Bull. Korean Math. Soc. 37 (2000), No. 2, pp. 337-346

EQUATIONS OF GEODESICS IN A
TWO-DIMENSIONAL FINSLER SPACE WITH
A GENERALIZED KROPINA METRIC

HoNG-Sun PARK AND IL-YONG LEE

ABSTRACT. The geodesic equation in a two-dimensional Finsler
space is given by the differential equation of the Weierstrass form. In
the present paper, we express the differential equations of geodesics
in a two-dimensional Finsler space with a generalized Kropina met-
ric.

1. Introduction

The study on the differential equations of geodesics in a two-dimensi-
onal Finsler space F?2 = (M?,L) with an (o, 8)-metric is interesting
and useful. The geodesics of F? are regarded as the curves of an
associated Riemannian space R? = (M?,a) which are bent by the
differential 1-form 8. Recently, M. Matsumoto and the first author
([8]) have expressed the differential equations of the geodesics in two-
dimensional Randers spaces and Kropina spaces in the most clear form
y' = f(z,y,9).

The purpose of the present paper is devoted to studying the differ-
ential equations of geodesics in a two-dimensional Finsler space with a
generalized Kropina metric and giving some examples.

2. Preliminaries

Let F? = (M?, L) be a two-dimensiona] Finsler space with a Finsler
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metric function L(z!,z2;y',y%). We denote f/0z* = fi, 0f/0y* =
f), (8 =1,2) for any Finsler function f (z', z%; y', y?). Hereafter. the
suffices i, j run over 1, 2.

Since L(z!,z2;y',4?) is (1) p-homogeneous in (y',7%), we have
L(j)(i)yi = 0, which imply the existence of a function, so called the
Weierstrass invariant W (z*, 2%y, 3?) ([1], [6]) given by

Loy _ Lo _ Loe 12,1 2
2.1 = - = =W, z%y,y)
21) (¥%)? yyr  (¥1)? ( )
In a two-dimensional associated Riemannian space R? = (M2, a)
with respect to L = a and o® = a;;(z?, 2?)y'y’, the Weierstrass invari-
ant W, of R? is written as

1
W, = g{auazz - (a12)*}-

Further L; are still (1)p-homogeneous in (y',y?), so that we get

(2.2) Lj(,,;)yi = Lj.
The geodesic equations in F'2 along curve C : z* = z*(t) are given by [1]
dL;
2. L;— =0.
(2.3) o =0

Substituting (2.2) in (2.3), we get
(2.4) Ly — Loy + '3 — y*9" )W =0,

which is called the Weierstrass form of geodesic equation in F2 ([6], [8]),
where ¢ = dy®/dt. For the metric function L(z,y;%,9), (2.4) becomes
to

%L %L + (& — §%) 0’L 0
Byoz 050y Y T Y a2 T

Let I' = {v;i(z!,2%)} be the Levi-Civita connection of the associ-
ated Riemannian space R?. We introduce the linear Finsler connection
I'* = (v, Y%, 0) and the h- and v-covariant differentiation in I'*

are denoted by (;4, (7)) respectively, where the index (0) means the
contraction with y*. Then we have 3*,; =0, a;; = 0 and a(;);; =0.

(2.5)
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3. The geodesic equations with an (a, §)-metric

We consider a two-dimensional Finsler space F? = (M2, L(a,))
with an (a, 8)-metric, where 8 = b;(z!,z2)y* (1], [5]). For the metric
function L(a, ), we have

(3.1) L;= Lpﬂ;i, L(i) = Laa(,—) + Lﬁbi,

where  o(;) = a;7y"/a and the subscriptions o, 3 of L are the partial
derivatives of L with respect to a, 8 respectively. Then we have in I'™*

Ly = Ligyi = Ly vo”s = Ly i,
from which
(3.2)  Lig) — L2 = L2y — Lz + Ly "1 = Ly 1"
From (2.1) and (3.2) we have
(3:3) L2y — Loy = Lzy — Layz + (3 70%0 — ¥ 70 0)W.
On the other hand, from (3.1) we have
(3-4) Ly = LapBac) + Lppbiib; + Lpbjs.

Similarly to the case of L(z}, 22; 4%, 4?) and a(z?, 22), we get the Weier-
strass invariant w(a, ) for L(a, 3) as follows:

w= 7 =-- 3 =z
Substituting (3.5) in (3.4), we have

(3.5) Loo _ _Lop _ Lop

(3.6) L(j);.,; = awﬁ;i(abj - ,Ba(j)) 4 Lﬁb';i.
From (3.3) and (3.6) we have

Ly2) — Lyq) =aw{B(abs — Baay) — Bia(abr — Boyyy)}

(3.7)
—La(by;2 — bay1) + (¥ 0% — ¥* 70 0)W.
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If we put %0 = §* + Y00, We get
(3.8) ¥ — vt = y'y%0 — ¥yt — (0% — ¥¥0t0)

Substituting (3.7) and (3.8) in (2.4), we have

aw{ﬁ;l(abz-ﬁa(z)) — B2(aby - ﬁa(l))}
(3.9)

ob ob
_Lﬂ(gf'tlz - 5;21‘) + (yly2;0 - yzyl;O)W =0,

where (.; = b,;y". According to §2 of [4], the relation of W, W, and w
is written as follows:

(3.10) W = (Lo + awy?)W,,

where 72 = b2a? — 82 and b? = a¥b;b;.
Therefore (3.9) is expressed as follows:

ob _ by,
or2 Oz!

+aw{bo;1(abz — Baz)) — bo;z2(aby — 50‘(1))}: 0.

(La + aw'yz)(ylyz;ﬂ - yzyl;O)Wr - LB(
(3.11)

Thus we have the following

THEOREM 3.1. In a two-dimensional Finsler space F? with an (o
, B)-metric, the differential equation of a geodesic is given by (3.11).

Suppose that a be positive—deﬁnite. Then we may refer to an isother-
mal coordinate system (z*) = (z,y) ([3]) such that

a=aE, a=a(z,y)>0, E=+/1%+¢

that is, a11 = ax = a2, a12 = 0 and (y1,%%) = (¢,9). From o? =
ai;(x)y'y’ we get aag)(j) = @ij — @ira;sy"y*/a®. Therefore we have
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aa(y1) = (ay/E)?* and W, = a/E®. Furthermore the Christoffel sym-
bols are given by

1 1 _ .2 _ 0 1 _ 2 _ 2 _ Oy
"/11=-“722—’712—;, ’712——’711—’722——‘1—,

where a; = 0a/dz, ay = da/0y. Therefore we have

a

(312)  ('vho — ¥y 0)Wr = 55 (@0 — 98) + 5 (azd — ayd).

Next, calculating 4% = b%a? — 82, bo;1(abs — Boqa)) and boa(aby —
Ba()), we have

(3.13) 4% ={(b1)® + (b2)*}(&® + §°) — (b1 + b2y)? = (b1y — b2)?,

(3.14) br;l(abz - ﬂa(g))yr = %bo;l(bﬁ] — bli')i',
(3.15) bria(aby — Bogry))y” = %bo;g(bly — byt)g.

Substituting (3.12), (3.13), (3.14) and (3.15) in (3.11), we have

{L,, + aBw(biy—boz)? } { a(df — 9%) + E%(azy — aya'c)}

(3.16)
—E3Lg(b1y — boz) — E3a®w(b1y — ba)bo,o = 0,
where
bO;O = br;syrya = (blzj? + blyy)‘i + (b2::m + b2yy)y
(3.17)

+5{ @ + 97 (0abr + ayba) 20 + bai)(osi + ay0) .

where by = 0b;/0z and b;y = 0b;/0y. Thus we have the following

THEOREM 3.2. In a two-dimensional Finsler space F? with an
(o, B)-metric, if we refer to an isothermal coordinate system (z,y) such

that « = aF, then the differential equation of a geodesic is given by
(3.16) and (3.17).
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4. Geodesics in the Finsler space with a generalized Kropina
metric

The (a, 3)-metric L(a, 8) = ™1™ (m # 0,—1) is called a gen-
eralized Kropina metric ([5]). We consider a two-dimensional Finsler
space with a generalized Kropina metric in this section. Then

(m+1)a™ mo™t! m(m + 1)a™"!
@) La="—p— Lp=-"pmr w=—" /g5
Substituting (4.1) in (3.16), we obtain the differential equation of a
geodesic in an isothermal coordinate system (z,y) with respect to « as
follows:
(4.2)

(m+ 1){ﬂ2+m(bly - b2¢)2} {a(:'cy —9%) + E*(a,y — ay:i:)}

+maE2{E25(b1y —bay) — (m+1)(01y — b2¢)b0;0}= 0.

If the parameter ¢ of curve C is chosen z of (z,y), then & =1, y =
Yy, 3=0, §=1vy", E? =1+ (y')?. Therefore (4.2) is written in the
form
(4.3)

{(bm + m(b2)? — 2(m — 1)bybay/+{m(b)? + (b2>2}(y'>2}

{v+ 30+ v - 0

m

HCES)

(a+ (y’>2){{1 )}y + by by — ba)

 (me+ Dony/ )50 =0,

where

b0 =(b1e + biyy’) + (boz + bayy’)y’

(44) +%{{1 + () Hasbs + aybs) — 2(b1 + boy')(az + ayyl)}'
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It seems quite complicated form, but y” is given as a fractional expres-
sion in y'.
Thus we have the following

THEOREM 4.1. Let F? be a two-dimensional space with a general-
ized Kropina metric. If we refer to a local coordinate system (x,y) with
respect to o, then the differential equation of a geodesic y = y(x) of F?
is the form

n_ 9&yy)
flz,yy)’

where f(z,y,y’) is a quadratic polynomial in y' and g(x,y,y’) is a
polynomial in y' of degree at most five.

In order to find a concrete form, we treat the case of which the
associated Riemannian space is Euclidean with orthonormal coordinate
system. Then a = 1 and a, = a, = 0. If we take a scalar function b such
that by = bg, ba = by, then byy — by, = 0. Therefore (4.3) is reduced to

m{(1 + (1) }bsy’ = by){baw + 2bayy’ + byy (')}
2+ m(by)? — 2(m = Dbabyy’ + {m(bs)? + (by)?}(y)?

(45) y' = )

Thus we have the following

COROLLARY 4.2. Let F? be a two-dimensional Finsler space with a
generalized Kropina metric. If we refer to an orthonormal coordinate
system (z,y) with respect to a and by = 8b/0z, by = 0b/0y for a
scalar b, then the differential equation of a geodesic y = y(x) of F? is
given by (4.5).

5. Examples

ExAMPLE 1. In the Finsler space with an («, 8)-metric, the spe-
cial (a,()-metric L satisfying L? = c10® + 2caa8 +c36% (c1,c¢2,c3
are constants) was introduced in [9] as the generalization of the Ran-
ders metric. The (a, 3)-metric L satisfying L? = 2a0 is the case of
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¢; = ¢3 = 0,c2 = 1 in the above special (a, 8)-metric. This metric is
also considered as a generalized (—1/2)-Kropina metric.

In a two-dimensional Finsler space with an (a, 3)-metric L satisfying
L? = 2ap,

Jé] a 1
(51) La=z, Lﬁ:f’ w=——L—3.

Substituting (5.1) in (3.16), we obtain the differential equation of a
geodesic as follows:

(5.2) {2ﬂ2 - (bly—bng)?}{a(a’:gj — §i) 4+ E?(agy — aya'c)}

—2aE4ﬁ(b1y - bzm) + aEz(bly - bzi)bo;o =(.

If z of (z,y) is chosen as the parameter t, then &z =1, § = ¢/, & =
0, j =y"” and E? = 1 + (y')2. Therefore (5.2) is reduced to
(5.3)

{2(1»1)2 — (b2)? + 6b1bay/ +{2(ba)? — (b1)2}(y'>2}{ay" 4@

(@t = a3) }=20{1 + (7101 +bay/ )by — )
+ a’{l + (yl)z}(bly’ - b2)b3;o =0,
where
bS;O = (bl:c + blyy’) + (b2:c + b2yyl)y,

(5.4) N 1+ c(;y,) b :bzy')

2
2
)(ambl + aybe) — ( (az + ayy’).

If we refer to a local coordinate system (z,y) with respect to the
associated Riemannian space which is Euclidean with an orthonormal
coordinate system, then a = 1,a,; = ay = 0, so that (5.3) is reduced to

y”{2(b1)2—(bz)2 T Bbabay’ + {2(b2)” — <b1)2}(y'>2}

—2{1 + (¥)?}(b1 + bay') (b1y — b2s)
+{1 + ()} b1y’ — ba2)bg,o = 0,

(5.5)
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where
(5.6) b50 = (biz + b1yy) + (bae + boyy/ )y

If we take b; and by such that b; = b, and by = by for a scalar b, then
biy — boz = 0. From (5.5) and (5.6) we have the following

THEOREM 5.1. Let E? be a two-dimensional Finsler space with an
(o, B)-metric L satisfying L? = 2af3. If we refer to an orthonormal
coordinate system (z,y) with respect to « and by = 8b/dz, by = 0b/dy
for a scalar b, then the differential equation of a geodesic y = y(z) of
F? is given by

n_ Co+Ciy' + Cay')? + C3(y')° + Culy)* + Cs(y)°
2(b2)% — (by)? + 6bzbyy’ + {2(by)? — (b:)?}(¥')*

where
CO = _byba:a:’ Cl = bmb:ta: - Zbyba:ya C2 = 2bzbzy - by (bmm + byy)»
03 = bx(bzz + byy‘) — 2bybzy, Cy = 2bzbzy — bybyy, 05 = bzbyy.

ExAMPLE 2. If m =1 in a generalized Kropina metric, then L =
a?B71, that is, L is the Kropina metric. Therefore if we substitute
m = 1 in (4.3), then y” of the geodesic equations y = y(z) is written
as a polynomial in 3’ of degree at most three, that is,

(6.7) Y = Ao+ Ay + A2(y) + As(y)3,

where Ay,(0c =0, 1,2, 3) are functions of (z,y). That is the same result
which is obtained in [8].

On the other hand, S.Bicsé and M. Matsumoto ([2]) proved as fol-
lows: a two-dimensional Finsler space is a Douglas space if and only if,
in a local coordinate system (z,y), y" of the geodesic equations y = y(z)
is a polynomial in y' of degree at most three.

Therefore, from (5.7) we have the following

THEOREM 5.2. A two-dimensional Kropina space in a local coor-
dinate system (z,y) of the associated Riemannian space is a Douglas
space.
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