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ON HYERS-ULAM STABILITY OF NONLINEAR

DIFFERENTIAL EQUATIONS

Jinghao Huang, Soon-Mo Jung, and Yongjin Li

Abstract. We investigate the stability of nonlinear differential equa-
tions of the form y

(n)(x) = F (x, y(x), y′(x), . . . , y(n−1)(x)) with a Lips-
chitz condition by using a fixed point method. Moreover, a Hyers-Ulam
constant of this differential equation is obtained.

1. Introduction and preliminaries

In 1940, S. M. Ulam [49] posed the following question concerning the stability
of group homomorphisms before a Mathematical Colloquium: When can we

assert that the solutions of an inequality are close to one of the exact solutions

of the corresponding equation?

A year later, D. H. Hyers [15] dealt with ε-additive mapping by direct
method, which gave a partial solution to the above question. The result was
extended by T. Aoki [2], D. G. Bourgin [4] and Th. M. Rassias [40]. We men-
tion here that the interest of this topic has been increasing since it came into
being, some other results concerning functional equations one can find, e.g., in
[9, 10, 11, 19, 37, 42, 43] and some related information (e.g., ε-isometries, su-
perstability of functional equations and the stability of differential expressions)
we refer to [3, 5, 6, 8, 14, 16, 17, 18, 36, 47].

To the best of our knowledge, the first one who pay attention to the sta-
bility of differential equations is M. Ob loza [34, 35]. Thereafter, C. Alsina
and R. Ger [1] proved that the stability holds true for differential equation
y′(x) = y(x). Then, a generalized result was given by S.-E. Takahasi, T. Miura
and S. Miyajima [48], in which they investigated the stability of the Banach
space valued linear differential equation of first order (see also [31, 33]). A
more general result on the linear differential equations of first order of the form
y′(t) + α(t)y(t) + β(t) = 0 was given by S.-M. Jung [22] and the stability of
linear differential equations of second order was established by Y. Li et al. (see
[12, 27, 28, 29]). There are a number of results concerning the stability of the
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linear ordinary differential equations, which prompts the question: Can we as-

sert that all of the linear ordinary differential equations have the Hyers-Ulam

stability?

Indeed, P. Gǎvruţǎ, S.-M. Jung and Y. Li [12] proved that the differential
equation y′′ = 0 does not have the Hyers-Ulam stability on the whole domain.
For some examples of differential equations which have the Hyers-Ulam stability
on unbounded interval we refer the reader to [1, 20, 32, 38], which show that
it is a very special case that the Hyers-Ulam stability holds true for general
differential equations on the whole domain.

Recently, Jung [44] proved that the generalized Hyers-Ulam stability holds
for the case of general linear differential equations, and the stability of nonlinear
differential equations

y′(x) = F
(

x, y(x)
)

with a Lipschitz condition on a local interval was investigated by a fixed point
method:

Theorem 1.1 ([23]). Given c ∈ R and r > 0, let I = [c − r, c + r] and let

F : I × R → R be a continuous function that satisfies a Lipschitz condition

|F (x, y) − F (x, z)| ≤ L|y − z|

for all x ∈ I and y, z ∈ R, where L is a constant with 0 < Lr < 1. Then

the differential equation y′(x) = F (x, y(x)) has the Hyers-Ulam stability with a

Hyers-Ulam stability constant r
1−Lr

.

And then he raised an open question whether the differential equation y′(x)
= F (x, y(x)) has the Hyers-Ulam stability when the relevant domain is an
infinite interval.

In this paper, we adopt the ideas of V. Radu [39], S.-M. Jung [23] and
Y. Li [27, 29] to investigate the generalized Hyers-Ulam stability as well as the
Hyers-Ulam stability of the nonlinear differential equations of the form

y(n)(x) = F
(

x, y(x), y′(x), . . . , y(n−1)(x)
)

(1.1)

on an interval [a, b], where n ∈ N+, and the question raised by Jung [23] will
be answered incidentally.

We now introduce the definition of the generalized metric on a nonempty
set X .

Definition 1.2. A function d : X × X → [0,∞] is called a generalized metric
on X if

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X ;
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

The following theorem is a very useful tool for proving our main theorems.
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Theorem 1.3 ([7]). Let (X , d) be a generalized complete metric space and let

T : X → X be a strictly contractive operator with the Lipschitz constant L < 1.
If there is a nonnegative integer k such that d

(

T k+1x, T kx
)

< ∞ for a given

x ∈ X , then

(i) The sequence {T nx}n converges to a fixed point x∗ of T ;
(ii) x∗ is the unique fixed point of T in

X ∗ =
{

y ∈ X | d
(

T kx, y
)

< ∞
}

;

(iii) For every y ∈ X ∗, it holds that

d(y, x∗) ≤
1

1 − L
d(Ty, y).

2. Main results

In this section, we investigate the generalized Hyers-Ulam stability and the
Hyers-Ulam stability of differential equation (1.1).

For a given closed interval I := [a, b] and ϕ(x) ∈ C
(

I,R+
)

, we define a set

X :=
{

f : I → R | f is (n− 1) times continuously differentiable
}

equipped with the metric

d(y1, y2) := inf
{

C ∈ [0,∞]
∣

∣ max
0≤i≤n−1

∣

∣y
(i)
1

(x) − y
(i)
2

(x)
∣

∣ ≤ Cϕ(x) for every x ∈ I
}

.

Proposition 2.1. X is a complete generalized metric space.

Proof. We prove that (X , d) is a generalized metric space. For all f, g, h ∈ X ,
we have

(i) d(f, g) = 0 if and only if |f(x)−g(x)| = |f ′(x)−g′(x)| = · · · = |f (n−1)(x)−
g(n−1)(x)| = 0 for every x ∈ I, which is equivalent to f(x) = g(x) for each x ∈ I;

(ii) Since max0≤i≤n−1

∣

∣f (i)(x)− g(i)(x)
∣

∣ = max0≤i≤n−1

∣

∣g(i)(x)− f (i)(x)
∣

∣, it
holds that d(f, g) = d(g, f);

(iii) Assume that d(f, g) > d(f, h)+d(h, g) holds for some f, g, h ∈ X . Then,
by the definition, there exists an x0 ∈ I with

max
0≤i≤n−1

∣

∣f (i)(x0) − g(i)(x0)
∣

∣

>
(

d(f, h) + d(h, g)
)

ϕ(x0)

= d(f, h)ϕ(x0) + d(h, g)ϕ(x0)

≥ max
0≤i≤n−1

∣

∣f (i)(x0) − h(i)(x0)
∣

∣ + max
0≤i≤n−1

∣

∣g(i)(x0) − h(i)(x0)
∣

∣,

but
∣

∣f (i)(x0) − g(i)(x0)
∣

∣

≤
∣

∣f (i)(x0) − h(i)(x0)
∣

∣ +
∣

∣g(i)(x0) − h(i)(x0)
∣

∣

≤ max
0≤i≤n−1

∣

∣f (i)(x0) − h(i)(x0)
∣

∣ + max
0≤i≤n−1

∣

∣g(i)(x0) − h(i)(x0)
∣

∣
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for every i ∈ {0, 1, . . . , n− 1}, which is a contradiction.
We will now prove that (X , d) is complete. Let {hk}k be a Cauchy se-

quence in (X , d). Then, for any ε > 0, there exists an integer Nε > 0 such
that d(hm, hl) ≤ ε for all m, l ≥ Nε. It further follows from the definition
of d that ∀ε > 0, ∃Nε ∈ N such that for all m, l ≥ Nε and every x ∈ I,

max0≤i≤n−1

∣

∣h
(i)
m (x) − h

(i)

l (x)
∣

∣ ≤ εϕ(x). If x is fixed, we have {h
(i)

k (x)}k is a
Cauchy sequence in R for each i ∈ {0, 1, . . . , n − 1}. Since R is complete, for

every fixed i,
{

h
(i)

k (x)
}

k
converges for each fixed x ∈ I. Thus, we can define a

function Hi : I → R, i ∈ {0, 1, . . . , n− 1}, by

Hi(x) := lim
k→∞

h
(i)

k (x).

Since ϕ is bounded on I,
{

h
(i)

k

}

k
converges uniformly to Hi for each i ∈

{0, 1, . . . , n− 1}. Hence, Hi(x), i ∈ {0, 1, . . . , n− 1}, is continuous and

H ′

i(x) = Hi+1(x)

for i ∈ {0, 1, . . . , n − 2}, which implies that H0 is (n − 1) times continuously
differentiable, and hence, (X , d) is complete since d(hk, H0) → 0 as k → ∞. �

We should give the definitions of the Hyers-Ulam stability and the general-
ized Hyers-Ulam stability of Eq. (1.1).

Definition 2.2. We say that Eq. (1.1) has the Hyers-Ulam stability if there
exists a constant K > 0 with the following property:

For every ε > 0, y(x) ∈ Cn(I,R), if

|y(n) − F (x, y, y′, . . . , y(n−1))| ≤ ε,

then there exists some u(x) ∈ Cn(I,R) satisfying the corresponding equation
such that |y(x)− u(x)| ≤ Kε. We call such K a Hyers-Ulam stability constant
for Eq. (1.1).

Definition 2.3. We say that Eq. (1.1) has the generalized Hyers-Ulam stability
if it has the following properties:

For every positive continuous function ϕ(x) and y(x) ∈ Cn(I,R), if

|y(n) − F (x, y, y′, . . . , y(n−1))| ≤ ϕ(x),

then there exists some u(x) ∈ Cn(I,R) satisfying the corresponding equation
such that |y(x) − u(x)| ≤ Φ(x), where Φ(x) is a function not depending on f

and u explicitly.

For a given c ∈ I, we define an operator

(V f)(x) :=

∫ x

c

f(τ)dτ

for all x ∈ I and f ∈ C(I,R). We remark that V depends on c.
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Lemma 2.4. Let K and L be positive constants with 0 < KL < 1. Assume that

F : I × Rn → R is a continuous function which satisfies a Lipschitz condition
∣

∣F (x, y11, . . . , y1n) − F (x, y21, . . . , y2n)
∣

∣ ≤ L · max
1≤i≤n

|y1i − y2i|(2.1)

for any x ∈ I and y1i, y2i ∈ R, i ∈ {1, 2, . . . , n}. If an n-times continuously

differentiable function y(x) satisfies
∣

∣y(n)(x) − F
(

x, y(x), y′(x), . . . , y(n−1)(x)
)∣

∣ ≤ ϕ(x)(2.2)

for each x ∈ I, where ϕ : I → (0,∞) is a continuous function with
∣

∣

(

V iϕ
)

(x)
∣

∣ ≤ Kϕ(x)(2.3)

for each x ∈ I and i ∈ {1, 2, . . . , n}, then there exists an n times continuously

differentiable function u : I → R which satisfies Eq. (1.1) and

|y(x) − u(x)| ≤
K̃

1 −KL
ϕ(x)

for all x ∈ I, where K̃ is a positive constant.

Proof. We define operators Λj inductively by

(Λ1f)(x) :=

∫ x

c

F
(

τ, f(τ), f ′(τ), . . . , f (n−1)(τ)
)

dτ + w1,

(Λif)(x) :=

∫ x

c

(Λi−1f)(τ)τ + wi

for all f ∈ X and i ∈ {2, 3, . . . , n}, where wi, i ∈ {1, 2, . . . , n}, is an arbitrary
given real number. Then, we define Λ := Λn and it is easy to prove that
Λy ∈ X .

For any y1, y2 ∈ X , let Cy1y2 = d(y1, y2), that is,
∣

∣y
(i)
1

(x) − y
(i)
2

(x)
∣

∣ ≤ Cy1y2ϕ(x)(2.4)

for any x ∈ I and i ∈ {0, 1, . . . , n− 1}. It then follows from (2.1), (2.3), (2.4),
and the definitions of d and Λ that

∣

∣(Λy1)(i)(x) − (Λy2)
(i)(x)

∣

∣

=
∣

∣

∣
V n−i ◦

(

F
(

·, y1(·), y′1(·), . . . , y
(n−1)

1
(·)

)

−F
(

·, y2(·), y′2(·), . . . , y
(n−1)

2
(·)

)

)

(x)
∣

∣

∣

≤
∣

∣

∣

(

V n−i ◦
∣

∣F
(

·, y1(·), y′1(·), . . . , y
(n−1)

1
(·)

)

−F
(

·, y2(·), y′2(·), . . . , y
(n−1)

2
(·)

)∣

∣

)

(x)
∣

∣

∣

≤ L ·
∣

∣

∣

(

V n−i ◦ max
0≤i≤n−1

∣

∣y
(i)
1

(·) − y
(i)
2

(·)
∣

∣

)

(x)
∣

∣

∣

≤ LCy1y2

∣

∣

(

V n−i ◦ ϕ(·)
)

(x)
∣

∣

≤ KLCy1y2ϕ(x)

for all x ∈ I and i ∈ {0, 1, . . . , n− 1}, that is, d(Λy1,Λy2) ≤ KLCy1y2 . Hence,
we can conclude that d(Λy1,Λy2) ≤ KLd(y1, y2) for any y1, y2 ∈ X , where we
note that 0 < KL < 1.
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It follows from the assumptions that for an arbitrary y0 ∈ X , there exists a
constant 0 ≤ C < ∞ with

max
0≤i≤n−1

∣

∣(Λy0)(i)(x) − y
(i)
0

(x)
∣

∣ ≤ Cϕ(x)

for all x ∈ I, since F
(

·, y0(·), y′0(·), . . . , y
(n−1)

0
(·)

)

and y
(i)
0

(x), i ∈ {0, 1, . . .,
n− 1}, are bounded on I and minx∈I ϕ(x) > 0. Thus, we have

d(Λy0, y0) < ∞.

Therefore, according to Theorem 1.3, there exists an (n− 1) times continu-
ously differentiable function u ∈ X such that Λky0 → u as k → ∞ and

(Λu)(x) = u(x)

for each x ∈ I. Consequently, u is a solution to (1.1).
To prove the uniqueness, we will now verify that {g ∈ X | d(y0, g) < ∞} =

X . For any g ∈ X , since g(i) is bounded on I for all i ∈ {0, 1, . . . , n − 1} and
minx∈I ϕ(x) > 0, there exists a constant 0 < Cg < ∞ such that

∣

∣g(i)(x) − y
(i)
0

(x)
∣

∣ ≤ Cgϕ(x)

for any x ∈ I and all i ∈ {0, 1, . . . , n− 1}. Hence, we have d(g, y0) < ∞ for all
g ∈ X . Then, {g ∈ X | d(y0, g) < ∞} = X , which implies that u is the unique
solution of Λu = u in X .

On the other hand, it follows from (2.2) that

−ϕ(x) ≤ y(n)(x) − F
(

x, y(x), y′(x), . . . , y(n−1)(x)
)

≤ ϕ(x)

for all x ∈ I. If we integrate each term in the above inequality from c to x for
i times, then we obtain that

∣

∣

∣

(

V i ◦ y(n)
)

(x) −
(

V i ◦ F
(

·, y(·), y′(·), . . . , y(n−1)(·)
)

)

(x)
∣

∣

∣

=

∣

∣

∣

∣

y(n−i)(x) −
(

V i ◦ F
(

·, y(·), y′(·), . . . , y(n−1)(·)
)

)

(x)

−
i

∑

k=1

(

V i−k ◦ y(n−k)(c)
)

(x)

∣

∣

∣

∣

≤
∣

∣

(

V iϕ
)

(x)
∣

∣

for any x ∈ I and i ∈ {1, 2, . . . , n}, where V 0 denotes identity mapping. Recall
the definition of Λ, and thus

∣

∣y(i)(x) − (Λy)(i)(x)
∣

∣ ≤
∣

∣

(

V n−iϕ
)

(x)
∣

∣ +
n−i
∑

k=1

(

V n−i−k ◦
∣

∣ωk − y(n−k)(c)
∣

∣

)

(x)

≤ Kϕ(x) +

n−i
∑

k=1

(

V n−i−k ◦
∣

∣ωk − y(n−k)(c)
∣

∣

)

(x)

for each x ∈ I and i ∈ {0, 1, . . . , n− 1}.
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Since for any i ∈ {0, 1, . . . , n− 1},

n−i
∑

k=1

(

V n−i−k ◦
∣

∣ωk − y(n−k)(c)
∣

∣

)

(x)

is bounded on I and minx∈I ϕ(x) > 0, there exists a positive constant K̃(K,ω1,
ω2, . . . , ωn) < ∞ such that

d
(

y(x), (Λy)(x)
)

≤ K̃.

Finally, Theorem 1.3 together with the above inequality implies that

d(y, u) ≤
1

1 −KL
d(y,Λy) ≤

K̃

1 −KL
,

which completes our proof. �

Remark 2.5. Function u is the unique solution of Eq. (1.1) with u(n−i)(c) = ωi

for every i ∈ {0, 1, . . . , n− 1}.

Remark 2.6. When ωi = y(i)(c) for each i ∈ {0, 1, . . . , n−1}, u(x) is the unique
solution of Eq. (1.1) satisfying u(i)(c) = y(i)(c) for each i ∈ {0, 1, . . . , n − 1}
with

|y(x) − u(x)| ≤
K

1 −KL
ϕ(x).

Given real numbers a and b, let I denote either (−∞, b] or R or [a,∞). Set
either c = a for I = [a,∞) or c = b for I = (−∞, b] or c is a fixed real number
if I = R. By using the same technique from [23], we can prove the theorem for
the case of unbounded intervals.

Corollary 2.7. Assume that F : I × R
n → R is a continuous function which

satisfies the Lipschitz condition (2.1). If an n-times continuously differentiable

function y(x) satisfies inequality (2.2) for each x ∈ I, then there exists an n

times continuously differentiable function u : I → R which satisfies Eq. (1.1)
and

|y(x) − u(x)| ≤
K

1 −KL
ϕ(x)

for all x ∈ I, where ϕ satisfies condition (2.3) on I.

The following theorem is the main theorem of this paper which shows that
condition (2.3) is not necessary.

Theorem 2.8. Assume that F : I × Rn → R is a continuous function which

satisfies the Lipschitz condition (2.1). If an n-times continuously differentiable

function y(x) satisfies
∣

∣y(n)(x) − F
(

x, y(x), y′(x), . . . , y(n−1)(x)
)∣

∣ ≤ ϕ(x)
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for each x ∈ I, where ϕ : I → (0,∞) is a continuous function, then there

exists an n times continuously differentiable function u : I → R which satisfies

Eq. (1.1) and

|y(x) − u(x)| ≤
K̃(x)

1 −KL
ϕ(x)

for all x ∈ I, where K̃(x) is a nonnegative function depending on ϕ(x) only.

Proof. Let K be an arbitrary positive number with KL < 1. Since ϕ(x) > 0
for every x ∈ I, we have supx∈I ϕ(x) < ∞ and infx∈I ϕ(x) > 0. Then for any
given constant c ∈ [a, b], there exists a δ > 0 not depending on c such that

∣

∣

(

V i ◦ ϕ
)

(x)
∣

∣ ≤ δi sup
x∈I

ϕ(x) ≤ K inf
x∈I

ϕ(x) ≤ Kϕ(x)

for every x ∈ [c− δ, c+ δ]∩ I and i ∈ {1, 2, . . . , n}. (Operator V depends on c.)
Let {a0, a1, . . . , am} be a partition of interval I with the properties:

(i) a0 = a, am = b, and 0 < ai − ai−1 ≤ δ for i ∈ {1, 2, . . . ,m};
(ii) Ii = [ai−1, ai] for i ∈ {1, 2, . . . ,m}.

According to Lemma 2.4 and Remark 2.6, there exists a unique n times

continuously differentiable function u1(x) satisfying Eq. (1.1) and u
(k)
1

(a0) =

y(k)(a0) for each k ∈ {0, 1, . . . , n− 1} with

|y(x) − u1(x)| ≤
K

1 −KL
ϕ(x)

for every x ∈ I1.
Similarly, by Lemma 2.4 and Remark 2.5, we obtain a unique solution ui ∈ X

on Ii, i ∈ {1, 2, . . . ,m}, such that

|y(x) − u(x)| ≤
K̃i

1 −KL
ϕ(x)

for every x ∈ Ii and

u
(k)
i (ai−1) = u

(k)
i−1

(ai−1)

for every i ∈ {2, 3, . . . ,m} and k ∈ {0, 1, . . . , n− 1}. Moreover, since

u
(n)

i (x) = F
(

x, u′

i(x), u′′

i (x), . . . , u
(n−1)

i (x)
)

,

we obtain

u
(n)
i (ai−1) = u

(n)
i−1

(ai−1)

for all i ∈ {2, 3, . . . ,m}.
Now, we define u : I → R by u(x) = ui(x) on Ii for each i ∈ {1, 2, . . . ,m}.

The function is well defined and is n times continuously differentiable.
If we define K̃(x) := K̃i on Ii for each i ∈ {1, 2, . . . ,m}, we have

|y(x) − u(x)| ≤
K̃(x)

1 −KL
ϕ(x)
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for each x ∈ I, which completes the proof. �

Let I denote either (−∞, b] or R or [a,∞). We obtain the theorem for the
case of unbounded intervals.

Corollary 2.9. Assume that F : I × R
n → R is a continuous function which

satisfies the Lipschitz condition (2.1), ϕ : I → (0,∞) is a continuous function.

Then Eq. (1.1) has the generalized Hyers-Ulam stability.

Proof. It is not difficult to prove this corollary by using a similar technique of
the proof of Theorem 3.2 in [23] and the result given in Theorem 2.8 in this
paper. �

As a corollary of Theorem 2.8, we prove the Hyers-Ulam stability of the
differential equation (1.1) on a finite closed interval.

Corollary 2.10. Let I = [a, b] and let L be positive constant. Assume that

F : I×R
n → R is a continuous function which satisfies the Lipschitz condition

(2.1) for any x ∈ I. If an n times continuously differentiable function y ∈ X
satisfies

∣

∣y(n)(x) − F
(

x, y(x), y′(x), . . . , y(n−1)(x)
)∣

∣ ≤ ε(2.5)

for each x ∈ I and for some ε ≥ 0, then Eq. (1.1) has the Hyers-Ulam stability

on I.

Proof. Let ϕ(x) = ε, K = 1

2L
, and let δ = δ(K) = min{ n

√
K,K} = min

{

1
n
√

2L
,

1

2L

}

. Hence, according to the proof of Lemma 2.4 and Theorem 2.8, we can
conclude that there exists an n times continuously differentiable function u :
I → R which satisfies Eq. (1.1) and

|y(x) − u(x)| ≤

(

2 δn−1

δ−1

)[(b−a)/δ]+1

− 1

δn−1

δ−1
2L− L

ε

for every x ∈ I, where [(b−a)/δ] = max{n ∈ Z | n < (b−a)/δ}. This completes
our proof. (When ε = 0, y is a solution of Eq. (1.1).) �

Remark 2.11. Indeed, 2L can be replaced with pL in Corollary 2.10, where p

is an arbitrary number larger than 1. We can conclude that the Hyers-Ulam
stability constant of Eq. (1.1) is not larger than

inf
p>1

(

p
p−1

δn−1

δ−1

)[(b−a)/δ]+1

− 1

δn−1

δ−1
pL− (pL− L)

,

where δ = min
{

1
n
√

pL
, 1

pL

}

and [(b− a)/δ] = max{n ∈ Z | n < (b− a)/δ}. (We

remark that the solution u(x) of Eq. (1.1) does not change as p changes.)
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Remark 2.12. When n = 1, we answer the question raised by Jung [23, Section
4]). That is, if I = [a, b] with −∞ < a < b < ∞ and F satisfies the Lips-
chitz condition, then the differential equation y′ = F (x, y) has the Hyers-Ulam
stability with a Hyers-Ulam stability constant no larger than

lim inf
p→∞

(

p
p−1

)[pL(b−a)]+1

− 1

L
→

eL(b−a) − 1

L

and has the generalized Hyers-Ulam stability provided I is either (−∞, b] or R

or [a,∞). (It is not difficult to show that there are some differential equations
of first order satisfying a Lipschitz condition which do not have the Hyers-Ulam
stability on unbounded interval, e.g. y′ = 0.)

Remark 2.13. eL(b−a)
−1

L
is not necessarily the best Hyers-Ulam stability con-

stant of a differential equation of first order with the Lipschitz condition, e.g.
y′ = y [1]. For more detail concerning the best Hyers-Ulam stability constant,
we refer to [13].

Remark 2.14. When Lipschitz constant L = 0, Eq. (1.1) is equivalent to

y(n)(x) = f(x),(2.6)

where f : [a, b] → R is a continuous function. Then for an n times continuously
differentiable function y : [a, b] → R with

|y(n)(x) − f(x)| ≤ ε

for each x ∈ [a, b] and for some ε ≥ 0, there exists an n times continuously
differentiable function y0 : [a, b] → R satisfying the corresponding equation
with

|y(x) − y0(x)| ≤ (
b− a

2
)nε.

Proof. We can define an n times continuously differentiable function y0 : [a, b]

→ R, which is a solution of Eq. (2.6) with the initial condition y
(i)
0

(a+b
2

) =

y(i)(a+b
2

) for each i ∈ {0, 1, . . . , n− 1}, then

|y(x) − y0(x)| ≤

∣

∣

∣

∣

∣

∫ x

a+b

2

· · ·

∫ τ2

a+b

2

y(n)(τ1) − y(n)n (τ1)dτ1 · · · dτn

∣

∣

∣

∣

∣

≤

∫ x

a+b

2

· · ·

∫ τ2

a+b

2

∣

∣

∣y(n)(τ1) − y
(n)
0

(τ1)
∣

∣

∣ dτ1 · · · dτn

≤

∫ x

a+b

2

· · ·

∫ τ2

a+b

2

∣

∣

∣y
(n)(τ1) − f

(n)
0

(τ1)
∣

∣

∣ dτ1 · · · dτn

≤

(

b− a

2

)n

ε

for every x ∈ [a, b], which completes our proof. �
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By using Theorem 2.8, we can obtain the following corollary which was
proved by Rezaei and Jung in [44].

Corollary 2.15. If for any i ∈ {0, 1, . . . , n}, ai(x) is a continuous function on

I, then the linear differential equation

y(n)(x) + an(x)yn−1(x) + · · · + a2(x)y′(x) + a1(x)y(x) + a0(x) = 0

has the Hyers-Ulam stability on I. (The above equation has the generalized

Hyers-Ulam stability when I is an unbounded interval.)

We investigated the stability of nonlinear equations of the form (1.1) in this
paper, it is an open problem that whether it is possible to find some condition
to ensure that the Hyers-Ulam stability holds for the case of general nonlinear
differential equations in the form of

F
(

y(n), y(n−1), . . . , y′, y, x
)

= 0.
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