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APPLICATION OF SUMUDU TRANSFORM METHOD FOR
HYERS-ULAM STABILITY OF PARTIAL DIFFERENTIAL

EQUATION
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Abstract. In this study, we investigate the generalized Hyers-Ulam Sta-
bility of partial differential equation of the form

yt − kyxx = 0.
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1. Introduction

Partial differential equations can serve as excellent tools for description of
mathematical modelling of systems and processes in the fields of engineering,
physics, chemistry, economics, aerodynamics, and polymerrheology, etc. There-
fore, the qualitative behaviors of solutions of partial differential equations play
an important role in many real world phenomena related to the sciences and
engineering technique fields. However, we would not like to give the details of
the applications related to partial differential equations here.This information
indicates the importance of investigating the qualitative properties, Hyers-Ulam
stability (HUS) and Hyers-Ulam Rassias stability (HURS) of partial differential
equations. The Sumudu transform is defined over the set of the functions

A = {f(t) : ∃M, τ1, τ2 > 0, |f(t)| < Me
t
τj , if t ∈ (−1)j × [0,∞)}

by the following formula

G(u) = S[f(t)] =

∞∫
0

f(ut)e−tdt
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for u ∈ (−τ1, τ2) ( see [2, 3, 6, 16, 17, 20, 21]). In [16], Sumudu transform defined
by

S[f(t)] =

∞∫
0

1

u
f(t)e−

t
u dt.

For partial differential equation, the Sumudu transform is defined in the following
form:

G(x, u) = S[f(x, t)] =:

∞∫
0

1

u
f(x, t)e−

t
u dt.

S.M. Ulam discussed a problem of the stability of homomorphism, in 1940 (see
[15]). This problem was answered partially, by Hyers [7] in the Banach spaces.
After then, the stability issues of functional differential equations have been
studied by many researchers. In the literature, first, Obłoza [12] initiated the
study of the Hyers-Ulam stability (HUS) with the ordinary differential equation
x′ = f(t, x).

Obłoza [13] compared (HUS) and Lyapunov stability, for the ordinary differ-
ential equation x′ = f(t, x), where f : R2 → R is a continuous function. The
author obtained new results on the connection between (HUS) and Lyapunov
stability.

Recently, the theory of (HUS) has improved in studying different differential
equations with motivating and results ( see [1, 4, 5, 8-14, 18, 19]).

In this paper, we investigate the (HURS) of partial differential equation of
the form

yt − kyxx = 0 (1)

y(x, 0) = 0, (2)
where k is positive real constant and (x, t) ∈ D, D = (x0, x]× (0,∞).

Motivated by the mentioned sources, the aim of this paper is to prove the
(HURS) of heat equation given by (1)-(2) by the Sumudu transform method. It
is worth mentioning that, to the best of our knowledge, the Sumudu transform
method is a very effective method to discuss the Hyers-Ulam stability of equation
(1). In addition, to the best of our information till now, the Hyers-Ulam stability
of equation (1)-(2) was not discussed in the literature by the Sumudu transform
method. This paper is the first attempt in the literature on the topic for the
mentioned equation. Our results will also be differ from those obtained in the
literature. So, we mean that this paper may be useful for researchers working
on the (HUS) to various differential and partially differential equations.

Definition 1.1. We say that equation (1)-(2) has the (HUS), if there exists
a constant K > 0,with the following property:

for every ε > 0, y : D → R, if

|yt − kyxx| ≤ ε,
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then there exists some z : D → R satisfying
zt − kzxx = 0

such that
|y(x, t)− z(x, t)| ≤ Kε.

If the information given above is also true, when we substitute ε andKε by ϕ(x, t)
and φ(x, t), respectively, where ϕ, φ are continuous functions not depending on
y and z, explicitly, then we call that the corresponding (DE) has the (HURS)
(or the generalized (HUS)).

Let M and N be Sumudu transforms of the functions f and g, respectively.
Then

S−1[M(u)N(u))] =

t∫
0

f(τ)g′(t− τ)dτ. (3)

2. Main results

Theorem 2.1. Let ε > 0, θ : D → R be a continuous function and S[θ(x, t)] =
φ(x, u). Assume that

x∫
x0

exp(
1√
u
(v − x))φ(v, u)dv ≤ φ(x, u). (4)

If the function y satisfies the following inequality:
|yt − kyxx| ≤ θ(x, t) (5)

for all (x, t) ∈ D, then there exists a solution z : D → R of equation (1)-(2) such
that

|y(x, t)− z(x, t)| ≤ 1

k
θ(x, t).

Proof. Let
y(x, t) = X(x)T (t).

From this, we can write
yxx(x, t) = X ′′T

yt(x, t) = XT ′.

Then, from inequality (5), we get
−θ(x, t) ≤ XT ′ − kX ′′T ≤ θ(x, t).

Applying Sumudu transform to above inequality, we get
S(−θ(x, t)) ≤ S(XT ′)− S(kX ′′T ) ≤ S(θ(x, t))

−φ(x, u) ≤
∞∫
0

X

u

∂T

∂t
e−

t
u dt− k

∞∫
0

1

u
X ′′T (t)e−

t
u dt ≤ φ(x, u)
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−φ(x, u) ≤ X

u
G(u)− X

u
T (0)− kX ′′G(u) ≤ φ(x, u),

where S(T (t)) = G(u).So, we obtain

−1

k
φ(x, u) ≤ G(u)X ′′ −G(u)X

ku
+
X

ku
T (0) ≤ 1

k
φ(x, u). (6)

Since y(x, 0) = 0, we get T (0) = 0. Thus, we obtain in the following inequality:

−1

k
φ(x, u) ≤ G(u)X ′′ −G(u)X

ku
≤ 1

k
φ(x, u).

Let
h(x, u) = G(u)X ′ − 1√

u
G(u)X (7)

for any (x, u) ∈ D. Then

hx(x, u) = G(u)X ′′ − 1√
u
G(u)X ′.

It follows that

−1

k
φ(x, u) ≤ hx(x, u) +

1√
u
h(x, u) ≤ 1

k
φ(x, u).

Multiplying the above estimate by exp( 1√
u
(x− x0)),we get

−1

k
exp(

1√
u
(x− x0))φ(x, u) ≤ d

dx
[exp(

1√
u
(x− x0))h(x, u)]

≤ 1

k
exp(

1√
u
(x− x0))φ(x, u).

For any x0, integrating the above inequality from x0 to x, and dividing by
exp( 1√

u
(x− x0)), respectively, we obtain

−1

k

x∫
x0

exp(
1√
u
(v − x0))φ(v, u)dv ≤ exp(

1√
u
(x− x0))h(x, u)− h(x0, u)

≤ 1

k

x∫
x0

exp(
1√
u
(v − x0))φ(v, u)dv,

and

−1

k

x∫
x0

exp(
1√
u
(v − x))φ(v, u)dv ≤ h(x, u)− h(x0, u) exp(−

1√
u
(x− x0))

≤ 1

k

x∫
x0

exp(
1√
u
(v − x))φ(v, u)dv.
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Then from (4), we get

−1

k
φ(x, u) ≤ h(x, u)− h(x0, u) exp(−

1√
u
(x− x0)) ≤

1

k
φ(x, u) (8)

Since
h(x, u) = G(u)X ′ − 1√

u
G(u)X,

inequality (8) can be written as follows:

−1

k
φ(x, u) ≤ G(u)[X ′ − 1√

u
X]− h(x0, u) exp(−

1√
u
(x− x0)) ≤

1

k
φ(x, u).

Similarly, multiplying the above inequality by exp(− 1√
u
(x−x0)), and integrating

x0 to x, we get

−1

k

x∫
x0

φ(v, u) exp(− 1√
u
(v − x0))dv

≤ G(u)[X exp(− 1√
u
(x− x0))−X(x0)]

−
x∫

x0

h(x0, u) exp(−
2√
u
(v − x0))dv

≤ 1

k

x∫
x0

φ(v, u) exp(− 1√
u
(v − x0))dv

and then

−1

k

x∫
x0

φ(v, u) exp(− 1√
u
(v − x))dv

≤ G(u)[X −X(x0) exp(
1√
u
(x− x0))]

−
x∫

x0

h(x0, u) exp(−
1√
u
(2v − x− x0))dv

≤ 1

k

x∫
x0

φ(v, u) exp(− 1√
u
(v − x))dv.

From this, we get

−1

k
φ(x, u)

≤ G(u)[X −X(x0) exp(
1√
u
(x− x0))]
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−
x∫

x0

h(x0, u) exp(−
1√
u
(2v − x− x0))dv

≤ 1

k
φ(x, u),

and consequently

−1

k
φ(x, u) ≤ G(u)[X −X(x0) exp(

1√
u
(x− x0))]

+h(x0, u)

√
u

2
[exp(− 1√

u
(x− x0))− exp(− 1√

u
(x0 − x))]

≤ 1

k
φ(x, u).

Applying inverse Sumudu transform to above inequality, we obtain

S−1[−1

k
φ(x, u)]

≤ S−1[G(u)X]− S−1[G(u)X(x0) exp(
1√
u
(x− x0))]

+S−1[h(x0, u)

√
u

2
(exp(− 1√

u
(x− x0))]

−S−1[exp(− 1√
u
(x− x0)))]

≤ S−1[
1

k
φ(x, u)].

We know that
S−1

[
exp(− a√

u
)

]
= erfc

(
a

2
√
t

)
,

from the Table of the Special Sumudu transforms in [9]. By (3), we get

S−1[G(u)X(x0) exp(
1√
u
(x− x0))] = X(x0)

t∫
0

erfc(
(x0 − x)
2
√
τ

)T ′(t− τ)dτ.

Similarly, for the S−1[h(x0, u)
√
u
2 (exp(− 1√

u
(x− x0))− exp(− 1√

u
(x− x0)))], we

know that

S−1[

√
u

2
(exp(− 1√

u
(x−x0)))] =

1√
πt(x− x0)2

∞∫
0

√
u exp(

−u2

4(x− x0)2t
J(2
√
u)du

and

S−1[

√
u

2
(exp(− 1√

u
(x0−x)))] =

1√
πt(x− x0)2

∞∫
0

√
u exp(

−u2

4(x− x0)2t
J(2
√
u)du.
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from the Table of the Special Sumudu transforms in [9]. Let

1√
πt(x− x0)2

∞∫
0

√
u exp(

−u2

4(x− x0)2t
J(2
√
u)du = A(x, t)

and
S−1[h(x0, u)] = H(x, t).

Then from (3), we get

S−1[h(x0, u)

√
u

2
(exp(− 1√

u
(x− x0)))]

=

t∫
0

A(x, τ)H ′(x, t− τ)dτ.

So, we obtain

S−1[h(x0, u)

√
u

2
(exp(− 1√

u
(x− x0))− exp(− 1√

u
(x− x0)))] = 0

−1

k
θ(x, t) ≤ X(x)T (t)−X(x0)

t∫
0

erfc(
(x0 − x)
2
√
τ

)T ′(t− τ)dτ ≤ 1

k
θ(x, t).

Then

−1

k
θ(x, t) ≤ y(x, t)−X(x0)

t∫
0

erfc(
(x0 − x)
2
√
τ

)T ′(t− τ)dτ ≤ 1

k
θ(x, t).

From above inequality, we get

|y(x, t)− z(x, t)| ≤ 1

k
θ(x, t),

where

z(x, t) = X(x0)

t∫
0

erfc(
(x0 − x)
2
√
τ

)T ′(t− τ)dτ.

�

Conclusion
Second order partial differential equation (weat equation) was considered.

The (HURS) of this equation was investigated. We benefited from Sumudu
transform method in proving our main results thus extending and improving
some recent results found in the literature.
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