• Title/Summary/Keyword: difference sequence spaces

Search Result 24, Processing Time 0.021 seconds

ON VECTOR VALUED DIFFERENCE SEQUENCE SPACES

  • Manoj Kumar;Ritu;Sandeep Gupta
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.439-451
    • /
    • 2024
  • In the present paper, using the notion of difference sequence spaces, we introduce new kind of Cesàro summable difference sequence spaces of vector valued sequences with the aid of paranorm and modulus function. In addition, we extend the notion of statistical convergence to introduce a new sequence space SC1(∆, q) which coincides with C11(X, ∆, φ, λ, q) (one of the above defined Cesàro summable difference sequence spaces) under the restriction of bounded modulus function.

SOME SEQUENCE SPACES OVER n-NORMED SPACES DEFINED BY FRACTIONAL DIFFERENCE OPERATOR AND MUSIELAK-ORLICZ FUNCTION

  • Mursaleen, M.;Sharma, Sunil K.;Qamaruddin, Qamaruddin
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.211-225
    • /
    • 2021
  • In the present paper we introduce some sequence spaces over n-normed spaces defined by fractional difference operator and Musielak-Orlicz function 𝓜 = (𝕱i). We also study some topological properties and prove some inclusion relations between these spaces.

On Some New Paranormed Difference Sequence Spaces Defined by Orlicz Functions

  • Tripathy, Binod Chandra;Dutta, Hemen
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.59-69
    • /
    • 2010
  • The main aim of this article is to introduce a new class of sequence spaces using the concept of n-norm and to investigate these spaces for some linear topological structures as well as examine these spaces with respect to derived (n-1)-norm. We use an Orlicz function, a bounded sequence of positive real numbers and some difference operators to construct these spaces so that they become more generalized and some other spaces can be derived under special cases. These investigations will enhance the acceptability of the notion of n-norm by giving a way to construct different sequence spaces with elements in n-normed spaces.

On Some Lacunary Generalized Difference Sequence Spaces of Invariant Means De ned by a Sequence of Modulus Function

  • Atici, Gulcan;Bektas, Cigdem Asma
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.4
    • /
    • pp.385-393
    • /
    • 2011
  • The aim of this paper is to introduce and study the sequence spaces [w, ${\theta}$, F, p, q]$_{\infty}({\Delta}_{\upsilon}^m)$, [w, ${\theta}$, F, p, q]$_1({\Delta}_{\upsilon}^m)$ and [w, ${\theta}$, F, p, q]$_0({\Delta}_{\upsilon}^m)$, which arise from the notions of generalized difference sequence space, lacunary convergence, invariant mean and a sequence of Moduli $F=(f_k)$. We establish some inclusion relations between these spaces under some conditions.

LINEAR ISOMORPHIC EULER FRACTIONAL DIFFERENCE SEQUENCE SPACES AND THEIR TOEPLITZ DUALS

  • RAJ, KULDIP;AIYUB, M.;SAINI, KAVITA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.657-668
    • /
    • 2022
  • In the present paper we introduce and study Euler sequence spaces of fractional difference and backward difference operators. We make an effort to prove that these spaces are BK-spaces and linearly isomorphic. Further, Schauder basis for Euler fractional difference sequence spaces $e^{\varsigma}_{0,p}({\Delta}^{(\tilde{\beta})},\;{\nabla}^m)$ and $e^{\varsigma}_{c,p}({\Delta}^{(\tilde{\beta})},\;{\nabla}^m)$ are also elaborate. In addition to this, we determine the 𝛼-, 𝛽- and 𝛾- duals of these spaces.

Some Paranormed Difference Sequence Spaces Derived by Using Generalized Means

  • MANNA, ATANU;MAJI, AMIT;SRIVASTAVA, PARMESHWARY DAYAL
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.909-931
    • /
    • 2015
  • This paper presents some new paranormed sequence spaces $X(r,s,t,p;{\Delta})$ where $X{\in}\{l_{\infty}(p),c(p),c_0(p),l(p)\}$ defined by using generalized means and difference operator. It is shown that these are complete linear metric spaces under suitable paranorms. Furthermore, the ${\alpha}$-, ${\beta}$-, ${\gamma}$-duals of these sequence spaces are computed and also obtained necessary and sufficient conditions for some matrix transformations from $X(r,s,t,p;{\Delta})$ to X. Finally, it is proved that the sequence space $l(r,s,t,p;{\Delta})$ is rotund when $p_n$ > 1 for all n and has the Kadec-Klee property.

ON A GENERALIZED DIFFERENCE SEQUENCE SPACES OVER NON-ARCHIMEDIAN FIELDS AND RELATED MATRIX TRANSFORMATIONS

  • BATAINEH AHMAD H. A.;AL-ZA'AREER HAMZA B.
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.723-729
    • /
    • 2005
  • Let F be a non-trivial non-Archimedian field. The sequence spaces $\Gamma\;(F)\;and\;{\Gamma}^{\ast}(F)$ were defined and studied by Soma-sundaram[4], where these spaces denote the spaces of entire and analytic sequences defined over F, respectively. In 1997, these spaces were generalized by Mursaleen and Qamaruddin[1] by considering an arbitrary sequence $U\;=\;(U_k),\;U_k\;{\neq}\;0 \;(\;k\;=\;1,2,3,{\cdots})$. They characterized some classes of infinite matrices considering these new classes of sequences. In this paper, we further generalize the above mentioned spaces and define the spaces $\Gamma(u,\;F,\;{\Delta}),\;{\Gamma}^{\ast}(u,\;F,\;{\Delta}),\;l_p(u,\;F,\;{\Delta})$), and $b_v(u,\;F,\;{\Delta}$). We also study some matrix transformations on these new spaces.

GENERALIZED 𝛼-KÖTHE TOEPLITZ DUALS OF CERTAIN DIFFERENCE SEQUENCE SPACES

  • Sandeep Gupta;Ritu;Manoj Kumar
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.219-228
    • /
    • 2024
  • In this paper, we compute the generalized 𝛼-Köthe Toeplitz duals of the X-valued (Banach space) difference sequence spaces E(X, ∆), E(X, ∆𝜐) and obtain a generalization of the existing results for 𝛼-duals of the classical difference sequence spaces E(∆) and E(∆𝜐) of scalars, E ∈ {ℓ, c, c0}. Apart from this, we compute the generalized 𝛼-Köthe Toeplitz duals for E(X, ∆r) r ≥ 0 integer and observe that the results agree with corresponding results for scalar cases.

Some Difference Paranormed Sequence Spaces over n-normed Spaces Defined by a Musielak-Orlicz Function

  • Raj, Kuldip;Sharma, Sunil K.;Gupta, Amit
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.73-86
    • /
    • 2014
  • In the present paper we introduce difference paranormed sequence spaces $c_0(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$, $c(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ and $l_{\infty}(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ defined by a Musielak-Orlicz function $\mathcal{M}$ = $(M_k)$ over n-normed spaces. We also study some topological properties and some inclusion relations between these spaces.