EQUATIONS OF GEODESICS IN A TWO-DIMENSIONAL FINSLER SPACE WITH A GENERALIZED KROPINA METRIC

HONG-SUH PARK AND IL-YONG LEE

ABSTRACT. The geodesic equation in a two-dimensional Finsler space is given by the differential equation of the Weierstrass form. In the present paper, we express the differential equations of geodesics in a two-dimensional Finsler space with a generalized Kropina metric.

1. Introduction

The study on the differential equations of geodesics in a two-dimensional Finsler space $F^2 = (M^2, L)$ with an (α, β) -metric is interesting and useful. The geodesics of F^2 are regarded as the curves of an associated Riemannian space $R^2 = (M^2, \alpha)$ which are bent by the differential 1-form β . Recently, M. Matsumoto and the first author ([8]) have expressed the differential equations of the geodesics in two-dimensional Randers spaces and Kropina spaces in the most clear form y'' = f(x, y, y').

The purpose of the present paper is devoted to studying the differential equations of geodesics in a two-dimensional Finsler space with a generalized Kropina metric and giving some examples.

2. Preliminaries

Let $F^2 = (M^2, L)$ be a two-dimensional Finsler space with a Finsler

Received June 3, 1999. Revised September 17, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 53B40, 35A30.

Key words and phrases: Finsler space, geodesic, (α, β) -metric, Weierstrass form, generalized Kropina metric, special (α, β) -metric.

metric function $L(x^1, x^2; y^1, y^2)$. We denote $\partial f/\partial x^i = f_i$, $\partial f/\partial y^i = f_{(i)}$, (i = 1, 2) for any Finsler function $f(x^1, x^2; y^1, y^2)$. Hereafter, the suffices i, j run over 1, 2.

Since $L(x^1, x^2; y^1, y^2)$ is (1) p-homogeneous in (y^1, y^2) , we have $L_{(j)(i)}y^i = 0$, which imply the existence of a function, so called the Weierstrass invariant $W(x^1, x^2; y^1, y^2)$ ([1], [6]) given by

(2.1)
$$\frac{L_{(1)(1)}}{(y^2)^2} = -\frac{L_{(1)(2)}}{y^1y^2} = \frac{L_{(2)(2)}}{(y^1)^2} = W(x^1, x^2; y^1, y^2).$$

In a two-dimensional associated Riemannian space $R^2=(M^2, \alpha)$ with respect to $L=\alpha$ and $\alpha^2=a_{ij}(x^1,x^2)y^iy^j$, the Weierstrass invariant W_r of R^2 is written as

$$W_r = \frac{1}{\alpha^3} \{ a_{11} a_{22} - (a_{12})^2 \}.$$

Further L_i are still (1)p-homogeneous in (y^1, y^2) , so that we get

$$(2.2) L_{j(i)}y^i = L_j.$$

The geodesic equations in F^2 along curve $C: x^i = x^i(t)$ are given by [1]

$$(2.3) L_i - \frac{dL_{(i)}}{dt} = 0.$$

Substituting (2.2) in (2.3), we get

(2.4)
$$L_{1(2)} - L_{2(1)} + (y^1 \dot{y}^2 - y^2 \dot{y}^1) W = 0,$$

which is called the Weierstrass form of geodesic equation in F^2 ([6], [8]), where $\dot{y}^i = dy^i/dt$. For the metric function $L(x, y; \dot{x}, \dot{y})$, (2.4) becomes to

(2.5)
$$\frac{\partial^2 L}{\partial \dot{y} \partial x} - \frac{\partial^2 L}{\partial \dot{x} \partial y} + (\dot{x} \ddot{y} - \dot{y} \ddot{x}) \frac{\partial^2 L}{(\partial \dot{y})^2} = 0.$$

Let $\Gamma = \{\gamma_{jk}^{i}(x^{1}, x^{2})\}$ be the Levi-Civita connection of the associated Riemannian space R^{2} . We introduce the linear Finsler connection $\Gamma^{*} = (\gamma_{j}^{i}{}_{k}, \ \gamma_{0}^{i}{}_{j}, \ 0)$ and the h- and v-covariant differentiation in Γ^{*} are denoted by (; i, (i)) respectively, where the index (0) means the contraction with y^{i} . Then we have $y^{i}{}_{;j} = 0$, $\alpha_{;i} = 0$ and $\alpha_{(i);j} = 0$.

3. The geodesic equations with an (α, β) -metric

We consider a two-dimensional Finsler space $F^2 = (M^2, L(\alpha, \beta))$ with an (α, β) -metric, where $\beta = b_i(x^1, x^2)y^i$ ([1], [5]). For the metric function $L(\alpha, \beta)$, we have

(3.1)
$$L_{i} = L_{\beta}\beta_{i}, \qquad L_{(i)} = L_{\alpha}\alpha_{(i)} + L_{\beta}b_{i},$$

where $\alpha_{(i)} = a_{ir}y^r/\alpha$ and the subscriptions α, β of L are the partial derivatives of L with respect to α, β respectively. Then we have in Γ^*

$$L_{(j);i} = L_{(j)i} - L_{(j)(r)} \gamma_0^r{}_i - L_{(r)} \gamma_j^r{}_i,$$

from which

$$(3.2) L_{1(2)} - L_{2(1)} = L_{(2):1} - L_{(1):2} + L_{(2)(r)} \gamma_0^r - L_{(1)(r)} \gamma_0^r 2.$$

From (2.1) and (3.2) we have

(3.3)
$$L_{1(2)} - L_{2(1)} = L_{(2);1} - L_{(1);2} + (y^1 \gamma_0^2 - y^2 \gamma_0^1) W.$$

On the other hand, from (3.1) we have

(3.4)
$$L_{(j);i} = L_{\alpha\beta}\beta_{;i}\alpha_{(j)} + L_{\beta\beta}\beta_{;i}b_j + L_{\beta}b_{j;i}.$$

Similarly to the case of $L(x^1, x^2; y^1, y^2)$ and $\alpha(x^1, x^2)$, we get the Weierstrass invariant $\omega(\alpha, \beta)$ for $L(\alpha, \beta)$ as follows:

(3.5)
$$\omega = \frac{L_{\alpha\alpha}}{\beta^2} = -\frac{L_{\alpha\beta}}{\alpha\beta} = \frac{L_{\beta\beta}}{\alpha^2}.$$

Substituting (3.5) in (3.4), we have

(3.6)
$$L_{(j);i} = \alpha \omega \beta_{,i} (\alpha b_j - \beta \alpha_{(j)}) + L_{\beta} b_{j;i}.$$

From (3.3) and (3.6) we have

(3.7)
$$L_{1(2)} - L_{2(1)} = \alpha \omega \{ \beta_{;1} (\alpha b_2 - \beta \alpha_{(2)}) - \beta_{;2} (\alpha b_1 - \beta \alpha_{(1)}) \} - L_{\beta} (b_{1;2} - b_{2;1}) + (y^1 \gamma_0^2 - y^2 \gamma_0^1) W.$$

If we put $y^{i}_{;0} = \dot{y}^{i} + \gamma_{0}^{i}_{0}$, we get

$$(3.8) y^1 \dot{y}^2 - y^2 \dot{y}^1 = y^1 y^2_{;0} - y^2 y^1_{;0} - (y^1 \gamma_0^2_0 - y^2 \gamma_0^1_0).$$

Substituting (3.7) and (3.8) in (2.4), we have

(3.9)
$$\alpha \omega \left\{ \beta_{;1} (\alpha b_2 - \beta \alpha_{(2)}) - \beta_{;2} (\alpha b_1 - \beta \alpha_{(1)}) \right\}$$

$$-L_{\beta} \left(\frac{\partial b_1}{\partial x^2} - \frac{\partial b_2}{\partial x^1} \right) + (y^1 y^2_{;0} - y^2 y^1_{;0}) W = 0,$$

where $\beta_{;i} = b_{r;i}y^r$. According to §2 of [4], the relation of W, W_r and ω is written as follows:

$$(3.10) W = (L_{\alpha} + \alpha \omega \gamma^2) W_r,$$

where $\gamma^2 = b^2 \alpha^2 - \beta^2$ and $b^2 = a^{ij} b_i b_j$. Therefore (3.9) is expressed as follows:

$$(3.11) (3.11) \left\{ b_{0;1}(\alpha b_{2} - \beta \alpha_{(2)}) - b_{0;2}(\alpha b_{1} - \beta \alpha_{(1)}) \right\} = 0.$$

Thus we have the following

THEOREM 3.1. In a two-dimensional Finsler space F^2 with an (α, β) -metric, the differential equation of a geodesic is given by (3.11).

Suppose that α be positive-definite. Then we may refer to an isothermal coordinate system $(x^i) = (x, y)$ ([3]) such that

$$\alpha = aE, \quad a = a(x, y) > 0, \quad E = \sqrt{\dot{x}^2 + \dot{y}^2},$$

that is, $a_{11}=a_{22}=a^2$, $a_{12}=0$ and $(y^1,y^2)=(\dot{x},\dot{y})$. From $\alpha^2=a_{ij}(x)y^iy^j$ we get $\alpha\alpha_{(i)(j)}=a_{ij}-a_{ir}a_{js}y^ry^s/\alpha^2$. Therefore we have

Equations of geodesics in a two-dimensional Finsler space

 $\alpha \alpha_{(1)(1)} = (a\dot{y}/E)^2$ and $W_r = a/E^3$. Furthermore the Christoffel symbols are given by

$$\gamma_1^{1}_1 = -\gamma_2^{1}_2 = \gamma_1^{2}_2 = \frac{a_x}{a}, \qquad \gamma_1^{1}_2 = -\gamma_1^{2}_1 = \gamma_2^{2}_2 = \frac{a_y}{a},$$

where $a_x = \partial a/\partial x$, $a_y = \partial a/\partial y$. Therefore we have

$$(3.12) (y^1 y^2_{;0} - y^2 y^1_{;0}) W_r = \frac{a}{E^3} (\dot{x} \ddot{y} - \dot{y} \ddot{x}) + \frac{1}{E} (a_x \dot{y} - a_y \dot{x}).$$

Next, calculating $\gamma^2 = b^2 \alpha^2 - \beta^2$, $b_{0;1}(\alpha b_2 - \beta \alpha_{(2)})$ and $b_{0;2}(\alpha b_1 - \beta \alpha_{(1)})$, we have

$$(3.13) \quad \gamma^2 = \{(b_1)^2 + (b_2)^2\}(\dot{x}^2 + \dot{y}^2) - (b_1\dot{x} + b_2\dot{y})^2 = (b_1\dot{y} - b_2\dot{x})^2,$$

(3.14)
$$b_{r;1}(\alpha b_2 - \beta \alpha_{(2)})y^r = \frac{a}{E}b_{0;1}(b_2\dot{y} - b_1\dot{x})\dot{x},$$

(3.15)
$$b_{r,2}(\alpha b_1 - \beta \alpha_{(1)})y^r = \frac{a}{E}b_{0,2}(b_1\dot{y} - b_2\dot{x})\dot{y}.$$

Substituting (3.12), (3.13), (3.14) and (3.15) in (3.11), we have

(3.16)
$$\left\{ L_{\alpha} + aE\omega(b_{1}\dot{y} - b_{2}\dot{x})^{2} \right\} \left\{ a(\dot{x}\ddot{y} - \dot{y}\ddot{x}) + E^{2}(a_{x}\dot{y} - a_{y}\dot{x}) \right\}$$
$$-E^{3}L_{\beta}(b_{1y} - b_{2x}) - E^{3}a^{2}\omega(b_{1}\dot{y} - b_{2}\dot{x})b_{0;0} = 0,$$

where

$$(3.17) b_{0;0} = b_{r;s} y^r y^s = (b_{1x} \dot{x} + b_{1y} \dot{y}) \dot{x} + (b_{2x} \dot{x} + b_{2y} \dot{y}) \dot{y} + \frac{1}{a} \left\{ (\dot{x}^2 + \dot{y}^2)(a_x b_1 + a_y b_2) - 2(b_1 \dot{x} + b_2 \dot{y})(a_x \dot{x} + a_y \dot{y}) \right\},$$

where $b_{ix} = \partial b_i/\partial x$ and $b_{iy} = \partial b_i/\partial y$. Thus we have the following

THEOREM 3.2. In a two-dimensional Finsler space F^2 with an (α, β) -metric, if we refer to an isothermal coordinate system (x, y) such that $\alpha = aE$, then the differential equation of a geodesic is given by (3.16) and (3.17).

4. Geodesics in the Finsler space with a generalized Kropina metric

The (α, β) -metric $L(\alpha, \beta) = \alpha^{m+1}\beta^{-m}$ $(m \neq 0, -1)$ is called a *generalized Kropina metric* ([5]). We consider a two-dimensional Finsler space with a generalized Kropina metric in this section. Then

(4.1)
$$L_{\alpha} = \frac{(m+1)\alpha^m}{\beta^m}$$
, $L_{\beta} = -\frac{m\alpha^{m+1}}{\beta^{m+1}}$, $\omega = \frac{m(m+1)\alpha^{m-1}}{\beta^{m+2}}$.

Substituting (4.1) in (3.16), we obtain the differential equation of a geodesic in an isothermal coordinate system (x, y) with respect to α as follows:

(4.2)

$$(m+1)\bigg\{\beta^2 + m(b_1\dot{y} - b_2\dot{x})^2\bigg\}\bigg\{a(\dot{x}\ddot{y} - \dot{y}\ddot{x}) + E^2(a_x\dot{y} - a_y\dot{x})\bigg\}$$
$$+ maE^2\bigg\{E^2\beta(b_{1y} - b_{2x}) - (m+1)(b_1\dot{y} - b_2\dot{x})b_{0;0}\bigg\} = 0.$$

If the parameter t of curve C is chosen x of (x,y), then $\dot{x}=1,\ \dot{y}=y',\ \ddot{x}=0,\ \ddot{y}=y'',\ E^2=1+(y')^2.$ Therefore (4.2) is written in the form

$$\begin{cases}
(4.3) \\
\left\{ (b_1)^2 + m(b_2)^2 - 2(m-1)b_1b_2y' + \left\{ m(b_1)^2 + (b_2)^2 \right\}(y')^2 \right\} \\
\left\{ y'' + \frac{1}{a} \left\{ 1 + (y')^2 \right\}(a_xy' - a_y) \right\} \\
+ \frac{m}{(m+1)} (1 + (y')^2) \left\{ \left\{ 1 + (y')^2 \right\}(b_1 + b_2y')(b_{1y} - b_{2x}) \\
- (m+1)(b_1y' - b_2)b_{0;0}^* \right\} = 0,
\end{cases}$$

where

$$(4.4) b_{0;0}^{*} = (b_{1x} + b_{1y}y') + (b_{2x} + b_{2y}y')y' + \frac{1}{a} \left\{ \{1 + (y')^{2}\}(a_{x}b_{1} + a_{y}b_{2}) - 2(b_{1} + b_{2}y')(a_{x} + a_{y}y') \right\}.$$

It seems quite complicated form, but y'' is given as a fractional expression in y'.

Thus we have the following

THEOREM 4.1. Let F^2 be a two-dimensional space with a generalized Kropina metric. If we refer to a local coordinate system (x, y) with respect to α , then the differential equation of a geodesic y = y(x) of F^2 is the form

$$y'' = \frac{g(x, y, y')}{f(x, y, y')} ,$$

where f(x, y, y') is a quadratic polynomial in y' and g(x, y, y') is a polynomial in y' of degree at most five.

In order to find a concrete form, we treat the case of which the associated Riemannian space is Euclidean with orthonormal coordinate system. Then a = 1 and $a_x = a_y = 0$. If we take a scalar function b such that $b_1 = b_x$, $b_2 = b_y$, then $b_{1y} - b_{2x} = 0$. Therefore (4.3) is reduced to

$$(4.5) \ y'' = \frac{m\{(1+(y')^2\}(b_xy'-b_y)\{b_{xx}+2b_{xy}y'+b_{yy}(y')^2\}}{(b_x)^2+m(b_y)^2-2(m-1)b_xb_yy'+\{m(b_x)^2+(b_y)^2\}(y')^2}.$$

Thus we have the following

COROLLARY 4.2. Let F^2 be a two-dimensional Finsler space with a generalized Kropina metric. If we refer to an orthonormal coordinate system (x, y) with respect to α and $b_1 = \partial b/\partial x$, $b_2 = \partial b/\partial y$ for a scalar b, then the differential equation of a geodesic y = y(x) of F^2 is given by (4.5).

5. Examples

EXAMPLE 1. In the Finsler space with an (α, β) -metric, the special (α, β) -metric L satisfying $L^2 = c_1 \alpha^2 + 2c_2 \alpha \beta + c_3 \beta^2$ (c_1, c_2, c_3) are constants) was introduced in [9] as the generalization of the Randers metric. The (α, β) -metric L satisfying $L^2 = 2\alpha\beta$ is the case of

 $c_1 = c_3 = 0, c_2 = 1$ in the above special (α, β) -metric. This metric is also considered as a generalized (-1/2)-Kropina metric.

In a two-dimensional Finsler space with an (α, β) -metric L satisfying $L^2 = 2\alpha\beta$,

(5.1)
$$L_{\alpha} = \frac{\beta}{L}, \qquad L_{\beta} = \frac{\alpha}{L}, \qquad \omega = -\frac{1}{L^3}.$$

Substituting (5.1) in (3.16), we obtain the differential equation of a geodesic as follows:

(5.2)
$$\left\{ 2\beta^2 - (b_1\dot{y} - b_2\dot{x})^2 \right\} \left\{ a(\dot{x}\ddot{y} - \dot{y}\ddot{x}) + E^2(a_x\dot{y} - a_y\dot{x}) \right\}$$
$$-2aE^4\beta(b_{1y} - b_{2x}) + aE^2(b_1\dot{y} - b_2\dot{x})b_{0:0} = 0.$$

If x of (x,y) is chosen as the parameter t, then $\dot{x}=1$, $\dot{y}=y'$, $\ddot{x}=0$, $\ddot{y}=y''$ and $E^2=1+(y')^2$. Therefore (5.2) is reduced to (5.3)

$$\begin{cases}
2(b_1)^2 - (b_2)^2 + 6b_1b_2y' + \{2(b_2)^2 - (b_1)^2\}(y')^2 \\
(a_xy' - a_y) \\
-2a\{1 + (y')^2\}^2(b_1 + b_2y')(b_{1y} - b_{2x}) \\
+ a\{1 + (y')^2\}(b_1y' - b_2)b_{0:0}^* = 0,
\end{cases}$$

where

$$(5.4) b_{0;0}^* = (b_{1x} + b_{1y}y') + (b_{2x} + b_{2y}y')y' + \frac{(1 + (y')^2)}{a}(a_xb_1 + a_yb_2) - \frac{2(b_1 + b_2y')}{a}(a_x + a_yy').$$

If we refer to a local coordinate system (x, y) with respect to the associated Riemannian space which is Euclidean with an orthonormal coordinate system, then $a = 1, a_x = a_y = 0$, so that (5.3) is reduced to

(5.5)
$$y'' \left\{ 2(b_1)^2 - (b_2)^2 + 6b_1b_2y' + \{2(b_2)^2 - (b_1)^2\}(y')^2 \right\} -2\{1 + (y')^2\}^2(b_1 + b_2y')(b_{1y} - b_{2x}) + \{1 + (y')^2\}(b_1y' - b_2)b_{0:0}^* = 0,$$

Equations of geodesics in a two-dimensional Finsler space

where

$$(5.6) b_{0:0}^* = (b_{1x} + b_{1y}y') + (b_{2x} + b_{2y}y')y'.$$

If we take b_1 and b_2 such that $b_1 = b_x$ and $b_2 = b_y$ for a scalar b, then $b_{1y} - b_{2x} = 0$. From (5.5) and (5.6) we have the following

THEOREM 5.1. Let F^2 be a two-dimensional Finsler space with an (α, β) -metric L satisfying $L^2 = 2\alpha\beta$. If we refer to an orthonormal coordinate system (x, y) with respect to α and $b_1 = \partial b/\partial x$, $b_2 = \partial b/\partial y$ for a scalar b, then the differential equation of a geodesic y = y(x) of F^2 is given by

$$y'' = \frac{C_0 + C_1 y' + C_2 (y')^2 + C_3 (y')^3 + C_4 (y')^4 + C_5 (y')^5}{2(b_x)^2 - (b_y)^2 + 6b_x b_y y' + \{2(b_y)^2 - (b_x)^2\}(y')^2},$$

where

$$C_0 = -b_y b_{xx}$$
, $C_1 = b_x b_{xx} - 2b_y b_{xy}$, $C_2 = 2b_x b_{xy} - b_y (b_{xx} + b_{yy})$, $C_3 = b_x (b_{xx} + b_{yy}) - 2b_y b_{xy}$, $C_4 = 2b_x b_{xy} - b_y b_{yy}$, $C_5 = b_x b_{yy}$.

EXAMPLE 2. If m=1 in a generalized Kropina metric, then $L=\alpha^2\beta^{-1}$, that is, L is the Kropina metric. Therefore if we substitute m=1 in (4.3), then y'' of the geodesic equations y=y(x) is written as a polynomial in y' of degree at most three, that is,

(5.7)
$$y'' = A_0 + A_1 y' + A_2 (y')^2 + A_3 (y')^3,$$

where $A_{\sigma}(\sigma = 0, 1, 2, 3)$ are functions of (x, y). That is the same result which is obtained in [8].

On the other hand, S.Bácsó and M. Matsumoto ([2]) proved as follows: a two-dimensional Finsler space is a Douglas space if and only if, in a local coordinate system (x, y), y'' of the geodesic equations y = y(x) is a polynomial in y' of degree at most three.

Therefore, from (5.7) we have the following

THEOREM 5.2. A two-dimensional Kropina space in a local coordinate system (x, y) of the associated Riemannian space is a Douglas space.

Hong-Suh Park and Il-Yong Lee

References

- [1] P. L. Antonelli, R. S. Ingarden and M. Matsumoto, *The Theory of Sprays and Finsler spaces with Applications in Physics and Biology*, Kluwer Acad. Publ., Dordrecht, Boston, London, 1993.
- [2] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type, Generalization of the notion of Berward space, Publ. Math. Debrecen 51 (1997), 385-406.
- [3] M. Hashiguchi, S. Hōjō and M. Matsumoto, On Landsberg spaces of two dimensions with (α, β) -metric, J. Korean Math. Soc. 10 (1973), 17-26.
- [4] M. Kitayama, M. Azuma and M. Matsumoto, On Finsler spaces with (α, β) metric. Regularity, geodesics and the main scalars, J. Hokkaido Univ. Education, Sect.II A 46 (1995), 1-10.
- [5] M. Matsumoto, Theory of Finsler spaces with (α, β) -metric, Reports on mathematical physics **31** (1992), 43-83.
- [6] _____, Geodesics of two-dimensional Finsler spaces, Mathl. Comput. Modeling 20 (1994), 1-23.
- [7] _____, Every path space of dimension two is projectively related to a Finsler space, Open System and Inform. Dynamics, 3 (1995), 291-303.
- [8] M. Matsumoto and H. S. Park, Equations of geodesics in two-dimensional Finsler spaces with (α, β) -metric, Revue Roumanie de Pures et Appliquées, 1997, pp. 787-793.
- [9] H. S. Park and E. S. Choi, On a Finsler space with a special (α, β) -metric, Tensor N. S. **56** (1995), 142-148.

HONG-SUH PARK, DEPARTMENT OF MATHEMATICS, YEUNGNAM UNIVERSITY, GYONGSAN 712-749, KOREA

IL-YONG LEE, DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, PUSAN 608-736, KOREA,

E-mail: iylee@star.kyungsung.ac.kr