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Abstract. In this paper, we make use of the weight to obtain some two-weight integral

inequalities which are generalizations of the Poincaré inequality. These inequalities are ex-

tensions of classical results and can be used to study the integrability of differential forms

and to estimate the integrals of differential forms. Finally, we give some applications of

this results to quasiregular mappings.

1. Introduction

Differential forms have wide applications in many fields, such as tensor anal-
ysis, potential theory, partial differential equations and quasiregular mappings.
Throughout this paper, we always assume Ω is a connected open subset of Rn.
Let e1, e2, · · · , en denote the standard unit basis of Rn. For ` = 0, 1, · · · , n, the
linear space of `-vectors, spanned by the exterior products eI = ei1 ∧ ei2 ∧ · · · ∧ ei` ,
corresponding to all ordered `-tuples I = (i1, · · · , i`), 1 ≤ i1 < i2 < · · · < i`, is de-

noted by
∧`

=
∧`

(Rn). The Grassmann algebra
∧

=
⊕∧`

(Rn) is a graded algebra
with respect to the exterior products. For α =

∑
αIeI ∈

∧
and β =

∑
βIeI ∈

∧
,the inner product in

∧
is given by 〈α, β〉 =

∑
αIβI with summation over all `-

tuples I = (i1, i2, · · · , i`) and all integers ` = 0, 1, · · · , n. We define Hodge star
operator ∗ :

∧
→
∧

by the rule

∗1 = e1 ∧ e2 ∧ · · · ∧ en and α ∧ ∗β = β ∧ ∗α = 〈α, β〉 ∗ 1

for all α, β ∈
∧

, the norm of α ∈
∧

is given by the formula

|α|2 = 〈α, α〉 = ∗(α ∧ ∗α) ∈
∧0

= R.

The Hodge star is an isometric isomorphism on
∧

with

∗ :
∧`
→
∧n−`

and ∗ ∗(−1)`(n−`) :
∧`
→
∧`

.

Let we call w(x) a weight if w ∈ L1
loc(R

n) and w(x) > 0, a.e. 0 < p <∞, we denote
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the weighted Lp-norm of a measurable function f over E by

‖f‖p,E,w =

(∫
E

|f(x)|pw(x)dx

)1/p

=

(∫
E

|f(x)|pdµ
)1/p

.

A differential `-form on Ω is a Schwartz distribution on Ω with values in
∧`

(Rn).

We denote the space of differential `-form by D′(Ω,
∧`

). We write Lp(Ω,
∧`

) for
the `-form with

ω(x) =
∑
I

ωI(x)dxI =
∑

ωi1i2···i`(x)dxi1 ∧ dxi2 ∧ · · · dxi` ,

where ωi ∈ Lp(Ω,R) for all ordered `-tuples I. Lp(Ω,R) is a Banach space with
norm

‖ω‖p,Ω =

(∫
Ω

|ω(x)|pdx
)1/p

=

∫
Ω

(∑
I

|ωI(x)|2
)p/2

dx

1/p

.

Similarly, W 1
p (Ω,

∧`
) are those differential `-forms on Ω whose coefficients are in

W 1
p (Ω,R). The notations W 1

p (Ω,R) and W 1
p (Ω,

∧`
) are self-explanatory. We denote

the exterior derivative by d : D′(Ω,
∧`

) → D′(Ω,
∧`+1

) for ` = 0, 1, · · · , n. Its

formal adjoint operator d∗ : D′(Ω,
∧`+1

)→ D′(Ω,
∧`

) is given by d∗ = (−1)n`+1∗d∗
on D′(Ω,

∧`+1
), ` = 0, 1, · · · , n.

A differential forms ω is called an A−harmonic tensor if ω satisfies the
A−harmonic equation

(1.1) d?A(x, dω) = 0,

where A : Ω× ∧l(Rn)→ ∧l(Rn) satisfies the following conditions:

(1.2) |A(x, ξ)| ≤ a|ξ|p−1

and

(1.3) 〈A(x, ξ), ξ〉 ≥ |ξ|p

for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a > 0 is a constant and 1 < p <∝
is a fixed exponent associated with (1.1). A solution to (1.1) is an element of the
Sobolev space W 1

p,loc(Ω,∧l−1) such that∫
Ω

〈A(x, dω), dϕ〉 = 0

for all ϕ ∈W 1
p,loc(Ω,∧l−1) with compact support. We write R = R1. Balls or cubes

are denote by Q, and σQ is the ball or cubes with the same center as Q and with
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diam(σQ) = σdiamQ. The n-dimensional Lebesgue measure of a set E ⊂ Rn is
denoted by |E|. Let Q ⊂ Rn be a cube or a ball. To each y ∈ Q there corresponds

a linear operator Ky : C∞(Q,
∧`

)→ C∞(Q,
∧`−1

) defined by

Ky(ω)(x; ξ1, · · · , ξ`) =

∫ 1

0

t`−1ω(tx+ y − ty, ξ1, · · · , ξ`−1)dt

and the decomposition ω = d(Kyω) +Ky(dω).

Another linear operator TQ : C∞(Q,
∧`

) → C∞(Q,
∧`−1

) can be defined by
averaging Ky over all points y in Q, TQω =

∫
Q
φ(y)Kyωdy. Where φ ∈ C∞0 (Q)

is normalized by
∫
Q
φ(y) = 1. We define the `-form ωQ ∈ D′(Q,

∧`
) by

ωQ = |Q|−1
∫
Q
ω(y)dy, ` = 0, 1, · · · , n, and ωQ = d(TQω), for all ω ∈ Lp(Q,

∧`
),

1 ≤ p <∞.

2. Two-weighted Poincaré inequality

Definition 2.1. We say the weight
(
w1(x), w2(x)

)
satisfies the Aλ3

r (λ1, λ2,Ω) con-
dition for some r > 1 and 0 < λ1, λ2, λ3 <∞, and write (w1, w2) ∈ Aλ3

r (λ1, λ2,Ω),
if w1(x) > 0, w2(x) > 0 a.e. and

sup
B

(
1

|B|

∫
B

wλ1
1 dx

)(
1

|B|

∫
B

(
1

w2

)λ2/(r−1)

dx

)λ3(r−1)

<∞

for any ball B ⊂⊂ Ω.

If we choose w1 = w2 = w and λ1 = λ2 = λ3 = 1 in Definition 2.1, we will
obtain the usual Ar(Ω)-weight. If we choose w1 = w2 = w, λ1 = λ2 = 1 and λ3 = λ
in Definition 2.1, we will obtain the Aλr (Ω)-weight [9]. If we choose w1 = w2 = w,
λ1 = λ and λ2 = λ3 = 1 in Definition 2.1, we will obtain the Ar(λ,Ω)-weight [11].

We will need the following generalized Hölder inequality.

Lemma 2.2. Let 0 < α < ∞, 0 < β < ∞ and s−1 = α−1 + β−1. If f and g are
measurable functions on Rn, then

‖ fg ‖s,Ω≤‖ f ‖α,Ω · ‖ g ‖β,Ω

for any Ω ⊂ Rn.

We also need the following two lemmas.

Lemma 2.3. If w ∈ Ar(Ω), then there exist constants β > 1 and C, independent
of w, such that

‖ w ‖β,B≤ C|B|(1−β)/β ‖ w ‖1,B
for all balls B ⊂ Rn.

The following weak reverse Hölder inequality appears in [5].
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Lemma 2.4. Let u be an A-harmonic tensor in Ω, ρ > 1, and 0 < s, t <∞. Then
there exists a constant C, independent of u, such that

‖ u ‖s,B≤ C|B|(t−s)/st ‖ u ‖t,ρB

for all balls or cubes B with ρB ⊂ Ω.

Different versions of the Poincaré inequality have been established in the study
of the Sobolev spaces of the differential forms. The following version of the Poincaré
inequality appears in [14].

Lemma 2.5. If u ∈W 1
p (Q,

∧`
), 1 ≤ p <∞, then for any 0 < σ ≤ 1

‖u− uσQ‖p,Q ≤
(

2

σ

)n/p
diam (Q)‖ 5 u(x)‖p,Q

the above inequality can be write as

‖u− uσQ‖p,Q ≤ c(n, p, σ,Q)‖ 5 u(x)‖p,Q

for any cubes or balls, Q, σQ ⊂ Ω.

We now prove the following local two-weight Poincaré inequality for A-harmonic
tensors.

Theorem 2.6. Let u ∈ D′(Ω,∧l) be an A-harmonic tensor in a domain Ω ⊂ Rn

and 5u ∈ Ls(Ω,∧l+1), l = 0, 1, · · · , n. Suppose that r > 1, wλ1
1 (x) ∈ Ar(Ω) and

(w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2,Ω). If ρ > 1, s > λ3(r − 1) + 1, then

(2.1)

(∫
B

|u− uσB |swλ1
1 dx

)1/s

≤ C
(∫

ρB

| 5 u|swλ2λ3
2 dx

)1/s

for all balls B with ρB ⊂ Ω. Here uσB is a closed form and C is a constant
independent of u.

Proof. Using Lemma 2.3 with wλ1
1 (x) ∈ Ar(Ω), there exist constants β > 1 and

C1 > 0, such that

(2.2) ‖ wλ1
1 ‖β,B≤ C1|B|(1−β)/β ‖ wλ1

1 ‖1,B

for any cube or any ball B ⊂ Rn. Choose t = sβ/(β − 1), then 1 < s < t and
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β = t/(t− s). Since 1/s = 1/t+ (t− s)/st, by Lemma 2.1 and (2.2), we have

(∫
B

|u− uσB |swλ1
1 dx

)1/s

(2.3)

=
(∫

B

(
|u− uσB |wλ1/s

1

)s
dx
)1/s

≤
(∫

B

|u− uσB |tdx
)1/t(∫

B

w
λ1t/(t−s)
1 dx

)(t−s)/st

= ‖ u− uσB ‖t,B
(∫

B

wλ1β
1 dx

)1/sβ

= ‖u− uσB‖t,B · ‖wλ1
1 ‖

1/s
β,B

≤ C1|B|(1−β)/sβ‖u− uσB‖t,B · ‖wλ1
1 ‖

1/s
1,B

Next, taking m = s/(λ3(r − 1) + 1), then 1 < m < s. Since uσB is a closed form,
by Lemma 2.4 and Lemma 2.5, we have

‖ u− uσB ‖t,B ≤ C2|B|(m−t)/mt ‖ u− uσB ‖m,ρB(2.4)

≤ C3|B|(m−t)/mt ‖ 5u ‖m,ρB ,

where ρ > 1. Using Hölder inequality with 1/m = 1/s+ (s−m)/sm, we have

‖ 5u ‖m,ρB =
(∫

ρB

(
| 5 u|wλ2λ3/s

2 w
−λ2λ3/s
2

)m
dx
)1/m

≤
(∫

ρB

| 5 u|swλ2λ3
2 dx

)1/s(∫
ρB

( 1

w2

)λ2λ3m/(s−m)
dx
)(s−m)/sm

(2.5)

=
(∫

ρB

| 5 u|swλ2λ3
2 dx

)1/s(∫
ρB

( 1

w2

)λ2/(r−1)
dx
)λ3(r−1)/s

= ‖1/wλ2
2 ‖

λ3/s
1/(r−1)ρB

(∫
ρB

| 5 u|swλ2λ3
2 dx

)1/s

for all balls B with ρB ⊂ Ω. Combining with (2.3), (2.4) and (2.5), we have

(∫
B

|u− uσB |swλ1
1 dx

)1/s

(2.6)

≤ C4|B|(1−β)/βs|B|(m−t)/mt
(∫

B

wλ1
1 dx

)1/s

×
(∫

ρB

| 5 u|swλ2λ3
2 dx

)1/s(∫
ρB

( 1

w2

)λ2/(r−1)
dx
)λ3(r−1)/s

.
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Since (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2,Ω), we have

‖wλ1
1 ‖

1/s
1,B‖1/w

λ2
2 ‖

λ3/s
1/(r−1),ρB(2.7)

=
(∫

B

wλ1
1 dx

)1/s(∫
ρB

( 1

w2

)λ2/(r−1)
dx
)λ3(r−1)/s

≤
((∫

ρB

wλ1
1 dx

)(∫
ρB

( 1

w2

)λ2/(r−1)
dx
)λ3(r−1)

)1/s

= |ρB|(λ3(r−1)+1)/s
( 1

|ρB|

∫
ρB

wλ1
1 dx

)1/s

×
(( 1

|ρB|

∫
ρB

( 1

w2

)λ2/(r−1)
dx
)λ3(r−1)

)1/s

≤ C5|ρB|λ3(r−1)/s+1/s

≤ C6|B|λ3(r−1)/s+1/s.

Substituting (2.7) into (2.6), we obtain

(2.8)
(∫

B

|u− uσB |swλ1
1 dx

)1/s

≤ C
(∫

ρB

| 5 u|swλ2λ3
2 dx

)1/s

for all balls B with ρB ∈ Ω. Hence (2.1) holds. The proof of Theorem 2.6 is
completed. �

If choosing λ1 = 1 in Theorem 2.6, we have the following corollary:

Corollary 2.7. Let u ∈ D′(Ω,∧l) be a A-harmonic tensor in a domain Ω ⊂
Rn,5u ∈ Ls(Ω,∧l+1) l = 0, 1, · · · , n. Suppose that r > 1, w1(x) ∈ Ar(Ω) and
(w1(x), w2(x)) ∈ Aλ3

r (1, λ2,Ω). If ρ > 1, s > λ3(r − 1) + 1, then

(2.9)

(∫
B

|u− uσB |sw1dx

)1/s

≤ C
(∫

ρB

| 5 u|swλ2λ3
2 dx

)1/s

for all balls B with ρB ⊂ Ω. Here uσB is a closed form and C is a constant
independent of u.

If choosing λ1 = 1, λ3 = 1/λ2 in Corollary 2.6, we have the following symmetric
inequality.

Corollary 2.8. Let u ∈ D′(Ω,∧l) be a A-harmonic tensor (1.2) in a domain
Ω ⊂ Rn ,5u ∈ Ls(Ω,∧l+1) , l = 0, 1, · · · , n. Suppose that r > 1, w1(x) ∈ Ar(Ω)
and (w1(x), w2(x)) ∈ Aλ3

r (1, 1/λ3,Ω). If ρ > 1, s > λ3(r − 1) + 1, then

(2.10)

(∫
B

|u− uσB |sw1dx

)1/s

≤ C
(∫

ρB

| 5 u|sw2dx

)1/s
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for all balls B with ρB ⊂ Ω. Here uσB is a closed form and C is a constant
independent of u.

If choosing w1 = w2 = w and λ1 = λ2 = λ3 = 1 in Theorem 2.6, we have the
following inequality.

Corollary 2.9. Let u ∈ D′(Ω,∧l) be a A-harmonic tensors in a domain Ω ⊂
Rn,5u ∈ Ls(Ω,∧l+1), l = 0, 1, · · · , n. Suppose that r > 1 and w(x) ∈ Ar(Ω). If
ρ > 1 and s > r, then

(2.11)

(∫
B

|u− uσB |swdx
)1/s

≤ C
(∫

ρB

| 5 u|swdx
)1/s

for all balls B with ρB ⊂ Ω. Here uσB is a closed form and C is a constant
independent of u.

3. Applications to quasiregular mappings

Quasiregular mappings were first introduced and studied by Yu.G. Reshetnyak
in series of articles that began to appear in 1966. There are many details in the
monograph [18]. Quasiregular mappings are interesting not only because of the
results obtained about them, but also because of many new ideas generated in the
course of the development of their theory. It is known that if f = (f1, f2, · · · , fn)
is K-quasiregular in Rn, then

u = f ldf1 ∧ df2 · · · ∧ df l−1

and

v = ?f l+1df l+2 ∧ · · · ∧ dfn

l = 1, 2, . . . , n, are conjugate A-harmonic tensors with p =
n

l
and q =

n

n− l
. It is

also known that u is a solution to (1.1), where A is some operator satisfying (1.2)
and (1.3).

By theorem 2.6, we obtain the following local two-weight Poincaré inequality
for quasiregular mappings:(∫

B

|f ldf1 ∧ df2 . . . ∧ df l−1 − (f ldf1 ∧ df2 . . . ∧ df l−1)σB |swλ1
1 dx

)1/s

≤ C|B|1/n
(∫

ρB

|df1 ∧ df2 . . . ∧ df l|swλ2λ3
2 dx

)1/s

,

where C is a constant independent of u and balls B with ρB ⊂ Ω.
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