ON UNICITY OF MEROMORPHIC SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATIONS

Pei-Chu Hu and Qiong-Yan Wang

AbStract. In this paper, we give a uniqueness theorem on meromorphic solutions f of finite order of a class of differential-difference equations such that solutions f are uniquely determined by their poles and two distinct values.

1. Introduction and main results

Let $\mathcal{M}(\mathbb{C})$ be the fields of meromorphic functions on the complex plane \mathbb{C} and let \mathbb{Z}_{+}(resp., \mathbb{Z}^{+}) denote the set of non-negative (resp., positive) integers. Take two integers $m \in \mathbb{Z}_{+}, n \in \mathbb{Z}^{+}$and take n multi-indexes

$$
\mathbf{j}_{k}=\left(j_{k 0}, \ldots, j_{k m}\right) \in \mathbb{Z}_{+}^{m+1}, k=1, \ldots, n
$$

associated to n elements

$$
\mathbf{c}_{k}=\left(c_{k 0}, \ldots, c_{k m}\right) \in \mathbb{C}^{m+1}, k=1, \ldots, n
$$

We define a differential-difference operator $D: \mathcal{M}(\mathbb{C}) \longrightarrow \mathcal{M}(\mathbb{C})$ as follows:

$$
\begin{equation*}
D f=\sum_{k=1}^{n} a_{k} f_{c_{k 0}}^{j_{k 0}}\left(f_{c_{k 1}}^{\prime}\right)^{j_{k 1}} \cdots\left(f_{c_{k m}}^{(m)}\right)^{j_{k m}} \tag{1.1}
\end{equation*}
$$

where $a_{k} \in \mathcal{M}(\mathbb{C})-\{0\}$ for each $k \in\{1, \ldots, n\}$, and where the function f_{c} associated to $f \in \mathcal{M}(\mathbb{C})$ and a constant c is defined by

$$
f_{c}(z)=f(c+z), z \in \mathbb{C}
$$

Further, take two coprime polynomials over $\mathcal{M}(\mathbb{C})$

$$
\begin{equation*}
P(w)=\sum_{i=0}^{p} b_{i} w^{i}, Q(w)=\sum_{l=0}^{q} d_{l} w^{l} \tag{1.2}
\end{equation*}
$$

[^0]with $b_{p} d_{q} \neq 0$. We will study admissible meromorphic solutions of the different-ial-difference equation
\[

$$
\begin{equation*}
D f=\frac{P(f)}{Q(f)} \tag{1.3}
\end{equation*}
$$

\]

A meromorphic solution f of (1.3) is said to be admissible if f is non-constant such that the Nevanlinna's characteristic functions of f, a_{k}, b_{i}, d_{l} satisfy

$$
\begin{equation*}
\sum_{k=1}^{n} T\left(r, a_{k}\right)+\sum_{i=0}^{p} T\left(r, b_{i}\right)+\sum_{l=0}^{q} T\left(r, d_{l}\right)=S(r, f) \tag{1.4}
\end{equation*}
$$

where $S(r, f)$ denotes any function of r with the following property

$$
\begin{equation*}
S(r, f)=o(T(r, f)) \tag{1.5}
\end{equation*}
$$

for all r outside of a possible exceptional set with finite logarithmic measure.
If (1.3) is only a differential equation, that is, $\mathbf{c}_{1}=\cdots=\mathbf{c}_{n}=0$, the general Malmquist's theorem shows that if (1.3) has an admissible meromorphic solution f, then we must have

$$
q=0, p \leq \max _{1 \leq k \leq n} \lambda_{k},
$$

where

$$
\begin{equation*}
\lambda_{k}=\operatorname{Weight}\left(\mathbf{j}_{k}\right):=j_{k 0}+2 j_{k 1}+\cdots+(m+1) j_{k m} \tag{1.6}
\end{equation*}
$$

More results related to this topic are referred to Tu [6], Brosch [1], Yang [7].
However, if (1.3) contains really differences, that is, $\mathbf{c}_{k} \neq 0$ for some k, there are different results. For example, Li [3] notes that (1.3) has admissible meromorphic solutions (or see Remarks below). Some works related to the topics are referred to [2], [7].

Write

$$
H[f]=Q(f) D f-P(f), \Lambda=\sum_{k=1}^{n} \lambda_{k} .
$$

In this paper, we prove the following main theorem:
Theorem 1.1. Let f be an admissible meromorphic solution of (1.3) and further assume that the order of f is finite. Suppose that $p \leq q=\Lambda$ and take two distinct complex numbers e_{1}, e_{2} with

$$
H\left[e_{1}\right] \neq 0, \quad H\left[e_{2}\right] \neq 0
$$

If $g \in \mathcal{M}(\mathbb{C})$ and f share the values e_{1}, e_{2} and $\infty C M$, then $f=g$.
By definition, f and g are said to share a value $e \mathrm{CM}$ if $f^{-1}(e)=g^{-1}(e)$ counting multiplicity. For the special case $m=0, \mathbf{j}_{1}=\cdots=\mathbf{j}_{n}=1$, Lü, Han and Lü [5] proved Theorem 1.1 by applying main ideas due to [1].

Remark 1.2. The number of shared values in Theorem 1.1 cannot be reduced. For example, define a differential-difference operator $D: \mathcal{M}(\mathbb{C}) \longrightarrow \mathcal{M}(\mathbb{C})$ as follows:

$$
D f=f_{c}^{\prime}+f_{c^{\prime}}^{\prime}
$$

with $c=\frac{\pi}{4}, c^{\prime}=-\frac{\pi}{4}$, and take

$$
P(f)=4\left(f^{2}+1\right)^{2}, Q(f)=\left(f^{2}-1\right)^{2} .
$$

Obviously, we have

$$
H[\pm 1]=-16, p=q=\Lambda=4
$$

Equation (1.3) has an admissible meromorphic solution $f(z)=\frac{1}{\tan z}$ of order 1. However, the solution f and a different meromorphic function $g(z)=\tan z$ share two values $\pm 1 \mathrm{CM}$.

Remark 1.3. The condition $H\left[e_{1}\right] \neq 0, H\left[e_{2}\right] \neq 0$ cannot be dropped. Take in (1.3)

$$
D f=f_{c}^{\prime}, P(f)=2+2 f^{2}, Q(f)=(f-1)^{2}
$$

with $c=\frac{\pi}{4}, p=q=\Lambda=2, H[\pm i]=0$. Equation (1.3) has an admissible meromorphic solution $f(z)=\tan z$ of order 1 such that $f(z)$ and $g(z)=-\tan z$ share the values $\pm i$ and ∞ CM, but $f \neq g$.

Remark 1.4. The condition $p \leq q$ is sharp in the following meanings. Take in (1.3)

$$
D f=f_{c} f_{c^{\prime}}^{\prime}, P(f)=f^{2}, Q(f)=1
$$

with $c=-1, c^{\prime}=1, p=2, q=0, \Lambda=3, H[\pm 1]=-1$. Equation (1.3) has an admissible entire solution $f(z)=e^{z}$ of order 1 such that $f(z)$ and $g(z)=e^{-z}$ share the values ± 1 and $\infty \mathrm{CM}$, but $f \neq g$.

Remark 1.5. The condition $q=\Lambda$ is necessary. Take in (1.3)

$$
D f=-e^{2} f_{c}+f_{c^{\prime}}^{\prime}, P(f)=-e^{2}, Q(f)=1
$$

with $c=-1, c^{\prime}=1, p=0, q=0, \Lambda=3, H[0]=e^{2}, H[2]=-e^{2}$. Equation (1.3) has an admissible meromorphic solution $f(z)=e^{z}+1$ of order 1 such that $f(z)$ and $g(z)=e^{-z}+1$ share the values 0,2 and $\infty \mathrm{CM}$, but $f \neq g$.

Remark 1.6. The assumption that f is of finite order is necessary. Take in (1.3)

$$
D f=f_{c}^{\prime}-f_{c^{\prime}}^{\prime}, P(f)(z)=3 e^{z} f(z)-4 e^{z}, Q(f)=f^{4}
$$

with $e^{c}=-4, e^{c^{\prime}}=-3, p=1, q=\Lambda=4, H[0](z)=4 e^{z}, H[e](z)=4 e^{z}-3 e^{z+1}$.
Equation (1.3) has an admissible entire solution $f(z)=e^{e^{z}}$ of order $\infty, f(z)$ and $g(z)=e^{2-e^{z}}$ share the values $0, e$ and $\infty \mathrm{CM}$, but $f \neq g$.

2. Preliminary

We assume that the reader is familiar with the standard notations and fundamental results in Nevanlinna theory, Refer to the book [4].

The following lemma is referred to Lemma 2.4 and Lemma 2.5 in [3].
Lemma 2.1. If f is a non-constant meromorphic function of finite order, then

$$
m\left(r, \frac{f_{c}^{(k)}}{f}\right)=S(r, f)
$$

holds for $c \in \mathbb{C}, k \in \mathbb{Z}_{+}$.
Lemma 2.2. Let f be an admissible meromorphic solution of finite order to the equation (1.3). If $b \in \mathcal{M}(\mathbb{C})$ is a small function of f, that is,

$$
T(r, b)=S(r, f)
$$

with $H[b] \neq 0$, then

$$
\begin{equation*}
m\left(r, \frac{1}{f-b}\right)=S(r, f) \tag{2.1}
\end{equation*}
$$

Proof. Substituting $f=h+b$ into (1.3), we obtain

$$
\begin{equation*}
A[h]+H[b]=0, \tag{2.2}
\end{equation*}
$$

where

$$
A[h]=H[h+b]-H[b]=\sum_{1 \leq k_{0}, k_{1}, \ldots, k_{m} \leq n} \sum_{\mathbf{i}} c_{\mathbf{i}} h_{c_{k_{0} 0}}^{i_{0}}\left(h_{c_{k_{1} 1}}^{\prime}\right)^{i_{1}} \cdots\left(h_{c_{k_{m} m}}^{(m)}\right)^{i_{m}}
$$

in which $\mathbf{i}=\left(i_{0}, \ldots, i_{m}\right)$ runs on a finite set of $\mathbb{Z}_{+}^{m+1}-\{0\}$, and $c_{\mathbf{i}}$ is a combination of $a_{k}, b_{i}, d_{l}, b_{c_{k_{0}} 0}, \ldots, b_{c_{k_{m} m}}^{(m)}$ satisfying

$$
T\left(r, c_{\mathbf{i}}\right)=S(r, f)
$$

Then, when $|h(z)| \leq 1$ with $|z|=r$, we obtain an estimate

$$
\left|\frac{A[h](z)}{h(z)}\right| \leq \sum_{1 \leq k_{0}, k_{1}, \ldots, k_{m} \leq n} \sum_{\mathbf{i}}\left|c_{\mathbf{i}}(z)\right|\left|\frac{h_{c_{k_{0} 0}}(z)}{h(z)}\right|^{i_{0}} \cdots\left|\frac{h_{c_{k_{m} m}}^{(m)}(z)}{h(z)}\right|^{i_{m}} .
$$

By using (2.2) and Lemma 2.1, it follows that

$$
\begin{aligned}
m\left(r, \frac{1}{f-b}\right) & =m\left(r, \frac{1}{h}\right) \leq m\left(r, \frac{H[b]}{h}\right)+m\left(r, \frac{1}{H[b]}\right) \\
& =m\left(r, \frac{A[h]}{h}\right)+m\left(r, \frac{1}{H[b]}\right)=S(r, f)
\end{aligned}
$$

since $T(r, h)=T(r, f)+S(r, f)$. When $|h(z)|>1$ with $|z|=r$, we know $m\left(r, \frac{1}{f-b}\right)=m\left(r, \frac{1}{h}\right)=S(r, f)$ is obvious. Hence Lemma 2.2 is proved.

Lemma 2.3. If f is an admissible meromorphic solution of finite order of the equation (1.3) with $p \leq q=\Lambda$, then we have

$$
\begin{equation*}
m(r, f)=S(r, f) \tag{2.3}
\end{equation*}
$$

Proof. Put

$$
\begin{equation*}
d=\max _{1 \leq l \leq q}\left(1,2\left|\frac{d_{q-l}}{d_{q}}\right|^{\frac{1}{\tau}}\right) \tag{2.4}
\end{equation*}
$$

Take $z \in \mathbb{C}$ and write $z=r e^{i \theta}$. Set

$$
\begin{equation*}
E_{1}:=\left\{\theta \in[0,2 \pi):\left|f\left(r e^{i \theta}\right)\right| \leq d\left(r e^{i \theta}\right)\right\}, E_{2}:=[0,2 \pi) \backslash E_{1} . \tag{2.5}
\end{equation*}
$$

In the set E_{1}, we have the following estimate

$$
\begin{align*}
|D f| & \leq \sum_{k=1}^{n}\left|a_{k} f^{j_{k 0}+j_{k 1}+\cdots+j_{k m}}\right|\left|\frac{f_{c_{k 0}}}{f}\right|^{j_{k 0}} \cdots\left|\frac{f_{c k m}^{(m)}}{f}\right|^{j_{k m}} \tag{2.6}\\
& \leq d^{\gamma} \sum_{k=1}^{n}\left|a_{k}\right|\left|\frac{f_{c_{k 0}}}{f}\right|^{j_{k 0}} \cdots\left|\frac{f_{c k m}^{(m)}}{f}\right|^{j_{k m}}
\end{align*}
$$

where

$$
\gamma=\max _{1 \leq k \leq n}\left\{j_{k 0}+j_{k 1}+\cdots+j_{k m}\right\}
$$

In the set E_{2}, noting that

$$
|f|>d \geq 2\left|\frac{d_{q-l}}{d_{q}}\right|^{\frac{1}{l}}
$$

and hence

$$
\left|\frac{d_{q-l}}{d_{q} f^{l}}\right| \leq \frac{1}{2^{l}}
$$

for $l=1, \ldots, q$, which means

$$
\begin{aligned}
|Q(f)| & =\left|d_{q} f^{q}+d_{q-1} f^{q-1}+\cdots+d_{1} f+d_{0}\right| \\
& \geq\left|d_{q} f^{q}\right|\left(1-\sum_{l=1}^{q} \frac{\left|d_{q-l}\right|}{\left|d_{q} f^{l}\right|}\right) \geq \frac{\left|d_{q}\right||f|^{q}}{2^{q}}
\end{aligned}
$$

we also obtain an estimate

$$
\begin{align*}
|D f| & =\left|\frac{P(f)}{Q(f)}\right| \leq \frac{2^{q}}{\left|d_{q}\right||f|^{q}} \sum_{i=0}^{p}\left|b_{i}\right|\left|f^{i}\right| \\
& =\frac{2^{q}}{\left|d_{q}\right|} \sum_{i=0}^{p}\left|b_{i}\right|\left|f^{i-q}\right| \leq \frac{2^{q}}{\left|d_{q}\right|} \sum_{i=0}^{p}\left|b_{i}\right| . \tag{2.7}
\end{align*}
$$

Combing (2.6) and (2.7), we obtain a complete estimate

$$
|D f| \leq \frac{2^{q}}{\left|d_{q}\right|} \sum_{i=0}^{p}\left|b_{i}\right|+d^{\gamma} \sum_{k=1}^{n}\left|a_{k}\right|\left|\frac{f_{c_{k 0}}}{f}\right|^{j_{k 0}} \cdots\left|\frac{f_{c_{k m}}^{(m)}}{f}\right|^{j_{k m}}
$$

which yields immediately

$$
\begin{aligned}
m(r, D f) \leq & (\gamma+1) m\left(r, \frac{1}{d_{q}}\right)+\sum_{i=0}^{p} m\left(r, b_{i}\right)+\gamma \sum_{l=0}^{q} m\left(r, d_{l}\right) \\
& +\sum_{k=1}^{n} m\left(r, a_{k}\right)+\sum_{k=1}^{n} \sum_{\nu=0}^{m} j_{k \nu} m\left(r, \frac{f_{c_{k \nu}}^{(\nu)}}{f}\right)+O(1)
\end{aligned}
$$

Further, by using Lemma 2.1, it follows that

$$
m(r, D f)=S(r, f)
$$

since a_{k}, b_{i}, d_{l} are small functions of f.
Theorem 2.2 of Chiang and Feng [2] implies

$$
N\left(r, f_{c_{k \nu}}\right)=N(r, f)+S(r, f)
$$

which further yields

$$
N\left(r, f_{c_{k \nu}}^{(\nu)}\right) \leq(\nu+1) N\left(r, f_{c_{k \nu}}\right)=(\nu+1) N(r, f)+S(r, f) .
$$

It follows that

$$
\begin{aligned}
T(r, D f) & =m(r, D f)+N(r, D f) \leq \sum_{k=1}^{n} \sum_{\nu=0}^{m} j_{k \nu} N\left(r, f_{c_{k \nu}}^{(\nu)}\right)+S(r, f) \\
& \leq \sum_{k=1}^{n} \sum_{\nu=0}^{m}(\nu+1) j_{k \nu} N(r, f)+S(r, f)=q N(r, f)+S(r, f)
\end{aligned}
$$

On the other hand, it is well knew that

$$
T(r, D f)=T\left(r, \frac{P(f)}{Q(f)}\right)=q T(r, f)+S(r, f)
$$

Therefore, we have

$$
m(r, f)=\frac{1}{q}\{T(r, D f)-q N(r, f)\}+S(r, f)
$$

and hence Lemma 2.3 follows.

3. Proof of Theorem 1.1: special cases $m \leq 1$

Now (1.3) has the following form

$$
\begin{equation*}
D f=\sum_{k=1}^{n} a_{k} f_{c_{k 0}}^{j_{k 0}}\left(f_{c_{k 1}}^{\prime}\right)^{j_{k 1}}=\frac{P(f)}{Q(f)} . \tag{3.1}
\end{equation*}
$$

Since f is an admissible meromorphic solution of (3.1), it follows that f must be non-constant. By using Theorem 5.25 in [8], we have

$$
T(r, g)=\{1+o(1)\} T(r, f)
$$

as $r \rightarrow \infty$, which particularly implies that g and f have the same order. Hence, there exist two polynomials α, β satisfying

$$
\begin{equation*}
\frac{f-e_{1}}{g-e_{1}}=e^{\alpha}, \frac{f-e_{2}}{g-e_{2}}=e^{\beta} . \tag{3.2}
\end{equation*}
$$

Assume, to the contrary, that $g \neq f$. Then we obtain easily

$$
e^{\alpha} \neq 1, e^{\beta} \neq 1, e^{\alpha} \neq e^{\beta}
$$

and

$$
\begin{equation*}
f=e_{1}+\left(e_{2}-e_{1}\right) \frac{e^{\beta}-1}{e^{\gamma}-1}=e_{2}+\left(e_{1}-e_{2}\right) \frac{e^{\alpha}-1}{e^{-\gamma}-1} \tag{3.3}
\end{equation*}
$$

where $\gamma=\beta-\alpha$ is not a constant (see Lemma 2.3). Thus one of α and β at least is not constant. Moreover, by Lemma 2.2 and the first main theorem of Nevanlinna, we have

$$
\begin{equation*}
T(r, f)=N\left(r, \frac{1}{f-e_{j}}\right)+S(r, f) \tag{3.4}
\end{equation*}
$$

for $j=1,2$. If one of α and β is constant, it follows that

$$
T(r, f)=S(r, f)
$$

This is a contradiction. Hence α, β are not constants.
Further, we claim

$$
\begin{equation*}
d:=\operatorname{ord}(f)=\operatorname{deg} \alpha=\operatorname{deg} \beta=\operatorname{deg} \gamma>0 \tag{3.5}
\end{equation*}
$$

The first main theorem due to Nevanlinna yields immediately

$$
N\left(r, \frac{1}{e^{\alpha}-1}\right) \leq T\left(r, e^{\alpha}\right)+O(1)
$$

and the second main theorem applied to three values $0,1, \infty$ implies

$$
T\left(r, e^{\alpha}\right)=N\left(r, \frac{1}{e^{\alpha}-1}\right)+S\left(r, e^{\alpha}\right)
$$

Note that

$$
\begin{equation*}
T\left(r, e^{\alpha}\right) \leq T(r, f)+T(r, g)+O(1) \leq 2 T(r, f)+S(r, f) \tag{3.6}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
T\left(r, e^{\alpha}\right)=N\left(r, \frac{1}{e^{\alpha}-1}\right)+S(r, f) \tag{3.7}
\end{equation*}
$$

Similarly, we can obtain

$$
\begin{equation*}
T\left(r, e^{\beta}\right)=N\left(r, \frac{1}{e^{\beta}-1}\right)+S(r, f) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
T\left(r, e^{\gamma}\right)=N\left(r, \frac{1}{e^{\gamma}-1}\right)+S(r, f) \tag{3.9}
\end{equation*}
$$

It follows from (3.9) that

$$
T\left(r, e^{\gamma}\right)=N(r, f)+N\left(r, \frac{1}{\xi}\right)+S(r, f)
$$

where ξ is an entire function determined by common zeros of $e^{\beta}-1$ and $e^{\gamma}-1$. By using Lemma 2.3, we see

$$
T\left(r, e^{\gamma}\right)=T(r, f)+N\left(r, \frac{1}{\xi}\right)+S(r, f)
$$

Note that (3.8) and (3.4) yield

$$
\begin{aligned}
T\left(r, e^{\beta}\right) & =N\left(r, \frac{1}{f-e_{1}}\right)+N\left(r, \frac{1}{\xi}\right)+S(r, f) \\
& =T(r, f)+N\left(r, \frac{1}{\xi}\right)+S(r, f)
\end{aligned}
$$

Therefore, we have

$$
T\left(r, e^{\beta}\right)=T\left(r, e^{\gamma}\right)+S(r, f)
$$

which means

$$
\operatorname{deg} \beta=\operatorname{ord}\left(e^{\beta}\right):=\limsup _{r \rightarrow \infty} \frac{\log T\left(r, e^{\beta}\right)}{\log r}=\operatorname{ord}\left(e^{\gamma}\right)=\operatorname{deg} \gamma>0
$$

According to the arguments above, we can prove

$$
T\left(r, e^{\alpha}\right)=T\left(r, e^{\gamma}\right)+S(r, f)
$$

and hence

$$
\operatorname{deg} \alpha=\operatorname{deg} \gamma
$$

Now (3.6) implies

$$
\operatorname{deg} \alpha=\operatorname{ord}\left(e^{\alpha}\right) \leq \operatorname{ord}(f)
$$

But, we also have

$$
T(r, f) \leq T\left(r, e^{\alpha}\right)+2 T\left(r, e^{\beta}\right)+S(r, f) \leq 3 T\left(r, e^{\alpha}\right)+S(r, f)
$$

which means

$$
\operatorname{ord}(f) \leq \operatorname{ord}\left(e^{\alpha}\right)=\operatorname{deg} \alpha
$$

The claim (3.5) is proved.
Substituting the representation (3.3) of f into (3.1), we have

$$
\begin{align*}
& \sum_{i=0}^{p} b_{i}\left[e_{1}+\left(e_{2}-e_{1}\right) \frac{e^{\beta}-1}{e^{\gamma}-1}\right]^{i}=\sum_{l=0}^{q} d_{l}\left[e_{1}+\left(e_{2}-e_{1}\right) \frac{e^{\beta}-1}{e^{\gamma}-1}\right]^{l} \\
& \sum_{k=1}^{n} a_{k}\left[e_{1}+\left(e_{2}-e_{1}\right) \frac{e^{\beta_{c_{k 0}}}-1}{e^{\gamma_{c_{k 0}}}-1}\right]^{j_{k 0}}\left[\left(e_{2}-e_{1}\right)\left(\frac{e^{\beta_{c_{k 1}}}-1}{e^{\gamma_{c_{k 1}}}-1}\right)^{\prime}\right]^{j_{k 1}} . \tag{3.10}
\end{align*}
$$

Write

$$
\beta_{c_{k 0}}=\beta+s_{k 0}, \gamma_{c_{k 0}}=\gamma+t_{k 0}, \beta_{c_{k 1}}=\beta+s_{k 1}, \gamma_{c_{k 1}}=\gamma+t_{k 1}
$$

for $1 \leq k \leq n$, where $s_{k 0}, t_{k 0}, s_{k 1}, t_{k 1}$ are polynomials of degrees $\leq d-1$. Then (3.10) becomes the following form

$$
\begin{equation*}
\sum_{\mu=0}^{M} \sum_{v=0}^{N} a_{\mu, v} e^{\mu \beta+v \gamma}-\sum_{\mu=0}^{p} \sum_{v=0}^{2 q} b_{\mu, v} e^{\mu \beta+v \gamma}=0 \tag{3.11}
\end{equation*}
$$

where $a_{\mu, v}$ (resp., $b_{\mu, v}$) are combinations of $a_{k}, d_{l}, e^{s_{k 0}}, e^{t_{k 0}}, e^{s_{k 1}}, e^{t_{k 1}}$ (resp., b_{i}, $e^{t_{k 0}}, e^{t_{k 1}}$) with polynomial coefficients (resp., constant coefficients) depending on $\beta^{\prime}, \gamma^{\prime}, s_{k 1}^{\prime}, t_{k 1}^{\prime}$, and where

$$
M=q+\max _{1 \leq k \leq n}\left\{j_{k 0}+j_{k 1}\right\}, \quad N=2 q-\min _{1 \leq k \leq n}\left\{j_{k 1}\right\},
$$

or further

$$
\begin{equation*}
\sum_{\mu=0}^{M} \sum_{v=0}^{2 q} A_{\mu, v} e^{\mu \beta+v \gamma}=0 \tag{3.12}
\end{equation*}
$$

where $A_{\mu, v}$ are completely determined by $a_{\mu, v}, b_{\mu, v}$ or 0 . Moreover, it is not difficult to show that

$$
\begin{aligned}
& A_{0,0}=H\left[e_{2}\right] \neq 0, \\
& A_{0,2 q}=H\left[e_{1}\right] \prod_{k=1}^{n} e^{j_{k 0} t_{k 0}+2 j_{k 1} t_{k 1}} \neq 0 .
\end{aligned}
$$

We claim that

$$
\begin{equation*}
\operatorname{deg}(\mu \beta+v \gamma)=\operatorname{deg}(\mu \beta-v \gamma)=d \tag{3.14}
\end{equation*}
$$

for $(\mu, v) \in \mathbb{Z}_{+}^{2}-\{(0,0)\}$, which follows from (3.5) if one of μ and ν is zero.
Now we consider the cases $\mu v \neq 0$. First of all, assume, to the contrary, that $\operatorname{deg}(\mu \beta+v \gamma)<d$, so that the entire function $U_{1}=e^{\mu \beta+v \gamma}$ is a small function of e^{α}. We have

$$
T\left(r, U_{1} e^{-\mu \alpha}\right)=T\left(r, e^{-\mu \alpha}\right)+S\left(r, e^{\alpha}\right)=\mu T\left(r, e^{\alpha}\right)+S(r, f)
$$

On the other hand, we also have

$$
\begin{aligned}
T\left(r, U_{1} e^{-\mu \alpha}\right) & =T\left(r, e^{(\mu+v) \gamma}\right)=(\mu+v) T\left(r, e^{\gamma}\right) \\
& =(\mu+v) T\left(r, e^{\alpha}\right)+S(r, f)
\end{aligned}
$$

So that $v=0$. This is a contradiction. The first part of (3.14) is confirmed.
Next, assume, to the contrary, that $\operatorname{deg}(\mu \beta-v \gamma)<d$, so that the entire function $U_{2}=e^{\mu \beta-v \gamma}$ is a small function of e^{α}. Thus if $\mu \geq v$, we have

$$
T\left(r, U_{2} e^{-\mu \alpha}\right)=T\left(r, e^{-\mu \alpha}\right)+S\left(r, e^{\alpha}\right)=\mu T\left(r, e^{\alpha}\right)+S(r, f)
$$

On the other hand, we also have

$$
\begin{aligned}
T\left(r, U_{2} e^{-\mu \alpha}\right) & =T\left(r, e^{(\mu-v) \gamma}\right)=(\mu-v) T\left(r, e^{\gamma}\right) \\
& =(\mu-v) T\left(r, e^{\alpha}\right)+S(r, f)
\end{aligned}
$$

and hence either $\mu=0$ (if $\mu=v$) or $v=0$ (if $\mu>v$). This is a contradiction.

If $v>\mu$, we can get $\mu=0$ in the same way. This is also a contradiction. Therefore, the claim (3.14) is confirmed completely.

By using (3.14), we find that each $A_{\mu, v}$ satisfies the following estimate

$$
\begin{equation*}
T\left(r, A_{\mu, v}\right)=S\left(r, e^{\left(\mu_{1} \beta+v_{1} \gamma\right)-\left(\mu_{2} \beta+v_{2} \gamma\right)}\right) \tag{3.15}
\end{equation*}
$$

for two distinct elements $\left(\mu_{1}, v_{1}\right)$ and $\left(\mu_{2}, v_{2}\right)$ in \mathbb{Z}_{+}^{2}. Thus, by Theorem 1.51 in [8], we have $A_{\mu, v} \equiv 0$. It contradicts to (3.13). Therefore, we complete the proof of Theorem 1.1.

4. Proof of Theorem 1.1: general cases

We can copy completely the procedure of proof in last section up to the claim (3.5). Now a change of proof is to substitute the representation (3.3) of f into the general equation (1.3), so that we obtain

$$
\begin{gather*}
\sum_{i=0}^{p} b_{i}\left[e_{1}+\left(e_{2}-e_{1}\right) \frac{e^{\beta}-1}{e^{\gamma}-1}\right]^{i}=\sum_{l=0}^{q} d_{l}\left[e_{1}+\left(e_{2}-e_{1}\right) \frac{e^{\beta}-1}{e^{\gamma}-1}\right]^{l} \\
\sum_{k=1}^{n} a_{k}\left[e_{1}+\left(e_{2}-e_{1}\right) \frac{e^{\beta_{c_{k 0}}}-1}{e^{\gamma_{c_{k 0}}}-1}\right]^{j_{k 0}} \prod_{\nu=1}^{m}\left[\left(e_{2}-e_{1}\right)\left(\frac{e^{\beta_{c_{k \nu}}}-1}{e^{\gamma_{c_{k \nu}}}-1}\right)^{(\nu)}\right]^{j_{k \nu}} . \tag{4.1}
\end{gather*}
$$

Write

$$
\beta_{c_{k \nu}}=\beta+s_{k \nu}, \quad \gamma_{c_{k \nu}}=\gamma+t_{k \nu}
$$

for $1 \leq k \leq n, 0 \leq \nu \leq m$, where $s_{k \nu}, t_{k \nu}$ are polynomials of degrees $\leq d-1$. Then (4.1) becomes the following form

$$
\begin{equation*}
\sum_{\mu=0}^{M} \sum_{v=0}^{N} a_{\mu, v} e^{\mu \beta+v \gamma}-\sum_{\mu=0}^{p} \sum_{v=0}^{2 q} b_{\mu, v} e^{\mu \beta+v \gamma}=0 \tag{4.2}
\end{equation*}
$$

where $a_{\mu, v}$ (resp., $b_{\mu, v}$) are combinations of $a_{k}, d_{l}, e^{s_{k \nu}}, e^{t_{k \nu}}$ (resp., $b_{i}, e^{t_{k \nu}}$) with polynomial coefficients (resp., constant coefficients) depending on derivatives $\beta_{c_{k \nu}}$ and $\gamma_{c_{k \nu}}$, and where

$$
\begin{gathered}
M=q+\max _{1 \leq k \leq n}\left\{j_{k 0}+j_{k 1}+\cdots+j_{k m}\right\}, \\
N=2 q-\min _{1 \leq k \leq n}\left\{j_{k 1}+2 j_{k 2}+\cdots+m j_{k m}\right\},
\end{gathered}
$$

or further

$$
\begin{equation*}
\sum_{\mu=0}^{M} \sum_{v=0}^{2 q} A_{\mu, v} e^{\mu \beta+v \gamma}=0 \tag{4.3}
\end{equation*}
$$

where $A_{\mu, v}$ are completely determined by $a_{\mu, v}, b_{\mu, v}$ or 0 . Moreover, it is not difficult to show that

$$
\begin{aligned}
& A_{0,0}=H\left[e_{2}\right] \neq 0 \\
& A_{0,2 q}=H\left[e_{1}\right] \prod_{k=1}^{n} e^{j_{k 0} t_{k 0}+2 j_{k 1} t_{k 1}+\cdots+(m+1) j_{k m} t_{k m}} \neq 0 .
\end{aligned}
$$

Thus, according to the arguments in last section, we obtain a contradiction, so that the proof of Theorem 1.1 is completed.

References

[1] G. Brosch, Eindeutigkeitssätze für meromorphe funktionen, Dissertation, Technical University of Aachen, 1989.
[2] Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129.
[3] H. Li, On existence of solutions of differential-difference equations, Math. Methods Appl. Sci. 39 (2016), no. 1, 144-151.
[4] I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter \& Co., Berlin, 1993.
[5] F. Lü, Q. Han, and W. Lü, On unicity of meromorphic solutions to difference equations of Malmquist type, Bull. Aust. Math. Soc. 93 (2016), no. 1, 92-98.
[6] Z. H. Tu, Some Malmquist-type theorems of partial differential equations on \mathbf{C}^{n}, J. Math. Anal. Appl. 179 (1993), no. 1, 41-60.
[7] C. Yang, On entire solutions of a certain type of nonlinear differential equation, Bull. Austral. Math. Soc. 64 (2001), no. 3, 377-380.
[8] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.

Pei-Chu Hu
Department of Mathematics
Shandong University
Jinan 250100, Shandong, P. R. China
Email address: pchu@sdu.edu.cn
Qiong-Yan Wang
Department of Mathematics
Shandong University
Jinan 250100, Shandong, P. R. China
Email address: qiongyanwang@aliyun.com

[^0]: Received June 5, 2017; Revised August 29, 2017; Accepted September 5, 2017.
 2010 Mathematics Subject Classification. Primary 30D35; Secondary 34M05, 39A10, 39B32.

 Key words and phrases. differential-difference equation, unicity, meromorphic solution, Nevanlinna theory.

 The work of the first author was partially supported by NSFC of China (no.11271227) and PCSIRT (no.IRT1264).

