• Title/Summary/Keyword: differential form

Search Result 786, Processing Time 0.023 seconds

Polymorphism of Clarithromycin

  • Sohn, Young-Taek;Rhee, Jae-Keol;Im, Weon-Bin
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.381-384
    • /
    • 2000
  • It is well recognized that physicochemical properties of drugs are affected by the type of polymorphic crystalline form of drugs. Clarithromycin is known to exist in at least three polymorphic crystalline forms. Since conventional means to obtain the most thermodynamically stable form (Form II) for the antibiotics is known to be associated with a low purity of the stable form, we developed a novel method to improve the purity of the crystalline form by a modification of the preparation process. The new method involved a simple recrystallization of clarithromycin in solvents having 5-12 carbon atoms (e.g., hexane and heptane) or ethers with 4-10 carbon atoms (e.g., isopropyl ether) and, thus, less likely to be associated with the problem in purity of resulting crystal. Differential scanning calorimetry and powder X-ray diffraction were used to compare the crystalline form of the resultant powder with Form IIcrystal prepared by the conventional method. The crystal prepared by the new method was identical to Form IIcrystal of the conventional method as evidenced by the lack of the exothermic peak near 11$0^{\circ}C$ in differential calorimetry scan, indicating that Form IIcrystal could be readily prepared by the new process. Therefore, these data indicated that the improvement in the purity of the Form IIcrystal for clarithromycin as well as a significant cost reduction is likely by the novel method.

  • PDF

Unknown Inputs Observer Design Via Block Pulse Functions

  • Ahn, Pius
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.205-211
    • /
    • 2002
  • Unknown inputs observer(UIO) which is achieved by the coordinate transformation method has the differential of system outputs in the observer and the equation for unknown inputs estimation. Generally, the differential of system outputs in the observer can be eliminated by defining a new variable. But it brings about the partition of the observer into two subsystems and need of an additional differential of system outputs still remained to estimate the unknown inputs. Therefore, the block pulse function expansions and its differential operation which is a newly derived in this paper are presented to alleviate such problems from an algebraic form.

ON THE STABILITY AND INSTABILITY OF A CLASS OF NONLINEAR NONAUTONOMOUS ORDINARY DIFFERENTIAI, EQUATIONS

  • Sen, M.DeLa
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • This note Presents sufficient conditions for Lyapunov's stability and instability of a class of nonlinear nonautonomous second-order ordinary differential equations. Such a class includes as particular cases a remarkably large number of differential equations with specific physical applications. Two successive nonlinear transformations are applied to the original differential equation in order to convert it into a more convenient form for stability analysis purposes. The obtained stability / instability conditions depend closely on the parameterization of the original differential equation.

Vibration Analysis for Beams on Variable Two-Parameter Elastic Foundations Using Differetial Transformation (Differential Transformation에 의한 가변 2 파라미터 탄성기초에 설치된 보의 진동해석)

  • 신영재;김재호;황정기
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.357-363
    • /
    • 2001
  • This paper presents the application of the technique Q( differential transformation to the vibration analysis of beams resting on variable two-parameter elastic foundations. The closed form series solutions for beams are obtained for various boundary conditions. Numerical calculations are carried out and compared with previously published results. The results obtained by the present method agree very well with those reported in the previous works. The present analysis shows the usefulness and validity of differential transformation in solving nonlinear problem of the free vibration.

  • PDF

Derivation of Attitude Error Differential Equations by Platform Torque Commands (플랫폼 토크 명령에 의한 자세오차 미분방정식 유도)

  • 김갑진;송기원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.556-562
    • /
    • 2003
  • This paper presents new attitude error differential equations to define attitude errors as the rotation vector for inertial navigation systems. Attitude errors are defined with the rotation vector between the reference coordinate frame and the platform coordinate frame, and Platform dynamics to the reference coordinate frame due to platform torque command errors are defined. Using these concepts for attitude error definition and platform dynamics, we have derived attitude error differential equations expressed in original nonlinear form for GINS and SDINS and showed that these are equivalent to attitude error differential equations expressed in known linear form. The relation between attitude errors defined by the rotation vector and attitude errors defined by quaternion is clearly presented as well.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Two-Weighted Intergal Inequalities for Differential Forms

  • Xiuyin, Shang;Zhihua, Gu;Zengbo, Zhang
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, we make use of the weight to obtain some two-weight integral inequalities which are generalizations of the Poincar$\'{e}$ inequality. These inequalities are extensions of classical results and can be used to study the integrability of differential forms and to estimate the integrals of differential forms. Finally, we give some applications of this results to quasiregular mappings.

ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Huang, Jinghao;Jung, Soon-Mo;Li, Yongjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.685-697
    • /
    • 2015
  • We investigate the stability of nonlinear differential equations of the form $y^{(n)}(x)=F(x,y(x),y^{\prime}(x),{\cdots},y^{(n-1)}(x))$ with a Lipschitz condition by using a fixed point method. Moreover, a Hyers-Ulam constant of this differential equation is obtained.