathematical Society

785



786 P.-C. HU AND Q.-Y. WANG

with bpdq 6= 0. We will study admissible meromorphic solutions of the different-
ial-difference equation

(1.3) Df =
P (f)

Q(f)
.

A meromorphic solution f of (1.3) is said to be admissible if f is non-constant
such that the Nevanlinna’s characteristic functions of f , ak, bi, dl satisfy

(1.4)

n∑
k=1

T (r, ak) +

p∑
i=0

T (r, bi) +

q∑
l=0

T (r, dl) = S(r, f),

where S(r, f) denotes any function of r with the following property

(1.5) S(r, f) = o(T (r, f))

for all r outside of a possible exceptional set with finite logarithmic measure.
If (1.3) is only a differential equation, that is, c1 = · · · = cn = 0, the

general Malmquist’s theorem shows that if (1.3) has an admissible meromorphic
solution f , then we must have

q = 0, p ≤ max
1≤k≤n

λk,

where

(1.6) λk = Weight(jk) := jk0 + 2jk1 + · · ·+ (m+ 1)jkm.

More results related to this topic are referred to Tu [6], Brosch [1], Yang [7].
However, if (1.3) contains really differences, that is, ck 6= 0 for some k,

there are different results. For example, Li [3] notes that (1.3) has admissible
meromorphic solutions (or see Remarks below). Some works related to the
topics are referred to [2], [7].

Write

H[f ] = Q(f)Df − P (f), Λ =

n∑
k=1

λk.

In this paper, we prove the following main theorem:

Theorem 1.1. Let f be an admissible meromorphic solution of (1.3) and fur-
ther assume that the order of f is finite. Suppose that p ≤ q = Λ and take two
distinct complex numbers e1, e2 with

H[e1] 6= 0, H[e2] 6= 0.

If g ∈M(C) and f share the values e1, e2 and ∞ CM , then f = g.

By definition, f and g are said to share a value e CM if f−1(e) = g−1(e)
counting multiplicity. For the special case m = 0, j1 = · · · = jn = 1, Lü, Han
and Lü [5] proved Theorem 1.1 by applying main ideas due to [1].
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Remark 1.2. The number of shared values in Theorem 1.1 cannot be reduced.
For example, define a differential-difference operator D : M(C) −→ M(C) as
follows:

Df = f ′c + f ′c′

with c = π
4 , c
′ = −π4 , and take

P (f) = 4(f2 + 1)2, Q(f) = (f2 − 1)2.

Obviously, we have

H[±1] = −16, p = q = Λ = 4.

Equation (1.3) has an admissible meromorphic solution f(z) = 1
tan z of order

1. However, the solution f and a different meromorphic function g(z) = tan z
share two values ±1 CM.

Remark 1.3. The condition H[e1] 6= 0, H[e2] 6= 0 cannot be dropped. Take in
(1.3)

Df = f ′c, P (f) = 2 + 2f2, Q(f) = (f − 1)2

with c = π
4 , p = q = Λ = 2, H[±i] = 0. Equation (1.3) has an admissible

meromorphic solution f(z) = tan z of order 1 such that f(z) and g(z) = − tan z
share the values ±i and ∞ CM, but f 6= g.

Remark 1.4. The condition p ≤ q is sharp in the following meanings. Take in
(1.3)

Df = fcf
′
c′ , P (f) = f2, Q(f) = 1

with c = −1, c′ = 1, p = 2, q = 0, Λ = 3, H[±1] = −1. Equation (1.3) has an
admissible entire solution f(z) = ez of order 1 such that f(z) and g(z) = e−z

share the values ±1 and ∞ CM, but f 6= g.

Remark 1.5. The condition q = Λ is necessary. Take in (1.3)

Df = −e2fc + f ′c′ , P (f) = −e2, Q(f) = 1

with c = −1, c′ = 1, p = 0, q = 0, Λ = 3, H[0] = e2, H[2] = −e2. Equation
(1.3) has an admissible meromorphic solution f(z) = ez + 1 of order 1 such
that f(z) and g(z) = e−z + 1 share the values 0, 2 and ∞ CM, but f 6= g.

Remark 1.6. The assumption that f is of finite order is necessary. Take in (1.3)

Df = f ′c − f ′c′ , P (f)(z) = 3ezf(z)− 4ez, Q(f) = f4

with ec = −4, ec
′

= −3, p = 1, q = Λ = 4, H[0](z) = 4ez, H[e](z) = 4ez−3ez+1.
Equation (1.3) has an admissible entire solution f(z) = ee

z

of order ∞, f(z)
and g(z) = e2−e

z

share the values 0, e and ∞ CM, but f 6= g.
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2. Preliminary

We assume that the reader is familiar with the standard notations and fun-
damental results in Nevanlinna theory, Refer to the book [4].

The following lemma is referred to Lemma 2.4 and Lemma 2.5 in [3].

Lemma 2.1. If f is a non-constant meromorphic function of finite order, then

m

(
r,
f
(k)
c

f

)
= S(r, f)

holds for c ∈ C, k ∈ Z+.

Lemma 2.2. Let f be an admissible meromorphic solution of finite order to
the equation (1.3). If b ∈M(C) is a small function of f , that is,

T (r, b) = S(r, f),

with H[b] 6= 0, then

(2.1) m

(
r,

1

f − b

)
= S(r, f).

Proof. Substituting f = h+ b into (1.3), we obtain

(2.2) A[h] +H[b] = 0,

where

A[h] = H[h+ b]−H[b] =
∑

1≤k0,k1,...,km≤n

∑
i

cih
i0
ck00

(h′ck11
)i1 · · · (h(m)

ckmm
)im

in which i = (i0, . . . , im) runs on a finite set of Zm+1
+ − {0}, and ci is a combi-

nation of ak, bi, dl, bck00
, . . . , b

(m)
ckmm satisfying

T (r, ci) = S(r, f).

Then, when |h(z)| ≤ 1 with |z| = r, we obtain an estimate∣∣∣∣A[h](z)

h(z)

∣∣∣∣ ≤ ∑
1≤k0,k1,...,km≤n

∑
i

|ci(z)|
∣∣∣∣hck00

(z)

h(z)

∣∣∣∣i0 · · ·
∣∣∣∣∣h

(m)
ckmm(z)

h(z)

∣∣∣∣∣
im

.

By using (2.2) and Lemma 2.1, it follows that

m

(
r,

1

f − b

)
= m

(
r,

1

h

)
≤ m

(
r,
H[b]

h

)
+m

(
r,

1

H[b]

)
= m

(
r,
A[h]

h

)
+m

(
r,

1

H[b]

)
= S(r, f)

since T (r, h) = T (r, f) + S(r, f). When |h(z)| > 1 with |z| = r, we know

m
(
r, 1
f−b

)
= m

(
r, 1h
)

= S(r, f) is obvious. Hence Lemma 2.2 is proved. �
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Lemma 2.3. If f is an admissible meromorphic solution of finite order of the
equation (1.3) with p ≤ q = Λ, then we have

(2.3) m(r, f) = S(r, f).

Proof. Put

(2.4) d = max
1≤l≤q

(
1, 2

∣∣∣∣dq−ldq

∣∣∣∣ 1l
)
.

Take z ∈ C and write z = reiθ. Set

(2.5) E1 :=
{
θ ∈ [0, 2π) :

∣∣f(reiθ)
∣∣ ≤ d(reiθ)

}
, E2 := [0, 2π)\E1.

In the set E1, we have the following estimate

(2.6)

|Df | ≤
n∑
k=1

∣∣akf jk0+jk1+···+jkm ∣∣ ∣∣∣∣fck0f
∣∣∣∣jk0 · · ·

∣∣∣∣∣f (m)
ckm

f

∣∣∣∣∣
jkm

≤ dγ
n∑
k=1

|ak|
∣∣∣∣fck0f

∣∣∣∣jk0 · · ·
∣∣∣∣∣f (m)
ckm

f

∣∣∣∣∣
jkm

,

where
γ = max

1≤k≤n
{jk0 + jk1 + · · ·+ jkm}.

In the set E2, noting that

|f | > d ≥ 2

∣∣∣∣dq−ldq

∣∣∣∣ 1l ,
and hence ∣∣∣∣dq−ldqf l

∣∣∣∣ ≤ 1

2l

for l = 1, . . . , q, which means

|Q(f)| =
∣∣dqfq + dq−1f

q−1 + · · ·+ d1f + d0
∣∣

≥ |dqfq|

(
1−

q∑
l=1

|dq−l|
|dqf l|

)
≥ |dq| |f |

q

2q
,

we also obtain an estimate

(2.7)

|Df | =
∣∣∣∣P (f)

Q(f)

∣∣∣∣ ≤ 2q

|dq| |f |q
p∑
i=0

|bi|
∣∣f i∣∣

=
2q

|dq|

p∑
i=0

|bi|
∣∣f i−q∣∣ ≤ 2q

|dq|

p∑
i=0

|bi| .

Combing (2.6) and (2.7), we obtain a complete estimate

|Df | ≤ 2q

|dq|

p∑
i=0

|bi|+ dγ
n∑
k=1

|ak|
∣∣∣∣fck0f

∣∣∣∣jk0 · · ·
∣∣∣∣∣f (m)
ckm

f

∣∣∣∣∣
jkm

,
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which yields immediately

m(r,Df) ≤ (γ + 1)m

(
r,

1

dq

)
+

p∑
i=0

m(r, bi) + γ

q∑
l=0

m(r, dl)

+

n∑
k=1

m(r, ak) +

n∑
k=1

m∑
ν=0

jkνm

(
r,
f
(ν)
ckν

f

)
+O(1).

Further, by using Lemma 2.1, it follows that

m(r,Df) = S(r, f)

since ak, bi, dl are small functions of f .
Theorem 2.2 of Chiang and Feng [2] implies

N(r, fckν ) = N(r, f) + S(r, f)

which further yields

N(r, f (ν)ckν
) ≤ (ν + 1)N(r, fckν ) = (ν + 1)N(r, f) + S(r, f).

It follows that

T (r,Df) = m(r,Df) +N(r,Df) ≤
n∑
k=1

m∑
ν=0

jkνN(r, f (ν)ckν
) + S(r, f)

≤
n∑
k=1

m∑
ν=0

(ν + 1)jkνN(r, f) + S(r, f) = qN(r, f) + S(r, f).

On the other hand, it is well knew that

T (r,Df) = T

(
r,
P (f)

Q(f)

)
= qT (r, f) + S(r, f).

Therefore, we have

m(r, f) =
1

q
{T (r,Df)− qN(r, f)}+ S(r, f),

and hence Lemma 2.3 follows. �

3. Proof of Theorem 1.1: special cases m ≤ 1

Now (1.3) has the following form

(3.1) Df =

n∑
k=1

akf
jk0
ck0

(f ′ck1)jk1 =
P (f)

Q(f)
.

Since f is an admissible meromorphic solution of (3.1), it follows that f must
be non-constant. By using Theorem 5.25 in [8], we have

T (r, g) = {1 + o(1)}T (r, f)
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as r →∞, which particularly implies that g and f have the same order. Hence,
there exist two polynomials α, β satisfying

(3.2)
f − e1
g − e1

= eα,
f − e2
g − e2

= eβ .

Assume, to the contrary, that g 6= f . Then we obtain easily

eα 6= 1, eβ 6= 1, eα 6= eβ

and

(3.3) f = e1 + (e2 − e1)
eβ − 1

eγ − 1
= e2 + (e1 − e2)

eα − 1

e−γ − 1
,

where γ = β − α is not a constant (see Lemma 2.3). Thus one of α and β at
least is not constant. Moreover, by Lemma 2.2 and the first main theorem of
Nevanlinna, we have

T (r, f) = N

(
r,

1

f − ej

)
+ S(r, f)(3.4)

for j = 1, 2. If one of α and β is constant, it follows that

T (r, f) = S(r, f).

This is a contradiction. Hence α, β are not constants.
Further, we claim

(3.5) d := ord(f) = degα = deg β = deg γ > 0.

The first main theorem due to Nevanlinna yields immediately

N

(
r,

1

eα − 1

)
≤ T (r, eα) +O(1),

and the second main theorem applied to three values 0, 1,∞ implies

T (r, eα) = N

(
r,

1

eα − 1

)
+ S(r, eα).

Note that

(3.6) T (r, eα) ≤ T (r, f) + T (r, g) +O(1) ≤ 2T (r, f) + S(r, f).

We obtain

(3.7) T (r, eα) = N

(
r,

1

eα − 1

)
+ S(r, f).

Similarly, we can obtain

(3.8) T (r, eβ) = N

(
r,

1

eβ − 1

)
+ S(r, f),

and

(3.9) T (r, eγ) = N

(
r,

1

eγ − 1

)
+ S(r, f).
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It follows from (3.9) that

T (r, eγ) = N(r, f) +N

(
r,

1

ξ

)
+ S(r, f),

where ξ is an entire function determined by common zeros of eβ−1 and eγ−1.
By using Lemma 2.3, we see

T (r, eγ) = T (r, f) +N

(
r,

1

ξ

)
+ S(r, f).

Note that (3.8) and (3.4) yield

T (r, eβ) = N

(
r,

1

f − e1

)
+N

(
r,

1

ξ

)
+ S(r, f)

= T (r, f) +N

(
r,

1

ξ

)
+ S(r, f).

Therefore, we have

T (r, eβ) = T (r, eγ) + S(r, f)

which means

deg β = ord(eβ) := lim sup
r→∞

log T (r, eβ)

log r
= ord(eγ) = deg γ > 0.

According to the arguments above, we can prove

T (r, eα) = T (r, eγ) + S(r, f)

and hence

degα = deg γ.

Now (3.6) implies

degα = ord(eα) ≤ ord(f).

But, we also have

T (r, f) ≤ T (r, eα) + 2T (r, eβ) + S(r, f) ≤ 3T (r, eα) + S(r, f)

which means

ord(f) ≤ ord(eα) = degα.

The claim (3.5) is proved.
Substituting the representation (3.3) of f into (3.1), we have

(3.10)

p∑
i=0

bi

[
e1 + (e2 − e1)

eβ − 1

eγ − 1

]i
=

q∑
l=0

dl

[
e1 + (e2 − e1)

eβ − 1

eγ − 1

]l
n∑
k=1

ak

[
e1 + (e2 − e1)

eβck0 − 1

eγck0 − 1

]jk0 [
(e2 − e1)

(
eβck1 − 1

eγck1 − 1

)′]jk1
.

Write

βck0 = β + sk0, γck0 = γ + tk0, βck1 = β + sk1, γck1 = γ + tk1
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for 1 ≤ k ≤ n, where sk0, tk0, sk1, tk1 are polynomials of degrees ≤ d− 1. Then
(3.10) becomes the following form

(3.11)

M∑
µ=0

N∑
v=0

aµ,ve
µβ+vγ −

p∑
µ=0

2q∑
v=0

bµ,ve
µβ+vγ = 0,

where aµ,v (resp., bµ,v) are combinations of ak, dl, e
sk0 , etk0 , esk1 , etk1 (resp., bi,

etk0 , etk1) with polynomial coefficients (resp., constant coefficients) depending
on β′, γ′, s′k1, t′k1, and where

M = q + max
1≤k≤n

{jk0 + jk1}, N = 2q − min
1≤k≤n

{jk1},

or further

(3.12)

M∑
µ=0

2q∑
v=0

Aµ,ve
µβ+vγ = 0,

where Aµ,v are completely determined by aµ,v, bµ,v or 0. Moreover, it is not
difficult to show that

(3.13)

A0,0 = H[e2] 6= 0,

A0,2q = H[e1]

n∏
k=1

ejk0tk0+2jk1tk1 6= 0.

We claim that

(3.14) deg(µβ + vγ) = deg(µβ − vγ) = d

for (µ, v) ∈ Z2
+ − {(0, 0)}, which follows from (3.5) if one of µ and ν is zero.

Now we consider the cases µv 6= 0. First of all, assume, to the contrary, that
deg(µβ + vγ) < d, so that the entire function U1 = eµβ+vγ is a small function
of eα. We have

T (r, U1e
−µα) = T (r, e−µα) + S(r, eα) = µT (r, eα) + S(r, f).

On the other hand, we also have

T (r, U1e
−µα) = T

(
r, e(µ+v)γ

)
= (µ+ v)T (r, eγ)

= (µ+ v)T (r, eα) + S(r, f).

So that v = 0. This is a contradiction. The first part of (3.14) is confirmed.
Next, assume, to the contrary, that deg(µβ − vγ) < d, so that the entire

function U2 = eµβ−vγ is a small function of eα. Thus if µ ≥ v, we have

T (r, U2e
−µα) = T (r, e−µα) + S(r, eα) = µT (r, eα) + S(r, f).

On the other hand, we also have

T (r, U2e
−µα) = T

(
r, e(µ−v)γ

)
= (µ− v)T (r, eγ)

= (µ− v)T (r, eα) + S(r, f),

and hence either µ = 0 (if µ = v) or v = 0 (if µ > v). This is a contradiction.



794 P.-C. HU AND Q.-Y. WANG

If v > µ, we can get µ = 0 in the same way. This is also a contradiction.
Therefore, the claim (3.14) is confirmed completely.

By using (3.14), we find that each Aµ,v satisfies the following estimate

(3.15) T (r,Aµ,v) = S
(
r, e(µ1β+v1γ)−(µ2β+v2γ)

)
for two distinct elements (µ1, v1) and (µ2, v2) in Z2

+. Thus, by Theorem 1.51
in [8], we have Aµ,v ≡ 0. It contradicts to (3.13). Therefore, we complete the
proof of Theorem 1.1.

4. Proof of Theorem 1.1: general cases

We can copy completely the procedure of proof in last section up to the
claim (3.5). Now a change of proof is to substitute the representation (3.3) of
f into the general equation (1.3), so that we obtain

(4.1)

p∑
i=0

bi

[
e1 + (e2 − e1)

eβ − 1

eγ − 1

]i
=

q∑
l=0

dl

[
e1 + (e2 − e1)

eβ − 1

eγ − 1

]l
n∑
k=1

ak

[
e1 + (e2 − e1)

eβck0 − 1

eγck0 − 1

]jk0 m∏
ν=1

[
(e2 − e1)

(
eβckν − 1

eγckν − 1

)(ν)
]jkν

.

Write

βckν = β + skν , γckν = γ + tkν

for 1 ≤ k ≤ n, 0 ≤ ν ≤ m, where skν , tkν are polynomials of degrees ≤ d − 1.
Then (4.1) becomes the following form

(4.2)

M∑
µ=0

N∑
v=0

aµ,ve
µβ+vγ −

p∑
µ=0

2q∑
v=0

bµ,ve
µβ+vγ = 0,

where aµ,v (resp., bµ,v) are combinations of ak, dl, e
skν , etkν (resp., bi, e

tkν ) with
polynomial coefficients (resp., constant coefficients) depending on derivatives
βckν and γckν , and where

M = q + max
1≤k≤n

{jk0 + jk1 + · · ·+ jkm},

N = 2q − min
1≤k≤n

{jk1 + 2jk2 + · · ·+mjkm},

or further

(4.3)

M∑
µ=0

2q∑
v=0

Aµ,ve
µβ+vγ = 0,
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where Aµ,v are completely determined by aµ,v, bµ,v or 0. Moreover, it is not
difficult to show that

(4.4)

A0,0 = H[e2] 6= 0,

A0,2q = H[e1]

n∏
k=1

ejk0tk0+2jk1tk1+···+(m+1)jkmtkm 6= 0.

Thus, according to the arguments in last section, we obtain a contradiction,
so that the proof of Theorem 1.1 is completed.
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